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Learning goals:

1. Basic topology in Rn

2. Convex sets and examples

3. Separating hyperplane theorems

4. External and internal representations

The notion of convexity is essential in semidefinite and sum-of-squares optimization. In Lectures 3 and 4,
we review some basic elements of convex analysis. More comprehensive treatments can be found in many
convex optimization books, e.g., [1, Chapter 2], [2, Chapter 2].

1 Basic topology in Rn

1.1 Open and closed sets

The (Euclidean) ball with center x ∈ Rn and radius r ∈ R is

B(x, r) = {y ∈ Rn | ∥y − x∥2 ≤ r}.

Given a set C ⊆ Rn, a point x ∈ C is an interior point of C if there exists an ϵ > 0 such that B(x, ϵ) ⊆ C,
i.e., there exists a ball centered at x that belongs to C. We denote the set of all interior points of C as intC.

A set C ⊆ Rn is called open if C = intC, i.e., all points in C are interior points. A set C is closed if
its complement Rn \ C = {x ∈ Rn | x /∈ C} is open. The closure of C, denoted as clC, is the smallest
closed set that contains C. We can also characterize closed sets in terms of convergent sequences and limit
points. A set C ∈ Rn is closed if and only if every converging sequence of points in C has its limit point in
C. The closure of C is the closed set that contains all limit points of convergent sequences in C.

The boundary of the set C is defined as ∂C = clC\intC. In other words, for any point x ∈ ∂C, an arbitrarily
small ball B(x, ϵ),∀ϵ > 0 contains points in C and points outside C. For example, the boundary of the unit
ball with a center 0 is the unit sphere

∂B(0, 1) = {x ∈ Rn | xTx = 1}.

This is often called the (n− 1)-dimensional unit sphere, denoted as Sn−1.

A set C ∈ Rn is compact if every sequence in C has a subsequence that converges to a point in C. The set
C is compact if and only if it is closed and bounded.
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1.2 Affine subspaces and relative interior

A subspace in Rn is a non-empty subset V ⊆ Rn that is closed under sums and scalar multiplication (i.e., if
u, v ∈ V , then u + v ∈ V , and αu ∈ V,∀α ∈ R). For example, the span (or linear hull) of a set of vectors
xi ∈ Rn, i = 1, . . . ,m, defined as

span(x1, . . . , xm) =

{
m∑
i=1

αixi | αi ∈ R, i = 1, . . . ,m

}
(1)

is a subspace in Rn. The basis of a subspace V ⊆ Rn is a set of independent vectors whose span equals to
V . The number of vectors in the basis is called the dimension of V .

A subset A ⊆ Rn is called an affine subspace if we can write it as

A = x0 + V = {x0 + y | y ∈ V }, (2)

where x0 ∈ Rn and V ⊆ Rn is a subspace. The dimension of an affine subspace A is defined as the dimension
of V .

Example 3.1. One-dimensional affine subspaces are lines: a line is a set of the form {θx + (1 − θ)y ∈
Rn | θ ∈ R}, where x, y ∈ Rn are two points, and (n − 1)-dimensional affine subspaces are hyperplanes: a
hyperplane is a set of the form

H = {x ∈ Rn | cTx = b}, (3)

where c ∈ Rn \ {0} is the normal of H and b ∈ R. Given any point x0 ∈ H, (3) can also be represented as
H = {x ∈ Rn | cT(x− x0) = 0}. □

From (2), it is clear that an affine set contains every affine combination of its points: If A is an affine set,
x1, . . . , xk ∈ A, and α1 + . . . + αk = 1, then α1x1 + . . . + αkxk ∈ A. The affine hull of an arbitrary set
C ⊆ Rn, denoted as aff C, is the set of all affine combinations of its points

aff C = {α1x1 + . . .+ αkxk | x1, . . . , xk ∈ C,α1 + · · ·+ αk = 1, k ≥ 1}.

The affine hull is the smallest affine subspace that contains C. The dimension of C ⊆ Rn is defined as the
dimension of its affine hull.

A set C ⊆ Rn is called full dimensional if its dimension equals to n, i.e., aff C = Rn. A set C is full
dimensional if and only if its interior is non-empty. For example, any ball B(x, r) with radius r > 0 is full
dimensional. If the dimension of C is smaller than n, then C does not have any interior point, i.e., intC = ∅.
In this case, we are interested in its interior relative to its affine subspace aff C. The relative interior of C is
defined as

relintC = {x ∈ C | B(x, ϵ) ∩ aff C ⊆ C, for some ϵ > 0}.

2 Convex sets

2.1 Basic properties

Definition 3.1. A set C ⊆ Rn is called convex if for any x, y ∈ C and any θ with 0 ≤ θ ≤ 1, we have

θx+ (1 + θ)y ∈ C.

In other words, a convex set contains the line segment between any two of its points.

