
ECE285: Semidefinite and sum-of-squares optimization Winter 2023

Lecture 8: Duality in conic programming (II)
Lecturer: Yang Zheng Scribe: Yang Zheng

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. Any
typos should be sent to zhengy@ eng. ucsd. edu .

Learning goals:

1. Farkas lemma

2. Strong duality

3. KKT conditions in conic programming

1 Farkas Lemma

Theorem 8.1 (Farkas’ lemma). Let A ∈ Rm×n, b ∈ Rm. Then, exactly one of the following sets is non-empty

C = {x ∈ Rn | Ax = b, x ≥ 0} (1a)

D = {y ∈ Rm | ATy ≤ 0, bTy > 0} (1b)

The system of equalities and inequalities (1a) and (1b) are called strong alternatives. Weak alternatives are
systems where at most one of them can be feasible. The geometric interpretation of the Farkas lemma has
a direct connection to the separating hyperplane theorem and makes the proof straightforward.

Geometric interpretation. We write A =
[
a1 a2 . . . an

]
. Let cone(a1, a2, . . . , an) be the cone of all

their nonnegative combinations. If b /∈ cone(a1, a2, . . . , an), we can separate b from cone(a1, a2, . . . , an) with
a hyperplane such that

bTy > 0, aTi y ≤ 0, ∀ai ∈ cone(a1, a2, . . . , an)

See Figure 1 for an illustration.

Figure 1: Geometric interpretation of the Farkas lemma
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Proof of Farkas Lemma.

Proof. Suppose C ̸= ∅. There exists x ≥ 0, such that Ax = b. Then

yT(Ax) = yTb, ∀y ∈ Rm ⇒ xT(ATy) = bTy, x ≥ 0,∀y ∈ Rm.

If ATy ≤ 0 then bTy ≤ 0. Thus D = ∅.

Suppose C = ∅. We prove that D ̸= ∅. We write A =
[
a1 a2 . . . , an

]
. Let cone(a1, a2, . . . , an) be the cone

of all their nonnegative combinations. Since for any finite set of points S = {s1, . . . , sp}, the set cone(S) is
convex and closed. Thus, cone(a1, a2, . . . , an) is convex and closed.

We can now use the separating hyperplane theorem. By assumption C = ∅, we have b /∈ cone(a1, a2, . . . , an).
Then, the point b and the set cone(a1, a2, . . . , an) can be strictly separated, i.e., there exist y ∈ Rm, y ̸=
0, r ∈ R, such that

yTb > r, yTz ≤ r, ∀z ∈ cone(a1, a2, . . . , an).

First r ≥ 0 since 0 ∈ cone(a1, a2, . . . , an). Second, Since cone(a1, a2, . . . , an) is a cone, if there exists a
z ∈ cone(a1, a2, . . . , an) such that yTz > 0 then yT(αz) can be arbitrarily large. Therefore we can choose
r = 0. Then, there exist y ∈ Rm, y ̸= 0, such that (you can also directly apply Theorem 3.10 in Lectures 3
& 4 to get the following result)

yTb > 0, yTai ≤ 0,∀i = 1, . . . n.

which means that D ̸= ∅.

1.1 Farkas lemma from LP strong duality

Farkas lemma can be also be directly proven from the strong duality of linear programming. The converse
that the strong duality of LP can be proven from Farkas lemma is also true. Note other proofs of LP
strong duality also exist, e.g., techniques based on simplex method. However, simplex-based proof does not
generalize to general conic programming, while the hyperplane-based proofs are still applicable. Here, we
show how to prove Farkas lemma from LP strong duality.

Consider the pair of primal and dual LPs

min
x

0

subject to Ax = b

x ≥ 0,

(2)

and

max
y,z

bTy

subject to ATy + z = 0

z ≥ 0.

(3)

Note that (3) is trivially feasible with y = 0, z = 0. Therefore, we have two cases

• If (2) is feasible, then by strong duality the optimal value of (3) satisfies bTy ≤ 0. This means
{y ∈ Rm | ATy ≤ 0, bTy > 0} is infeasible.

