
ECE285: Semidefinite and sum-of-squares optimization Winter 2023

Lecture 7: Duality in conic programming (I)
Lecturer: Yang Zheng Scribe: Yang Zheng

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. Any
typos should be sent to zhengy@ eng. ucsd. edu .

Learning goals:

1. Certificate of bounds

2. Duality for general conic programs

3. Dual of LPs, SOCPs, and SDPs

4. The Lagrange dual problem

1 Motivating examples

Given an optimization problem, how do we find a systematic way to bound its optimal value p∗? A trivial
answer is to solve the optimization problem and get the exact optimal value. However, there is much more
instructive way to answer such as a question, via duality.

Example 7.1. Let us first look at the following example:

p∗ = min
x1,...,x10

x1 + x2 + . . .+ x10

subject to x1 + 2x2 + . . .+ 10x10 − 1 ≥ 0

10x1 + 9x2 + . . .+ x10 − 10 ≥ 0

. . .

(1)

We claim that the optimal value p∗ ≥ 1. This is actually immediate: adding the first two constraints leads to

11x1 + 11x2 + . . .+ 11x10 − 11 ≥ 0 ⇒ x1 + x2 + . . .+ x10 ≥ 1.

We get a valid lower bound with a certificate by certain combinations of the constraints. LP duality is a
straightforward generalization of this simple trick. □

Example 7.2. Consider the following linear program

p∗ = min
x,y

2x+ y

subject to x+ y + 1 ≥ 0

x+ 1 ≥ 0

y + 1 ≥ 0

− x+ 1 ≥ 0

− y + 1 ≥ 0

(2)

• Finding an upper bound on p∗ is relatively “simple”: given any feasible point (x, y), we know by
definition that p∗ ≤ 2x+y. (The challenge is that identifying a feasible point is non-trivial sometimes.)
In our simple example, we can verify that (x, y) = (0, 0) is feasible. This tells us that p∗ ≤ 0. If we
take another feasible point (x, y) = (−1, 0), we get that p∗ ≤ −2. Can we do better?
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• Finding a lower bound on p∗ seems to be more difficult. A trivial lower bound is p∗ ≥ −∞, which is not
informative (but this is the only lower bound in the case that the original problem is unbounded below).
Our strategy here is to take linear combinations of the constraints with nonnegative coefficients. For
example, if we multiply the second constraint by 2 and add it to the third constraint, we get

2(x+ 1) + y + 1 ≥ 0 ⇒ 2x+ y ≥ −3.

Thus p∗ ≥ −3, which is a much better bound than −∞. We can try another combination: if we add
the first two constraints together, this leads to

(x+ y + 1) + (x+ 1) ≥ 0 ⇒ 2x+ y ≥ −2.

This means that p∗ ≥ −2.

We have shown that p∗ ≤ 2 by finding a feasible point with objective value −2. Also, by taking appropriate
linear combinations with nonnegative coefficients of the constraints, we have shown that p∗ ≥ −2. Therefore,
we have established that p∗ = −2 for this simple LP (3). □

Example 7.3. Consider the following simple SDP

p∗ = min
x,y

x+ y

subject to

[
1− x y
y 1 + x

]
⪰ 0.

(3)

Consider again the problem of finding a lower bound on p∗. How shall we generalize the idea in the previous
example? Let us consider a positive semidefinite matrix[

a c
c b

]
⪰ 0. (4)

The inner product of two positive semidefinite matrix is always nonnegative (Problem 1 in HW1). It then
follows that any feasible point (x, y) in (3) must satisfy〈[

a b
b c

]
,

[
1− x y
y 1 + x

]〉
≥ 0,

which is (c− a)x+ 2by ≥ −a− c. Since the objective function is x+ y, if we choose c− a = 1 and b = 1/2,
we get a lower bound p∗ ≥ −a − c. Note that such a choice of a, b, c should also satisfy (4). We can verify
that

a =

√
2− 1

2
, b =

1

2
, c =

√
2 + 1

2

satisfy (4). Using this choice, we get a lower bound p∗ ≥ −a− c = −
√
2.