A convex combination of points x1, x2, . . . , xm is a point of the form

α1x1 + · · ·+ αmxm, where α1 + · · ·+ αm = 1, αi ≥ 0, i = 1, . . . ,m.
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Figure 1: Some simple convex and nonconvex sets (images from [1, Figgure 2.2]).

A convex set contains all convex combinations of its points.

The convex hull of an arbitrary set C ⊆ Rn, denoted as convC, is the set of all convex combinations of its
points

convC = {α1x1 + . . .+ αmxm | xi ∈ C,αi ≥ 0, i = 1, . . . ,m, α1 + · · ·+ αm = 1}. (4)

The convex hull of the set C is the smallest convex set that contains C, i.e., the intersection of all convex
sets containing C,

convC =
⋂

C⊆B, B is convex

B. (5)

Figure 2 illustrates the definition of the convex hull.

Figure 2: The convex hulls of two sets in R2 (images from [1, Figure 2.3]).

In (4) ((5), resp.), we present an “internal” (“external”, resp.) representation of the convex hull of the set
C ∈ Rn. In Section 4, we will further discuss these two aspects of convex sets. Note that in (4) we considered
all convex combinations of its points of C, i.e., any number m and any selections of m points. In fact, the
value of m can be restricted. The Carathéodory theorem asserts that the number of points m need not be
larger than n+ 1.

Theorem 3.1 (Carathéodory). Let C ⊆ Rn. Then, every point in convC is a convex combination of at most
n+1 points in C, i.e., if x ∈ convC, there exist xi ∈ C and αi ≥ 0, i = 1, . . . , n+1 with α1+ · · ·+αn+1 = 1,
such that

x = α1x1 + · · ·+ αn+1xn+1.

In Section 4, we will further show that every point in convC can be represented by some special points if
convC is compact (i.e., closed and bounded).

Another useful property is that a convex set with an empty interior can be embeded into a lower dimensional
affine subspace.

Lemma 3.1 ([2, Lemma 2.9]). Let C ⊆ Rn be a convex set. Then intC = ∅ if and only if it is contained in
an affine subspace with dimension at most n− 1.

2.2 Examples

We start with some simple examples that are convex.
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• By definition, any subspace (1) and affine subspace (2) contain the entire line between any of its two
points, so they are convex (of course they contain the line segment between any of its two points). For
example, Rn is convex.

• Any line, which has the form of {θx + (1 − θ)y | θ ∈ R} where x, y ∈ Rn, is a one-dimensional affine
subspace, so it is convex.

• A half line, i.e., a ray, which has the form of {x0 + θv | θ ≥ 0} where x0, v ∈ Rn, v ̸= 0, is convex.

• Any hyperplane H = {x ∈ Rn | cTx = b} where c ∈ Rn, c ̸= 0, b ∈ R is an (n − 1)-dimensional affine
subspace, so it is convex.

• A hyperplane H splits Rn into two halfspaces H+ = {x ∈ Rn | cTx ≥ b} and H− = {x ∈ Rn | cTx ≤ b}.
The interior of H− is {x ∈ Rn | cTx < b}, which is called an open halfspace. Halfspaces (closed or
open) are convex.

We next discuss a few other common examples that are convex.

• Given any norm ∥·∥ on Rn, a norm ball with radius r > 0 and center xc, given by {x ∈ Rn | ∥x−xc∥ ≤ r}
is convex: if ∥x1 − xc∥ ≤ r, ∥x2 − xc∥ ≤ r, and 0 ≤ θ ≤ 1, we have

∥θx1 + (1− θ)x2 − xc∥ = ∥θ(x1 − xc) + (1− θ)(x2 − xc)∥
≤ θ∥x1 − xc∥+ (1− θ)∥x2 − xc∥
≤ r,

where we have applied the homogeneity property and triangle inequality for norms.

• In particular, the unit lp-ball, defined as

Bn
p = {x ∈ Rn | ∥x∥p ≤ 1},

is convex for p ≥ 1. When p = 1, Bn
1 is called the cross-polytope; when p = 2, Bn

2 is known as the unit
Euclidean ball, and if p → ∞, Bn

∞ = [−1, 1]n is called the n-dimensional cube.

Figure 3: The unit balls in R2 with norms l1 (left), l2 (center), and l∞ (right).

Figure 4: The unit balls in R3 with norms l1 (left), l2 (center), and l∞ (right).
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• Similarly, given any norm ∥ · ∥ on Rm×n, the norm ball {X ∈ Rm×n | ∥X −X0∥ ≤ r} is convex.

As one central object, the set of positive semidefinite matrices Sn+ is convex: if X1 ∈ Sn+, X2 ∈ Sn+, 0 ≤ θ ≤ 1
then we have

xT(θX1 + (1− θ)X2)x = θxTX1x+ (1− θ)xTX2x ≥ 0, ∀x ∈ Rn,

confirming θX1 + (1− θ)X2 ∈ Sn+. Similarly, the set of positive definite matrices Sn++ is convex.

