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Lecture 6: LP, QP, QCQP, SOCP, and SDP
Lecturer: Yang Zheng Scribe: Yang Zheng

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. Any
typos should be sent to zhengy@ eng. ucsd. edu .

Learning goals:

1. Linear programming (LP)

2. Convex quadratic programming (QP)

3. Convex Quadratically Constrained Quadratic Programming (QCQP)

4. Second-order Cone Programming (SOCP)

5. Semidefinite Programming (SDP)

In this lecture, we will cover some of the most well-known classes of convex optimization problems and their
applications, including LP, QP, QCQP, SOCP, and SDP. As we will see, SDP is the most general class of
convex optimization problems among them.

1 Convex functions and Convex Optimization problems

Domain of a function: The domain of a function f : Rn → R is the set domf ⊆ Rn where the function f
is well-defined, i.e.,

domf := {x ∈ Rn | −∞ < f(x) < +∞}.

For example, the function f(x) = log(x) has domain domf = R++, and the function f(X) = log det(X) has
domain domf = Sn++.

Definition 6.1 (Convex function). A function f : Rn → R is convex if its domain domf is a convex set
and ∀x, y ∈ domf, λ ∈ [0, 1], we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

A function f is called concave if −f is convex. Here are some examples

• The affine function f(x) = cTx+ b is convex (concave);

• The indicator function of a set

IC(x) =

{
0, x ∈ C

∞, x /∈ C

is convex if and only if the set is convex

• The quadratic function f(x) = xTPx+ 2qTx+ r with P ∈ Sn+ is convex;
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• The function f : R → R defined as

f(x) =

{
1
x , x > 0

∞, x ≤ 0

is convex.

• The function f(x) = log(x) is concave.

There are many alternative ways to characterize the convexity of a function. Perhaps, the most commonly
known one is: if f(x) is twice differentiable, then it is convex if and only if its domain domf is convex and
its Hessian is positive semidefinite,

∇2f(x) ⪰ 0, ∀x ∈ domf.

Convex optimization problems: A convex optimization problem is a problem of the form

min f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p,

(1)

where fi : Rn → R, i = 0, 1, . . . ,m are convex functions and hi : Rn → R are affine functions.

We denote the feasible set as

Ω = {x ∈ Rn | fi(x) ≤ 0, i = 1, . . . ,m;hj(x) = 0, j = 1, . . . , p}.

The feasible set Ω is always convex.

• Optimal solution: An (globally) optimal solution x∗ is a point in Ω such that

f0(x
∗) ≤ f(x),∀x ∈ Ω.

Note note an optimal solution may not exist, or may not be unique.

• Optimal value: The optimal value p∗ of (1) is defined as

p∗ = inf
x∈Ω

f0(x).

If the problem is infeasible, i.e., Ω = ∅, then p∗ = ∞. If there exist a sequence of feasible points xk ∈ Ω
such that

f(xk) → −∞,

as k → ∞, then p∗ = −∞, and we say the problem is unbounded below.

• Solvable problem: if there exist a point x such that f(x) = p∗, it is an optimal point and we say the
optimal value is attained or achieved. The problem is solvable.

Figure 1 illustrates the concepts above.

2 A hierarchy of convex optimization problems

2.1 Linear programming

A linear program (LP) is an optimization problem of the form (1), where every function f0, f1, . . . , fm, h1, . . . , hp

are affine. The feasible region of an LP is a polyhedron.
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(a) Ω = {x ∈ R | a ≤ x ≤ b} (b) Ω = {x ∈ R | x ≤ b}

(c) Ω = {x ∈ R | x ≥ 0} (d) Ω = {x ∈ R | a ≤ x ≤ b}

Figure 1: Different situations of an optimal solutions: (a) the optimal solution is unique; (b) the optimal
solution does not exist and the problem is unbounded; (c) the optimal cost is finite but it is not attained;
(d) the optimal solutions are not unique.

In Lecture 4, we have introduced the standard form of an LP

min
x

cTx

subject to Ax = b

x ≥ 0.

(2)

l1 norm regression: The problem has the form

min
x∈Rn

m∑
i=1

|aTi x+ bi|,

which is not an LP in its present form. As we see in Lecture 4, it can be transformed into an equivalent LP
by introducing additional variables

min
x∈Rn,v∈Rm

m∑
i=1

vi

subject to aTi x+ bi ≥ −vi,

aTi x+ bi ≤ vi, i = 1, . . . ,m.

Piece-wise linear minimization. A piece-wise linear function has the form

f(x) = max
1≤i≤m

aTi x+ bi.
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The problem of minimizing the piece-wise linear function is not an LP since the function f(x) is convex but
not affine. However, it is equivalent to an LP as follows

min
x∈Rn,t

t

subject to aTi x+ bi ≤ t, i = 1, . . . ,m.