• If (2) is infeasible, then by strong duality the optimal value of (3) is unbounded above, i.e., there exists
a feasible y such that bTy > 0. This means {y ∈ Rm | ATy ≤ 0, bTy > 0} is feasible.
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2 Strong duality of LPs

The standard-form LP is a problem of the form

min
x

cTx

subject to Ax = b

x ≥ 0.

(4)

The dual problem of (4) is

max
y,z

bTy

subject to ATy + z = c,

z ≥ 0.

(5)

In Lecture 6, we have stated the following result. We will prove it using Farkas lemma.

Theorem 8.2 (Strong duality). If the primal LP (4) is feasible and has a finite optimal value, then the dual
LP (5) is also feasible. There exist optimal feasible solutions x∗ ≥ 0, y∗, z∗ ≥ 0 and cTx∗ = bTy∗.

We first prove a variant of the Farkas lemma, which gives an infeasible certificate of a set of linear inequalities.

Lemma 8.1. Let A ∈ Rm×n. Then, C = {x ∈ Rn | Ax ≤ b} is an empty set if and only if

∃y ≥ 0, ATy = 0, bTy < 0.

Proof. ⇐ If ∃y ≥ 0, ATy = 0, yTb < 0, then yT(Ax − b) > 0,∀x ∈ Rn. Since y ≥ 0, it means that
C = {x ∈ Rn | Ax ≤ b} is empty.

⇒ We rewrite the LP in standard form and apply the Farkas lemma

C = {x ∈ Rn | Ax ≤ b} empty

⇔ {(x+, x−, s) | A(x+ − x−) + s = b, s ≥ 0, x+ ≥ 0, x− ≥ 0} empty

⇔

(x+, x−, s) |
[
A −A I

] x+

x−

s

 = b, (s, x+, x−) ≥ 0

 empty

⇔ ∃y, such that bTy > 0,

 AT

−AT

I

 y ≤ 0

⇒ ∃y ≤ 0, such that bTy > 0, ATy = 0

⇒ ∃y ≥ 0, such that bTy < 0, ATy = 0.

Proof of LP strong duality: We assume the optimal value of (4) is finite and denoted as p∗. We now
aim to prove the following set of linear inequalities is feasible

bTy ≥ p∗, ATy ≤ c.

(Indeed, by weak duality we have bTy ≤ p∗, so we get bTy = p∗).

The system is the same as [
AT

−bT

]
y ≤

[
c

−p∗

]
.
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If it is infeasible, the Lemma 8.1 implies that

∃λ :=

[
λ1

λ0

]
≥ 0, Aλ1 − bλ0 = 0, cTλ1 − p∗λ0 < 0.

which means that
∃λ1 ≥ 0, λ0 ≥ 0, such that Aλ1 = bλ0 and cTλ1 < p∗λ0. (6)

We have two cases:

• Case 1: λ0 = 0. (6) leads to ∃λ1 ≥ 0 such that Aλ1 = 0 and cTλ1 < 0. Suppose an optimal solution
of (4) is x∗ ≥ 0, cTx∗ = p∗. We let x = x∗ + λ1 ≥ 0, which is feasible

Ax = A(x∗ + λ1) = b

and
cTx = cTx∗ + cTλ1 < p∗.

This contradicts the fact that p∗ is the primal optimal value.

• Case 2: λ0 > 0. We let

x =
λ1

λ0
≥ 0,

and (6) leads to
Ax = b, cTx < p∗.

This contradicts the fact that p∗ is the primal optimal value.

3 KKT condtions in conic programming

Let K ∈ Rn be a proper cone. A conic program over K is an optimization problem of the form:

p∗ = min
x

cTx

subject to Ax = b

x ∈ K,

(7)

where A ∈ Rm×n, b ∈ Rm, and c ∈ Rn are problem data. The dual of (7) is a maximization problem of the
form

d∗ = max
y,z

bTy

subject to ATy + z = c

z ∈ K∗.

(8)

Theorem 8.3 (Duality for conic programs). Consider the conic program (7) and its dual (8). The following
statements hold

1. Weak duality: p∗ ≥ d∗;

2. Strong duality: p∗ = d∗ if problem (7) is strictly feasible (i.e., there exists x ∈ int(K) such that Ax = b).

This result works for any conic programs, such as LP, SOCP, and SDPs. Note that for the pair of primal and
dual LPs (4)-(5), we only require a feasible (not necessarily strictly feasible) primal solution to guarantee
strong duality.