The second-order cone {(x, t) ∈ Rn+1 | ∥x∥2 ≤ t} is convex. This is also known as “ice-cream cone”.

(a) (b)

Figure 5: (a) Boundary of second-order cone in R3: {(x1, x2, t) | (x2
1 + x2

2)
1/2 ≤ t}. (b) Boundary of positive

semidefinite cone S2+ := {X =

[
x y
y z

]
| x ≥ 0, z ≥ 0, xz − y2 ≥ 0} (images from [1, Figures 2.10 & 2.12]).

As another central object, the set of univariate nonnegative polynomials, defined as

{(a0, a1, . . . , an) ∈ Rn+1 | a0 + a1x+ . . .+ anx
n ≥ 0,∀x ∈ R},

is convex (the verification is straightforward). For example, when n = 2, the set of univariate nonnegative
quadratic polynomials is {(a0, a1, a2) ∈ R3 | a0 + a1x + a2x

2 ≥ 0,∀x ∈ R} = {(a0, a1, a2) ∈ R3 | a2 ≥
0, a21 − 4a2a0 ≤ 0}.

Finally, a polytope in Rn is the convex hull of finitely many points x0, . . . , xm ∈ Rn, which is convex by
definition.

• If thesem+1 points are affinely independent, meaning that x1−x0, . . . , xm−x0 are linearly independent
(thus m ≤ n), the convex hull conv{x0, . . . , xm} is called an m-dimensional simplex in Rn.

• The unit simplex is the n-dimensional simplex generated by the zero vector and the unit vectors, i.e.,
0, e1, . . . , en ∈ Rn, which can be expressed as {x ∈ Rn | x1 + · · ·+ xn ≤ 1, xi ≥ 0, i = 1, . . . , n}.

• The probability simplex is the (n − 1)-dimensional simplex generated by the unit vectors, which is
{x ∈ Rn | x1 + · · ·+ xn = 1, xi ≥ 0, i = 1, . . . , n}

2.3 Intersection and affine functions

We here discuss two important operations that preserve convexity. First, convexity is preserved under the
operation of intersection: if C1 and C2 are convex, then C1 ∩ C2 is convex. This property extends to the
intersection of an arbitrary number of sets.

Lemma 3.2. Let I be an arbitrary index set. If the sets Ci ⊆ Rn, i ∈ I are convex, then C =
⋂

i∈I Ci is
convex.

This property allows us to easily establish the convexity of some common sets.
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Example 3.2 (Polyhedra). A polyhedron is defined as the solution set of a finite number of affine inequalities
and equalities

P = {x ∈ Rn | aTj x ≤ bj , j = 1, . . . ,m, cTj x = dj , j = 1, . . . , p}, (6)

which is convex, since it is an intersection of a finite number of halfspaces and hyperplanes

P =

m⋂
j=1

{x ∈ Rn | aTj x ≤ bj}
p⋂

j=1

{x ∈ Rn | cTj x = dj}.

When a polyhedron P is bounded, then it is a polytope, i.e., it can also be represented by a convex hull of
finitely many points, i.e., P = conv{x1, . . . , xk} for some value of k. In general, any polyhedron P in (6)
can also be represented in the form (and vice versa)

{θ1x1 + · · ·+ θkxk | θ1 + · · ·+ θm = 1, θi ≥ 0, i = 1, . . . , k,m ≤ k}. (7)

Given a polyhedron P, (6) can be considered as an external representation and (7) can be considered as an
internal representation. These two representations can, however, differ significantly in size for the same
polyhedron P. □

Example 3.3. The set of positive semidefinite matrices can be represented as

Sn+ =
⋂
x̸=0

{A ∈ Sn | xTAx ≥ 0},

which is an intersection of infinitely many halfspaces in Sn, indexed by each x ̸= 0 as {A ∈ Sn | xTAx ≥ 0}
(note that f(A) = xTAx is a linear function in A ∈ Sn). Thus, Sn+ is convex. Similarly, the set of univariate
nonnegative polynomials can be written as⋂

x∈R
{(a0, a1, . . . , an) ∈ Rn+1 | a0 + a1x+ . . .+ anx

n ≥ 0},

which is an intersection of infinitely many halfspaces in Rn+1, and thus it is convex. □

In the examples above, we establish convexity of a set by expressing it as an intersection of (possibly infinite)
halfspaces. Indeed, we will discuss in Section 4 that every closed convex set C is an intersection of (usually
infinite) halfspaces (Theorem 3.8).

Another useful operation that preserves convexity is via affine functions. Recall that a function f : Rn → Rm

is affine if it has the form f(x) = Ax+ b, where A ∈ Rm×n, b ∈ Rm.