2.2 Quadratic programming

A quadratic program is an optimization problem of the form

min
x

xTQx+ qTx+ c

subject to Ax = b,

Hx ≤ d,

(3)

where Q ∈ Sn, q ∈ Rn, c ∈ R, A ∈ Rm×n, b ∈ Rm, H ∈ Rq×n, d ∈ Rq.

When Q ⪰ 0, this problem is called convex quadratic programming (QP); otherwise, it is called nonconvex
QP. The case of convex QP can be solved easily, while the case of nonconvex QP is very hard to solve.

LP ⊂ QP (take Q = 0)

Model Predictive Control: QP has many practical applications. We here describe a useful application
in model predictive control (MPC). Consider a discrete-time dynamical system

xt+1 = Axt +But + wt,

yt = Cxt,

where xt ∈ Rn, yt ∈ Rp, ut ∈ Rm, wt ∈ Rn are the system state, output, input, and disturbance at time t.
Our control goal is to design the input ut such that system outputs follow a desired trajectory (ur,t, yr,t).
At each time step, an MPC controller solves the following optimization problem over the predictive horizon

min
ut,ut+1,...,ut+N−1

N∑
k=1

(
∥yt+k − yr,t+k∥2Q + ∥ut+k − ur,t+k∥2R

)
subject to xk+1 = Axk +Buk + wk, k = t, t+ 1, . . . , t+N − 1,

yk = Cxk, k = t, t+ 1, . . . , t+N,

Dyk + Fuk ≤ d, k = t, t+ 1, . . . , t+N − 1,

(4)

where (ur,t+k, yr,t+k), k = 1, . . . , N − 1 denote the reference trajectory in the predictive horizon, and D ∈
Rl×p, F ∈ Rl×m, d ∈ Rl define the safety constraints on the state and inputs, and N ∈ R denotes the length
of the predictive horizon. It is not difficult to see that (4) is actually a QP (note that the cost function is
quadratic and the constraints are linear in ut).

2.3 Quadratically Constrained Quadratic Programming

A quadratically constrained quadratic programming (QCQP) corresponds to a problem of the form

min
x

xTQx+ qTx+ c

subject to xTQix+ qTi x+ ci ≤ 0, i = 1, . . . ,m
(5)
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where Q,Qi ∈ Sn, q, qi ∈ Rn, c, ci ∈ R.

If all Q,Qi are positive semidefinite, we refer to (5) as convex QCQP, which can be solved reliably. Otherwise,
it is a non-convex QCQP, which can model many computationally hard problems. We will see some concrete
applications later in this course.

QP ⊂ QCQP (take Qi = 0)

2.4 Second-order Cone Programming

A standard second-order cone problem (SOCP) is a problem of the form

min
x

cTx

subject to ∥Aix+ bi∥ ≤ cTi x+ di, i = 1, . . . ,m
(6)

where Ai ∈ Rki×n, bi ∈ Rki , ci ∈ Rn, di ∈ R. The name comes from the fact that the variables

(Aix+ bi, c
T
i x+ di)

belong to a second-order cone. In particular, a second-order cone of dimension n+ 1 is defined as

Ln+1 := {(x, t) ∈ Rn+1 | ∥x∥2 ≤ t}.

Now, it is easy to see that (6) is equivalent to

min
x

cTx

subject to (Aix+ bi, c
T
i x+ di) ∈ Ln+1, i = 1, . . . ,m.

(7)

It is clear that SOCPs contain LPs as special cases by setting Ai = 0. Both convex QPs and convex QCQPs
are special cases of SOCPs too. Too see this, we introduce a variation on the second-order cone, called the
rotated second-order cone

Ln+2
rot := {(x, y, z) ∈ Rn+2 | 2yz ≥ ∥x∥22, y ≥ 0, z ≥ 0}.

It can be expressed as a linear transformation (a rotation) of the ordinary second-order cone in Rn+2.
Indeed, it is not difficult to convert the rotated second-order cone into the ordinary second-order cone, since
the constraints above are equivalent to

y + z ≥
∥∥∥∥[y − z√

2x

]∥∥∥∥
2

.

We can view QP (3) as a special case of SOCP: first, we write the problem (3) as

min
x

t+ qTx+ c

subject to Ax = b,

Hx ≤ d,

t ≥ xTQx.

(8)

The last constraint t ≥ xTQx is equivalent to (Q1/2x, t, 1
2 ) ∈ Ln+2

rot .