From Theorem 8.3, we can derive the following KKT (Karush-Kuhn-Tucker) conditions.
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Theorem 8.4 (KKT conditions). Consider the conic program (7) and its dual (8). Suppose that (7) is
strictly feasible and that both primal and dual optimal solutions are attained. Then a point x is optimal if
and only if there exists y, z such that

• Primal feasibility: x ∈ K, and Ax = b;

• Dual feasibility: z ∈ K∗, and c = z +ATy;

• Complementary slackness xTz = 0.

Proof ⇒ From strong duality Theorem 8.3, we know there exist x ∈ K, z ∈ K∗, such that

Ax = b, c = z +ATy, cTx = bTy.

It follows that
cTx = (z +ATy)Tx = zTx+ yTAx = bTy, (9)

then zTx = 0.

⇐ Suppose the KKT conditions hold, we have

cTx = (z +ATy)Tx = zTx+ yTAx = bTy, x ∈ K, z ∈ K∗ (10)

On the other hand, we have cTx ≥ bTy for any feasible x, z. Thus, x is an optimal solution of (7), and

cTx = p∗ = d∗ = bTy.

3.1 Case of LPs

The KKT conditions for the pair of primal-dual LPs (4)-(5) take the form

• Primal feasibility: x ≥ 0, and Ax = b;

• Dual feasibility: z ≥ 0, and c = z +ATy;

• Complementary slackness xizi = 0, i = 1, . . . , n.

Complementary slackness for a general conic program is xTz = 0. In the case of LP, this condition is
equivalent to xizi = 0, i = 1, . . . , n since x ≥ 0, z ≥ 0.

3.2 Case of SDPs

The standard form of SDPs is
min
X

⟨C,X⟩

subject to ⟨Ai, X⟩ = bi, i = 1, . . . ,m

X ∈ Sn+,

(11)

where C ∈ Sn and Ai ∈ Sn, i = 1, . . . ,m, bi ∈ R, i = 1, . . . ,m are problem data. The dual of (11) is

max
y,Z

bTy

subject to

m∑
i=1

yiAi + Z = C

Z ∈ Sn+,

(12)

The KKT conditions for the pair of primal-dual SDPs (11)-(12) take the form



6 Lecture 8: Duality in conic programming (II)

• Primal feasibility: X ⪰ 0, and ⟨Ai, X⟩ = bi, i = 1, . . . ,m;

• Dual feasibility: Z ⪰ 0, and C = Z +
∑m

i=1 A
T
i yi;

• Complementary slackness XZ = 0.

We have proved that trace(XZ) = 0 ⇔ XZ = 0 when X ⪰ 0, Z ⪰ 0 (Problem 1 in Homework 1).

Example 8.1 (KKT conditions in SDPs [3, Examples 2.11 & 2.13]). Consider a primal-dual pair of SDPs

min
X

2x11 + 2x12

subject to x11 + x22 = 1,[
x11 x12

x21 x22

]
⪰ 0,

and
max

y
y

subject to

[
2− y 1
1 −y

]
⪰ 0.

Both the primal and dual SDPs are strictly feasible, thus strong duality holds. Indeed, the primal optimal
solution is

X∗ =

[
2−

√
2

4 − 1
2
√
2

− 1
2
√
2

2+
√
2

4

]
with the primal optimal cost p∗ = 1 −

√
2. The dual optimal solution is y∗ = 1 −

√
2 with the dual optimal

cost d∗ = 1−
√
2. Furthermore, complementary slackness holds:(

C −
m∑
i=1

Aiy
∗
i

)
X∗ =

[
1 +

√
2 1

1
√
2− 1

][ 2−
√
2

4 − 1
2
√
2

− 1
2
√
2

2+
√
2

4

]
= 0.

□

Notes

The preparation of this lecture was based on [1, Lecture 5] and [5, Lecture 6]. Further reading for this lecture
can refer to [3, Chapter 2], [2, Chapter 1] and [4, Chapter 4].
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