Lemma 3.3. Let C ⊆ Rn be a convex set.

1. If f : Rn → Rm is an affine function, then the image of C under f , defined as f(C) = {f(x) ∈ Rm |
x ∈ C}, is convex in Rm.

2. If f : Rk → Rn is an affine function, then the pre-image of C under f , defined as f−1(C) = {z ∈ Rk |
f(z) ∈ C}, is convex in Rk.

Proof. For statement (1), let y1, y2 ∈ f(C). There exist x1, x2 ∈ C such that y1 = f(x1), y2 = f(x2). Then,
for any 0 ≤ θ ≤ 1, we have

θy1 + (1− θ)y2 = θf(x1) + (1− θ)f(x2) = f(θx1 + (1− θ)x2) ∈ f(C),

where we have applied the affine property of f(x) and the convexity of C.

For statement (2), let z1, z2 ∈ f−1(C), meaning that f(z1), f(z2) ∈ C. Then, for any 0 ≤ θ ≤ 1, we have

f(θz1 + (1− θ)z2) = θf(z1) + (1− θ)f(z2) ∈ C.

This finishes the proof.
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Let us discuss a few affine operations below.

• Scaling and translation are two simple affine operations: if C ⊆ Rn is convex, then for any α ∈ R, a ∈
Rn, the sets

αC = {αx | x ∈ C}, C + a = {x+ a | x ∈ C},
are both convex.

• The Minkowski sum of two convex sets C1, C2 ⊆ Rn preserves convexity:

C1 + C2 = {x1 + x2 ∈ Rn | x1 ∈ C1, x2 ∈ C}.

The set C1 + C2 is the image of the direct (or Cartesian) product C1 × C2 = {(x1, x2) ∈ R2n | x1 ∈
C1, x2 ∈ C2} (that is convex) under the linear function f(x1, x2) = x1 + x2, thus it is convex.

• The projection of a convex set onto some of its coordinates is convex: if C ⊆ Rm ×Rn is convex, then
its projection onto the first m coordinates

S = {x1 ∈ Rm | (x1, x2) ∈ C for some x2 ∈ Rn}

is convex. The set S can be seen as the image of C under the linear function f(x1, x2) = x1+0m×n×x2,
and it is thus convex.

We end this section by noting that the solution set of a linear matrix inequality, given by

A(x) = A0 + x1A1 + · · ·+ xnAn ⪯ 0,

where Ai ∈ Sn, i = 0, . . . , n are given symmetric matrices, is convex. The set {x ∈ Rn | A(x) ⪯ 0} can be
viewed as the pre-image of Sn+ under the affine function f(x) = −A(x).

3 Separating hyperplane theorems

In this section, we introduce several fundamental results on separating hyperplanes for convex sets. Let us
first present the definitions of separating hyperplanes.

Recall that a hyperplane is in the form of H = {x ∈ Rn | cTx = b}, where c ∈ Rn \ {0} is the normal vector
of H and b ∈ R. Note that when H passes through a point z0, we have b = cTz0. This hyperplane H splits
Rn into two closed halfspaces

H+ = {x ∈ Rn | cTx ≥ b}, and H− = {x ∈ Rn | cTx ≤ b}.

A hyperplane H is said to separate two sets C ⊆ Rn and D ⊆ Rn if they lie on different sides of H, i.e.,
C ⊆ H+, D ⊆ H− (or C ⊆ H−, D ⊆ H+). In other words, the sets C ⊆ Rn and D ⊆ Rn are separated by
a hyperplane if there exist a non-zero vector c ∈ Rn and a scalar b ∈ R such that

cTx− b ≥ 0,∀x ∈ C, and cTx− b ≤ 0,∀x ∈ D. (8)

The separation is said to be strict if the inequalities (8) are both strict, i.e.,

cTx− b > 0,∀x ∈ C, and cTx− b < 0,∀x ∈ D. (9)

Note that (8) and (9) can also be written as cTx ≥ cTy,∀x ∈ C, y ∈ D and cTx > cTy,∀x ∈ C, y ∈ D,
respectively.

Another closely related notion is supporting hyperplanes. A hyperplane is said to support a set C ⊆ Rn at
a point x ∈ C if x ∈ H and the set C lies entirely in one of the halfspaces H+ or H−. In this case, H is
called a supporting hyperplane of C at point x. The corresponding halfspace (H+ or H−) that contains C
is called a supporting halfspace.
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3.1 Projections

We here introduce a projection operator that allows us to construct separating hyperplanes in the next
section.