We can actually verify that p∗ is indeed −
√
2: take (x, y) = (−

√
2/2,−

√
2/2) which is feasible with objective

value −
√
2; this proves an upper bound p∗ ≤ −

√
2. □

2 Duality for general conic programs

In the previous section, we have seen how we can get lower bounds on p∗ by taking certain “combination”
of the constraints. We will generalize this idea to general conic programs in this section.

Let K ∈ Rn be a proper cone. A conic program over K is an optimization problem of the form:

p∗ = min
x

cTx

subject to Ax = b

x ∈ K,

(5)
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where A ∈ Rm×n, b ∈ Rm, and c ∈ Rn are problem data. The optimization variable here is x ∈ Rn. We now
use a similar way to establish a lower bound on p∗:

• for the equality constraint Ax = b, we have

yT(Ax− b) = 0, ∀y ∈ Rm.

• for the conic constraint x ∈ K, we have

zTx ≥ 0, ∀z ∈ K∗.

Then, we have
yT(Ax− b) + zTx ≥ 0 ⇒ (ATy + z)Tx ≥ bTy.

If we can find z ∈ K∗, y ∈ Rm such that c = z + ATy, then we have a lower bound p∗ ≥ bTy. Formally, we
have

cTx = (z +ATy)Tx = zTx+ yTAx

= zTx+ yTb

≥ bTy.

Dual problem: A natural thing to do is to ask for the best lower bound on p∗ from the procedure above.
This amounts to solve the following maximization problem

d∗ = max
y,z

bTy

subject to ATy + z = c

z ∈ K∗.

(6)

This problem is called the dual of (5). Note that (6) is a conic program over the dual cone K∗.

In the LP’s and SDP’s dual problem, the optimal value of the dual is the same as the optimal value of the
primal problem. This situation is known as strong duality. We have the following theorem.

Theorem 7.1 (Duality for conic programs). Consider the conic program (5) and its dual (6). The following
statements hold

1. Weak duality: p∗ ≥ d∗;

2. Strong duality: p∗ = d∗ if problem (5) is strictly feasible (i.e., there exists x ∈ int(K) such that Ax = b).

3 Dual of LPs, SOCPs, and SDPs

3.1 Dual of LPs

The standard-form LP is a problem of the form

min
x

cTx

subject to Ax = b

x ≥ 0.

(7)

Since Rn
+ is self-dual, i.e., (Rn

+)
∗ = Rn

+, it is clear that the dual problem of (7) is also an LP of the form

max
y,z

bTy

subject to ATy + z = c,

z ≥ 0.

(8)
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Theorem 7.2 (Strong duality). If the primal LP (7) is feasible and has a finite optimal value, then the dual
LP (8) is also feasible. There exist optimal feasible solutions x∗ ≥ 0, y∗, z∗ ≥ 0 and cTx∗ = bTy∗.

This is a consequence of the separation theorems for convex sets. We will prove this result in Lecture 8.

3.2 Dual of SOCPs

A standard second-order cone problem (SOCP) is a problem of the form

min
x

cTx

subject to ∥Aix+ bi∥ ≤ cTi x+ di, i = 1, . . . ,m
(9)

where Ai ∈ Rki×n, bi ∈ Rki , ci ∈ Rn, di ∈ R. We put (9) into a conic form

min
x

cTx

subject to (Aix+ bi, c
T
i x+ di) ∈ Lki+1, i = 1, . . . ,m,

(10)

where Lki+1 = {(u, v) ∈ Rki+1 | ∥u∥ ≤ v} denotes the second-order cone. With a similar argument, for each
second-order cone constraint, we have

uT
i (Aix+ bi) + vi(c

T
i x+ di) ≥ 0, ∀(ui, vi) ∈

(
Lki+1

)∗
= Lki+1,

where we have used the fact that the second-order cone is self-dual (Problem 3 in Homework 2). Now adding
these inequalities together leads to

m∑
i=1

(
AT

i ui + civi
)T

x ≥ −
m∑
i=1

(
uT
i bi + vidi

)
Therefore, if we can find (ui, vi) ∈ Lki+1, i = 1, . . . ,m such that

m∑
i=1

(AT
i ui + civi) = c,

we have a valid lower bound on (9)

cTx ≥ −
m∑
i=1

(uT
i bi + vidi).