Similarly, we can express the constraints in convex QCQP (5) using rotated second-order cone. Thus, we can
express QCQP as special cases of SOCP. On the other hand, SOCPs cannot in general be cast as QCQPs.
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LP ⊂ (convex) QP ⊂ (convex) QCQP ⊂ SOCP

Robust half-space constraint:

Consider a linear constraint of the form aTx − b ≤ 0, where a ∈ Rn and b ∈ R are problem data. In some
cases, we cannot know exactly the value of a. We assume that a is only known to belong to an ellipsoid
E = {â+Ru | ∥u∥2 ≤ 1}, with center â ∈ Rn and R ∈ Rn×k given. How can we guarantee the robust version
of the linear constraint

aTx− b ≤ 0, ∀a ∈ E . (9)

This is equivalent to impose

b ≥ max
a∈E

aTx = max
∥u∥2≤1

âTx+ xTRu = âTx+ max
∥u∥2≤1

xTRu = âTx+ ∥RTx∥2,

where the last identity applied the definition of dual norms. Therefore, a robust half-space constraint (9) is
equivalent to the following SOCP constraint

∥RTx∥2 ≤ b− âTx.

Robust linear programming:

Consider a linear program of the form

min
x

cTx

subject to aTi x ≤ bi, i = 1, . . . ,m.
(10)

In practice, the coefficient vectors ai may not be known perfectly, as they are subject to noise. Assume we
know that

ai ∈ Ei = {âi +Riu | ∥u∥2 ≤ 1}.

In robust optimization, we aim to minimize the original objective and impose that each constraint must
be satisfied for any choice of ai ∈ Ei, i = 1, . . . ,m. From the results above, we obtain a second order cone
program

min
x

cTx

subject to âTi x+ ∥RT
i x∥2 ≤ bi, i = 1, . . . ,m.

(11)

2.5 Semidefinite Programming

Semidefinite programming is the broadest class of convex optimization problems we consider in this lecture.
As we introduced in the previous lecture, its standard form is

min
X

⟨C,X⟩

subject to ⟨Ai, X⟩ = bi, i = 1, . . . ,m

X ∈ Sn+,

(12)

where C ∈ Sn and Ai ∈ Sn, i = 1, . . . ,m, bi ∈ R, i = 1, . . . ,m are problem data.
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Note that we can write an SDP (13) as an infinite LP by replacing X ⪰ 0 with infinitely many linear
constraints

yTXy ≥ 0, ∀y ∈ Rn.

Alternatively, we can also write an SDP as a nonlinear program by replacing X ⪰ 0 with 2n − 1 minor in-
equalities from Sylvester’s criterion. However, it is often much more convenient in theory and in computation
to treat the matrix constraint X ⪰ 0 directly.

Attainment of optimal solutions: Even when the optimal value of SDP (13) is finite, it may not always
be attained. For example

min
x2

x2

subject to

[
x1 1
1 x2

]
⪰ 0.

Its optimal value is 0, but it is not attained.

LP as a special case of SDP. Consider the LP (2). For a vector v, we denote diag(v) as the diagonal
matrix with v on its diagonal entries. Then, we can equivalently write LP (2) into an SDP

min
X

⟨diag(c), X⟩

subject to ⟨diag(ai), X⟩ = bi, i = 1, . . . ,m

X ∈ Sn+.

(13)

• LP is a special case of SDP where all matrices are extremely sparse — diagonal matrices. Note that
positive semidefiniteness of a diagonal matrix is the same as nonnegativity of its diagonal elements.

• Both polyhedra (feasible region of LPs) and spectrahedra (feasible region of SDPs) are convex. The
geometry of spectrahedra is far more complex than polyhedra. For example, spectrahedra can have an
infinite number of extreme points. This is one fundamental reason why SDP is not naturally amenable
to simplex-type algorithms.

SOCP as a special case of SDP. We first present the following fact (from the Schur complement)

∥x∥2 ≤ t ⇐⇒


t x1 . . . xn

x1 t . . . 0
...

. . .

xn 0 . . . t

 ⪰ 0.

Thus, a second-order cone constraint can be written as an LMI with an “arrow” pattern.

It is clear now that SOCP (6) can be written as an SDP

min
x

cTx

subject to

[
cTi x+ di Aix+ bi

(Aix+ bi)
T (cTi x+ di)In−1

]
⪰ 0, i = 1, . . . ,m.

(14)
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3 Summary

The aforementioned convex problem classes can all be written into a general conic program: Let K ∈ Rn be
a proper cone. A conic program over K is an optimization problem of the form:

min
x

cTx

subject to Ax = b

x ∈ K,

(15)

where A ∈ Rm×n, b ∈ Rm, and c ∈ Rn are problem data.

In particular, we have seen a hierarchy of convex optimization problems

LP ⊂ (convex) QP ⊂ (convex) QCQP ⊂ SOCP ⊂ SDP

Notes

The preparation of this lecture is based on [1, Lecture 9]. Further reading for this lecture can refer to [3,
Chapter 2], [4, Chapter 4], and [2, Chapters 1 & 2].
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