Consider a closed convex set C ∈ Rn, a point x ∈ Rn, and a norm ∥ · ∥. The distance of the point x to the
set C is defined as

dist(x,C) = min
y∈C

∥x− y∥. (10)

Any point z ∈ C that achieves the minimum ∥z − x∥ = dist(x,C), i.e., closest to x, is called a projection
of x on C. Note that for l1 and l∞ norms, the minimizers of (10) may be non-unique (since the l1 and l∞
norms are piece-wise linear functions), i.e., there may be more than one points in C that are closest to x.

Example 3.4. Consider a convex set C = {(t,−t) ∈ R2 | t ∈ R}, and x = (1, 1). Then

min
y∈C

∥x− y∥1 = min
t∈R

∥(1− t, 1 + t)∥1 = min
t∈R

|1− t|+ |1 + t| ≥ |1− t+ 1 + t| = 2.

Meanwhile, we have ∥(1,−1)− x∥1 = 2, ∥(0, 0)− x∥1 = 2, and ∥(−1, 1)− x∥1 = 2. All three points (1,−1),
(0, 0) and (−1, 1) are projections of x on C under the l1 norm. □

Throughout this course, we only consider the Euclidean norm in (10). It can then be shown that the
projection is unique, denoted as PC(x), i.e.,

PC(x) = argmin
y∈C

∥x− y∥2. (11)

Theorem 3.2 ( [2, Section 2.1.2]). Let C ⊆ Rn be a non-empty, closed and convex set. Then, for any
x ∈ Rn, there exists a unique point z ∈ C that is closest to x under the Euclidean norm. Further, z = PC(x)
if and only if

⟨y − z, x− z⟩ ≤ 0, ∀y ∈ C. (12)

If C is an affine subspace, then ∀y ∈ C, we have PC(x) − y + PC(x) = 2PC(x) − y ∈ C. In this case, (12)
reads as

⟨y − PC(x), x− PC(x)⟩ ≤ 0

⟨PC(x)− y, x− PC(x)⟩ ≤ 0,∀y ∈ C,

which implies ⟨y − PC(x), x− PC(x)⟩ = 0,∀y ∈ C, i.e., x− PC(x) ⊥ C. In the case of Example 3.4, we have
PC(x) = (0, 0), and ⟨x− 0, (t,−t)− 0⟩ = t− t = 0,∀t ∈ R.

One useful property is that the Euclidean projection (11) is nonexpansive.

Lemma 3.4. Let C ⊆ Rn be a non-empty closed convex set. Then, we have

∥PC(x)− PC(y)∥2 ≤ ∥x− y∥2, ∀x, y ∈ Rn.

3.2 Separating hyperplanes

A closed convex set and a point outside it can be strictly separated by a hyperplane, and this hyperplane
can be constructed by using the Euclidean projection.

Theorem 3.3. Let C ⊆ Rn be a closed convex set, and x /∈ C. Let PC(x) ∈ Rn be the projection of x on
C. Then, the hyperplane passing through point z0 = 1

2 (x+PC(x)) with normal vector c = x−PC(x) strictly
separates {x} and C, i.e.

cTx > cTz0, and cTy < cTz0, ∀y ∈ C.
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Proof. It is clear that c = x− PC(x) is nonzero since x /∈ C and PC(x) ∈ C. We have

cT(x− z0) = cT
(
x− 1

2
(x+ PC(x))

)
=

1

2
∥c∥22 > 0.

By Theorem 3.2, we have
⟨c, y − PC(x)⟩ ≤ 0, ∀y ∈ C. (13)

Meanwhile, we have

cT(PC(x)− z0) = cT
(
PC(x)−

1

2
(x+ PC(x))

)
= −1

2
∥c∥22 < 0.

Combining this with (13) leads to the desired result cTy < cTz0, ∀y ∈ C.

Theorem 3.4. Let C and D be two closed convex sets in Rn, and let C be bounded. If C ∩ D = ∅, then
there exists a hyperplane separating them strictly, i.e., there exist c ∈ Rn \ {0} and b ∈ R such that

cTx− b > 0,∀x ∈ C, and cTy − b < 0,∀y ∈ D.

Proof. Since C and D are closed and C is bounded, the set F = C − D is closed and convex. We further
know that 0 /∈ F because C ∩D = ∅. By Theorem 3.3, there exists c ∈ Rn \ {0} and b0 ∈ R such that

0 = ⟨c, 0⟩ < b0, and cT(x− y) > b0, ∀x ∈ C, y ∈ D.

This implies that

inf
x∈C

cTx ≥ b0 + sup
y∈D

cTy >
b0
2

+ sup
y∈D

cTy > sup
y∈D

cTy.

Thus, we can choose b = b0
2 + supy∈D cTy. This completes the proof.

The boundness assumption in Theorem 3.4 cannot be removed in general. The strict separation may not be
possible even when C and D are closed. For example, consider

C =

{
(x, y) ∈ R2 | x > 0, y ≥ 1

x

}
, D = {(x, y) ∈ R2 | y ≤ 0},

which are closed and disjoint, but they cannot be separated strictly.