The dual of SOCP (9) is

max
ui,vi

−
m∑
i=1

(uT
i bi + vidi)

subject to

m∑
i=1

(AT
i ui + civi) = c

∥ui∥ ≤ vi, i = 1, . . . ,m,

(11)

which is also an SOCP.

3.3 Dual of SDPs

The standard form of SDPs is
min
X

⟨C,X⟩

subject to ⟨Ai, X⟩ = bi, i = 1, . . . ,m

X ∈ Sn+,

(12)
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where C ∈ Sn and Ai ∈ Sn, i = 1, . . . ,m, bi ∈ R, i = 1, . . . ,m are problem data. This form is in the standard
form of (5). Therefore, it is not difficult to see the dual of (12) is

max
y,Z

bTy

subject to

m∑
i=1

yiAi + Z = C

Z ∈ Sn+,

(13)

where we have used the fact that the positive semidefinite cone is self-dual.

Example 7.4 (Strong duality may not hold for SDPs [2, Example 2.14]). Let α ≥ 0, and consider the
primal-dual pair of SDPs

min
X

αx11

subject to x22 = 0,

x11 + 2x23 = 1,x11 x12 x13

∗ x22 x23

∗ ∗ x33

 ⪰ 0,

and
max

y
y2

subject to

y2 0 0
0 y1 y2
0 y2 0

 ⪯

α 0 0
0 0 0
0 0 0

 .

For a primal feasible point, X being positive semidefinite and x22 = 0 imply x23 = 0, and thus x11 = 1. The
primal optimal cost p∗ is then equal to α (and is achieved). On the dual side, y2 must be zero, and thus
d∗ = 0. There is a nonzero duality gap p∗ − d∗ = α. □

4 Lagrange dual formulation

We have seen a simple “trick” to derive a useful lower bound for the conic programming. In fact, there
is a more systematic framework to derive the dual formulation of any (possibly non-convex) optimization
problem (with nonlinear cost function). We give a brief introduction here; see [3, Chapter 4] for more details.

Let us consider a possibly non-convex optimization problem

p∗ = min f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p,

(14)

with variable x ∈ Rn. We denote the domain of the problem (fi, i = 0, 1, . . . ,m and hj , j = 1, . . . , p) as D,
and the feasible region as X . We refer to the problem above as the primal problem and the decision variable
x as the primal variable. One purpose of Lagrange duality is to find a lower bound on the minimization
problem (14).

The Lagrangian The basic idea is to move the constraints (14) into its cost function. We define the
Lagrangian L : Rn × Rm × Rp → R as

L(x, λ, µ) = f0(x) +

m∑
i=1

λifi(x) +

p∑
j=1

νihi(x).
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The variables λ ∈ Rm are called Lagrange variables associated with the inequality constraints fi(x) ≤
0, i = 1, . . . ,m, and we refer to ν ∈ Rp as the Lagrange variable associated with the equality constraint
hj(x) = 0, j = 1, . . . , p.

One simple but important observation is that for any feasible x ∈ X , and any λ ∈ Rm
+ , ν ∈ Rp, the cost

value f0(x) is bounded below by L(x, λ, ν),

f0(x) ≥ f0(x) +

m∑
i=1

λifi(x) +

p∑
j=1

νihi(x) = L(x, λ, ν), ∀x ∈ X , λ ∈ Rm
+ , ν ∈ Rp. (15)

The Lagrangian can be used to write the primal problem (14) as an unconstrained form, as

p∗ = min
x

max
λ∈Rm

+ ,ν∈Rp
L(x, λ, ν),

where we have used the fact that

max
λ∈Rm

+

λTf =

{
0 if f ≤ 0

+∞ otherwise,
max
ν∈Rp

νTh =

{
0 if h = 0

+∞ otherwise.

Lagrange dual function. We now define the Lagrange dual function as

g(λ, ν) := min
x∈D

L(x, λ, ν).

Note that for some λ, ν, the Lagrangian may be unbounded below in x, then the dual function g(λ, ν) takes
on the value −∞. Since the dual function is pointwise minimum of affine functions in λ, ν, it is always
concave. Considering the fact in (15), we obtain

f0(x) ≥ min
x∈D

L(x, λ, ν) = g(λ, ν), ∀x ∈ X , λ ∈ Rm
+ , ν ∈ Rp.