Figure 6: The hyperplane {x | aTx = b} separates the disjoint convex sets C and D. The affine function
aTx− b is nonpositive on C and nonnegative on D (images from [1, Figure 2.19]).

This issue is related to the case where the set C in Theorem 3.3 is open and the point x /∈ C lies on the
boundary of C. In this case, we have a non-strict separation result.

Theorem 3.5. Let C ⊆ Rn be a convex set, and x /∈ C. Then, there exists a nonzero vector c ∈ Rn such
that

cTy ≤ cTx, ∀y ∈ C.
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Figure 7: The sets C =
{
(x, y) | x > 0, y ≥ 1

x

}
, D = {(x, y) | y ≤ 0} are closed and disjoint, but they cannot

be separated strictly.

Proof. If x is outside the closure of C, i.e., clC (which is closed and convex), then this result follows from
Theorem 3.3 (indeed, the strict separation holds).

Assume that x is on the boundary of C. Let us consider a sequence of points x1, . . . , xk, . . . outside clC,
which converges to x. By Theorem 3.3, for each xk, there exists a non-zero ck ∈ Rn such that

⟨ck, xk⟩ > ⟨c, y⟩, ∀y ∈ C. (14)

Without loss of generality, we can assume ∥ck∥2 = 1,∀k ∈ N (since we can divide ∥ck∥2 on both sides of
(14)). Then, the bounded sequence ck contains a convergent subsequence, and we denote the limit as c ∈ Rn.
Taking such a limit over (14), we get the desired result cTx ≥ cTy,∀y ∈ C.

The non-strict separating hyperplane result above holds for two convex sets C,D if they are not intersected.
The proof is similar to that of Theorem 3.4.

Theorem 3.6. Let C and D be two convex sets in Rn. If C ∩D = ∅, then there exists c ∈ Rn \ {0} such
that

cTx ≥ cTy, ∀x ∈ C, ∀y ∈ D.

In Theorem 3.6, the sets C and D can be both open and unbounded.

3.3 Supporting hyperplanes

Following the proof of Theorem 3.5, for any convex set, we can construct a supporting hyperplane at every
boundary point.

Theorem 3.7. Let C ⊆ Rn be a non-empty convex set. For any x0 on the boundary of C, there exists a
hyperplane that supports C at x0, i.e., there exists a non-zero vector c ∈ Rn such that cTx ≤ cTx0,∀x ∈ C.

In the next section, we will further show that any closed convex set is the intersection of all its supporting
halfspaces (Theorem 3.8).

4 External and internal representations of convex sets

In this section, we present external and internal representations of closed convex sets. The external repre-
sentation gives an implicit description that allows us to verify whether a point belongs to the convex set.
On the other hand, the internal representation gives an explicit description which gives an simple way to
generate points in the convex set.
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4.1 External (implicit) representation

A direct application of the strict separation result in Theorem 3.3 can show that any closed convex set can
be expressed as an intersection of halfspaces (more precisely, its supporting halfspaces).

Theorem 3.8. Let C ⊆ Rn be a nonempty closed convex set. Then, C is an intersection of its supporting
halfspaces, i.e.,

C =
⋂

x∈∂ C

H−
x,b,

where H−
x,b denotes a supporting halfspace {x ∈ Rn | cTx ≤ b} of C at point x.

Proof. Let us denote

D =
⋂

x∈∂ C

H−
x,b.

Since C ⊆ H−
x,b for each x ∈ ∂ C, it is clear that C ⊆ D.

We only need to prove that D ⊆ C. It suffices to prove that if y /∈ C, then y /∈ D. Consider any point
y /∈ C. Let x0 = PC(y) be the projection of y on C, which is on the boundary of C. Following the argument
in Theorem 3.3, the hyperplane Hx0,b = {z ∈ Rn | cTz = cTx0} with normal c = y − x0 is a supporting
hyperplane such that

cTx ≤ cTx0,∀x ∈ C, and cTy > cTx0.

Thus, y /∈ H−
x0,b

. By the definition of D, we know y /∈ D. This completes the proof.

This theorem gives a representation of a closed convex set C as the intersection of its supporting halfspaces.
To verify whether a point x belongs to C, we can check whether x lies in all these supporting halfspaces.
If the number of supporting halfspaces is finite, the set C is a polyhedron in the form of (6). A simple
membership test for C is to just verify whether all the inequalities and equalities in (6) is satisfied.

4.2 Internal (explicit) representation

We here give an internal representation of compact and convex sets. For this, we define a concept of extreme
points.

Definition 3.2 (Extreme point). Let C ⊆ Rn be a convex set. A point x ∈ C is called extreme if there exist
no other two distinct points x1, x2 ∈ C and a scalar 0 < λ < 1 such that x = λx1 + (1− λ)x2.

In other words, an extreme point x ∈ C does not lie in the line segment between any two distinct points of
C. For example, the extreme points of a line segment {θx + (1 − θ)y ∈ Rn | 0 ≤ θ ≤ 1} are the boundary
points x and y. The set of all extreme points of C is denoted as extrC.

Theorem 3.9 (Minkowski’s theorem [2, Theorem 2.44]). Let C ⊆ Rn be a compact and convex set. Then

C = conv(extrC). (15)

The internal representation (15) gives an explicit way to generate points inside C. This result can be extended
to unbounded convex sets; see [2, Theorem 2.46] for details.

5 Cones and dual cones

An important class of convex sets – convex cones plays a significant role in convex optimization, especially
conic programming which is a central framework in this course.
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Definition 3.3 (Cones). A set C ⊆ Rn is called a cone if for any x ∈ C and θ ≥ 0, we have θx ∈ C.

Definition 3.4 (Convex cones). A set C ⊆ Rn is called a convex cone if it is convex and a cone. Equivalently,
for any x1, x2 ∈ C and θ1, θ2 ≥ 0, we have θ1x1 + θ2x2 ∈ C.

A conic combination (or nonnegative linear combination) of points x1, x2, . . . , xm is a point of the form

α1x1 + · · ·+ αmxm, where αi ≥ 0, i = 1, . . . ,m.

A convex cone contains all conic combinations of its points. The converse is also true (i.e., a set that contains
all conic combinations of its points is a convex cone). The conic hull of a set C ⊆ Rn, denoted as coneC, is
the set of all conic combinations of its points

coneC = {α1x1 + · · ·+ αmxm | xi ∈ C,αi ≥ 0, i = 1, . . . ,m}. (16)

The conic hull of the set C is the smallest convex cone that contains C.

Example 3.5. Some simple examples of convex cones are 1) any line passing through zero in the form of
{θx0 ∈ Rn | θ ∈ Rn} where x0 ∈ Rn is a given point; 2) any hyperplane passing through zero in the form of
{x ∈ Rn | cTx = 0}; 3) any halfspace passing through zero in the form of {x ∈ Rn | cTx ≤ 0}; 4) the span
(or linear hull) of a set of vectors xi ∈ Rn, i = 1, . . . ,m (this includes any subspace).

The strict separating result in Theorem 3.3 can be specialized to convex cones as follows.

Theorem 3.10. Let C ⊆ Rn be a closed convex cone and let x /∈ C. Then, there is a hyperplane that strictly
separates {x} and C. Even stronger, there exists c ∈ Rn \ {0} such that

cTx > 0, and cTy ≤ 0, ∀y ∈ C.

The proof follows directly by choosing c = x− PC(x) and applying Theorem 3.2.

5.1 Three important proper cones

For practical optimization methods, we focus on a class of proper cones.

Definition 3.5 (Proper cones). A cone K ⊆ Rn is called a proper cone if it is convex, closed, has non-empty
interior (i.e., full dimensional), and pointed (i.e., it contains no line or equivalently x,−x ∈ K ⇒ x = 0).

The convex cones in Example 3.5 are not proper since they are not pointed. Here, we discuss three important
classes of proper cones which will be used extensively in this course.

• The non-negative orthant is defined as

Rn
+ = {x ∈ Rn | xi ≥ 0, i = 1, . . . , n}.

It is convex, closed, has a non-empty interior, and is pointed. Thus, it is a proper cone. It is easy to
see that Rn

+ is generated by the standard basis e1, . . . , en ∈ Rn

Rn
+ = cone{e1, . . . , en}.

• The second-order cone is defined as

Ln+1 = {(x, t) ∈ Rn+1 | ∥x∥2 = (x2
1 + · · ·+ x2

n)
1/2 ≤ t}.

This is also a proper cone. Unlike the non-negative orthant Rn
+, the second-order cone Ln+1 is not a

polyhedron. Very often, Ln+1 is also called the ice cream cone or the Lorentz cone. It can be verified
that

Ln+1 = cone{(x, 1) | ∥x∥2 = 1}.
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• The cone of positive semidefinite matrices

Sn+ = {X ∈ Sn | X is positive semidefinite}.

It is convex, closed, pointed, and has a non-empty interior (see ?? for characterizations). ?? (2)
suggests that the cone of positive semidefinite matrices Sn+ is generated by rank-1 matrices, i.e.,

Sn+ = cone{xxT | x ∈ Rn, ∥x∥2 = 1}.

A proper convex cone K ⊆ Rn can define a partial ordering on Rn as

x ⪰K y ⇔ x− y ∈ K.