Therefore, the dual function always provide a lower bound on p∗, i.e.,

p∗ ≥ g(λ, ν), ∀λ ∈ Rm
+ , ν ∈ Rp.

The Lagrange dual problem The best lower bound that we can obtain is through the optimization
problem

d∗ = max
λ,ν

g(λ, ν)

subject to λ ≥ 0.
(16)

We refer to the problem (16) as the dual problem, and the vector λ ∈ Rm, ν ∈ Rp as the dual variables. The
dual problem is always convex.

Theorem 7.3 (Weak duality). For the (possibly non-convex) problem (14), weak duality holds: p∗ ≥ d∗.

We can also derive the dual LP (8) by defining a Lagrange function

L(x, λ, ν) = cTx+ νT(b−Ax) + λT(−x).

Then the Lagrange dual function is

g(λ, ν) = min
x

L(x, λ, ν)

= min
x

(c−ATν − λ)Tx+ bTν

=

{
bTν if c−ATν − λ = 0

−∞ otherwise.
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Thus, the Lagrange dual problem is

max
λ,ν

bTν

subject to ATν + λ = c

λ ≥ 0,

which is the same as (8).

4.1 Dual of QPs

A convex quadratic program is an optimization problem of the form

min
x

1

2
xTQx+ qTx+ c

subject to Ax ≤ b
(17)

where Q ∈ Sn+, q ∈ Rn, c ∈ R, A ∈ Rm×n, b ∈ Rm. Here, we consider Q ∈ Sn++. The Lagrangian is

L(x, λ) =
1

2
xTQx+ qTx+ c+ λT(Ax− b).

Since L(x, λ) is a convex quadratic function in x, we can find the minimizing x from the optimality condition

∇xL(x, λ) = Qx+ q +ATλ

which yields x = −Q−1(q +ATλ). Therefore, the dual function is

g(λ) =
1

2
(q +ATλ)TQ−1(q +ATλ)− qTQ−1(q +ATλ) + c+ λT(−AQ−1(q +ATλ)− b)

= −1

2
(qTQ−1q + λTAQ−1ATλ)− (AQ−1q + b)Tλ+ c.

The Lagrange dual problem of (17) is

max
λ

− 1

2
λTAQ−1ATλ− (AQ−1q + b)Tλ+

1

2
qTQ−1q + c

subject to λ ≥ 0.

4.2 Dual of QCQPs

A quadratically constrained quadratic programming (QCQP) corresponds to a problem of the form

min
x

xTQ0x+ qT0 x+ c0

subject to xTQix+ qTi x+ ci ≤ 0, i = 1, . . . ,m
(18)

where Q0, Qi ∈ Sn, q0, qi ∈ Rn, c0, ci ∈ R.

The Lagrange function is

L(x, λ) = xTQ0x+ qT0 x+ c0 +

m∑
i=1

λi(x
TQix+ qTi x+ ci)

= xT

(
Q0 +

m∑
i=1

λiQi

)
x+

(
q0 +

m∑
i=1

λiqi

)T

x+ c0 +

m∑
i=1

λici.
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The dual function is
g(λ) = min

x
L(x, λ).

If
L(x, λ)− ξ ≥ 0,∀x ∈ Rn, (19)

then g(λ) ≥ ξ. The condition (19) is equivalent to[
c0 +

∑m
i=1 λici − ξ 1

2 (q0 +
∑m

i=1 λiqi)
T

1
2 (q0 +

∑m
i=1 λiqi) Q0 +

∑m
i=1 λiQi

]
⪰ 0.

Therefore, we get a dual problem for (18) as follows

max
ξ,λ

ξ

subject to

[
c0 +

∑m
i=1 λici − ξ 1

2 (q0 +
∑m

i=1 λiqi)
T

1
2 (q0 +

∑m
i=1 λiqi) Q0 +

∑m
i=1 λiQi

]
⪰ 0,

λ ≥ 0,

(20)

which is a semidefinite program.

Notes

The preparation of this lecture was based on [4, Lectures 5 & 6]. Further reading for this lecture can refer
to [1, Chapter 1] and [3, Chapter 5].
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