We also write y ⪯K x for x ⪰K y. If K = Rn
+, the associated partial ordering x ⪰K y corresponds to

component-wise inequalities, i.e., xi ≥ yi, i = 1, . . . , n. When K = Sn+, the associated partial ordering
X ⪰K Y means that X − Y is positive semidefinite. Very often, we drop the subscript and simply write
X ⪰ Y .

5.2 Dual cones

The concept of dual cones is also very important in conic programming (Lectures 5 & 6) and its duality
analysis (Lectures 7 & 8).

Definition 3.6. Let K ⊆ Rn be a cone. The set

K∗ = {y ∈ Rn | yTx ≥ 0, ∀x ∈ K}

is called the dual cone of K.

The negative of the dual cone K◦ = −K∗ is called the polar cone. It is easy to see that the dual cone K∗ is
indeed a cone (as the name suggests). Further, K∗ is always closed and convex since it can be viewed as an
intersection of (infinitely) closed halfspaces:

K∗ =
⋂
x∈K

{y ∈ Rn | yTx ≥ 0}. (17)

From (17), it is also easy to see that if K1 ⊆ K2, then K∗
2 ⊆ K∗

1 .

Geometrically, y ∈ K∗ if and only if −y is the normal of a hyperplane that supports K at the origin. This
is shown in Figure 8.

Figure 8: Left: The halfspace with inward normal y contains the cone K, so y ∈ K∗. Right: The halfspace
with inward normal z does not contain K, so z /∈ K∗ (images from [1, Figure 2.22]).

For example, the dual cone of a ray (which is a cone) in the form of K = {θx0 ∈ Rn | θ ≥ 0} is a halfspace
K∗ = {y ∈ Rn | xT

0 y ≤ 0}. The dual cone of a line passing through zero K = {θx0 ∈ Rn | θ ∈ R} is a
hyperplane K∗ = {y ∈ Rn | xT

0 y = 0}. Generally, the dual cone of a subspace V ⊆ Rn
+ is its orthogonal

complement V ⊥ = {y ∈ Rn | xTy = 0,∀x ∈ V }.

Let K∗∗ denote the dual cone of the dual cone of K, i.e.K∗∗ = (K∗)∗. The following result is known as the
biduality (or bipolar) theorem.
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Theorem 3.11 ([2, Theorem 2.27]). Let K ⊆ Rn be a closed convex cone. Then,

K∗∗ = K.

The direction K ⊆ K∗∗ is based on the definition of dual cones, while the other direction K∗∗ ⊆ K requires
the machinery of separation theorems, especially Theorem 3.10.

Proof. Let first prove K ⊆ K∗∗ by showing that ∀b ∈ K ⇒ b ∈ K∗∗. By definition, we have K∗ =⋂
x∈K{y ∈ Rn | yTx ≥ 0}. Let b be any point in K. We thus have

K∗ ⊆ {y ∈ Rn | yTb ≥ 0},

meaning that yTb ≥ 0,∀y ∈ K∗. This in turn implies that b ∈ (K∗)∗.

We then prove K∗∗ ⊆ K by showing that ∀b /∈ K ⇒ b /∈ K∗∗. Let any b /∈ K. Since K is a closed convex
cone, Theorem 3.10 ensures that there exists c ∈ Rn \ {0} such that

cTb > 0, and cTy ≤ 0, ∀y ∈ K.

This means that −c ∈ K∗. Since (−c)Tb < 0, we know that b /∈ K∗∗ (again recall the definition K∗∗ = {y ∈
Rn | yTx ≥ 0,∀x ∈ K∗}).

We call a cone K self dual if K∗ = K, i.e. the dual cone is itself. All the three classes of proper cones in
Section 5.1 are self-dual (note that there are other self-dual cones [?]).

• Nonnegative orthant. The cone Rn
+ is self dual (Rn

+)
∗ = Rn

+:

xTy ≥ 0,∀x ∈ Rn
+ ⇔ y ∈ Rn

+. (18)

• Second-order cone. The second-order cone Ln+1 = {(x, t) ∈ Rn+1 | ∥x∥2 ≤ t} is self dual (Ln+1)∗ =
Ln+1, i.e.,

xTu+ tv ≥ 0,∀(x, t) ∈ Ln+1 ⇔ (u, v) ∈ Ln+1. (19)

• Positive semidefinite cone. The positive semidefinite cone Sn+ is self-dual (Sn+)∗ = Sn+, i.e.

trace(XY ) ≥ 0,∀X ∈ Sn+ ⇔ Y ∈ Sn. (20)

The fact (18) is straightforward. We leave the proofs of (19) and (20) as exercises. In fact, it can be shown
that the dual of a norm cone is the cone defined by the dual norm [1, Example 2.25]: let ∥ · ∥ be a norm on
Rn, then the dual cone of K = {(x, t) ∈ Rn+1 | ∥x∥ ≤ t} is

K∗ = {(u, v) ∈ Rn+1 | ∥u∥∗ ≤ v}.
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