
ECE285: Semidefinite and sum-of-squares optimization Winter 2023

Lecture 9: Applications of SDPs in Control
Lecturer: Yang Zheng Scribe: Yang Zheng

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. Any
typos should be sent to zhengy@ eng. ucsd. edu .

Learning goals:

1. Stability of linear systems and Lyapunov functions

2. Stabilization of linear systems

3. Eigenvalue and matrix norm minimization

1 Stability of linear systems

1.1 Lyapunov stability of linear time-invariant systems

Consider a discrete-time linear dynamical system

xk+1 = Axk, (1)

where xk ∈ Rn is the state of system, evolving over time k from an initial condition x0. One natural and
important question is to ask when xk → 0 as k → ∞,∀x0 ∈ Rn. Then, we call system (1) is asymptotically
stable. From linear algebra, it is well-known that xk converges to zero for all initial conditions if and only if
the spectral radius of A is smaller than one, i.e., all the eigenvalues of A, |λi(A)| < 1, i = 1, . . . , n. In this
case, we say system (1) or matrix A Schur stable.

This spectral characterization is very useful. Here, we give another different characterization based on SDPs,
which is convenient when we go beyond simple stability. The basic idea is to consider a generalization of
the notion of energy, often known as Lyapunov functions. A Lyapunov function is a particular function
of the state xk, which satisfies the property that it decreases monotonically along any trajectories of the
system (1). It turns out that for linear systems, the stability is equivalent to the existence of quadratic
Lyapunov functions V (xk) = xT

kPxk. We have the following result.

Theorem 9.1. Given a matrix A ∈ Rn×n, the following conditions are equivalent:

1. A is stable, i.e., all its eigenvalues satisfy |λi(A)| < 1, i = 1, . . . , n.

2. There exists a matrix P ∈ Sn such that

P ≻ 0, ATPA− P ≺ 0.

Proof (2) ⇒ (1) Consider the eigenvalue Av = λv. Then

v∗(ATPA− P )v = (|λ|2 − 1)v∗Pv.

Since P ≻ 0, we have v∗Pv > 0. Considering the fact ATPA− P ≺ 0, we have |λ|2 < 1.
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(1) ⇒ (2) : Suppose the system xk+1 = Axk is asymptotically stable. We consider a quadratic function

V (xk) =

∞∑
j=k

∥xj∥22 = xT
k

 ∞∑
j=0

(Aj)TAj

xk,

which is well-defined since ρ(A) < 1. It is easy to verify that V (xk) > 0,∀xk ̸= 0, and

V (xk+1)− V (xk) =

∞∑
j=k+1

∥xj∥22 −
∞∑
j=k

∥xj∥22 = −∥xk∥22 < 0,∀xk ̸= 0.

This indeed verifies that P =
∑∞

j=0(A
j)TAj satisfies

P ≻ 0, ATPA− P = −I ≺ 0.

Another useful perspective for proving stability is to consider a Lypuanov function

V (xk) = xT
kPxk.

which satisfies V (0) = 0, V (x) > 0,∀x ̸= 0. Furthermore, it is easy to check that

V (xk+1)− V (xk) = V (Axk)− V (xk) = xT
k (A

TPA− P )xk < 0, ∀xk ̸= 0.

In other words, consider any trajectory x0, x1, . . . , xk, . . .. The function V (xk) decreases monotonically.
Furthermore, since V (xk) is nonnegative and lower bounded by 0, it must converges to some constant c ≥ 0.
If c = 0, V (xk) → 0 as k → ∞ implies that xk → 0.

It remains to show that c cannot be strictly positive. Indeed, if c > 0, then the trajectory starting at x0 will
stay in the compact region

S = {x ∈ Rn | c ≤ xTPx ≤ xT
0Px0}.

Now, we let
δ = min

x∈S
V (x)− V (Ax).

Since the cost function V (x)− V (Ax) is continuous and strictly positive over S. The set S is also compact.
Thus δ is strictly positive. Consequently, at each iteration, V (xk) decreases by at least δ > 0. This implies
that V (xk) → −∞, which contradicts with the fact that V (xk) ≥ 0,∀xk ∈ Rn.

One can further derive an analogue result for linear systems in continuous time ẋ = Ax. The system is
asymptotically stable (i.e., limt→∞ x(t) = 0) if and only if

P ≻ 0, ATP + PA ≺ 0.

These conditions imply a Lyapunov function V (x) = xTPx satisfying V (x) > 0,∀x ̸= 0 and V̇ (x) < 0,∀x ̸= 0.

1.2 Quadratic stability of time-varying linear systems

We consider a time-varying linear system

xk+1 = Akxk, Ak ∈ {A1, . . . , Am}. (2)

We ask whether all trajectories of system (2) converge to zero as k → ∞. This problem is much harder than
the problem in the previous subsection. A simple sufficient condition is the existence of a quadratic function
V (xk) = xT

kPxk, P ≻ 0 that decreases along every trajectory. In this case, we say (2) is quadratically stable
and we call V as a quadratic Lyapunov function.
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It is easy to verify that
V (xk+1)− V (xk) = xT

k (A
T
kPAk − P )xk.

A sufficient and necessary condition for quadratic stability of (2) is

P ≻ 0, AT
kPAk − P ≺ 0,∀Ak ∈ {A1, . . . , Am}.

This is equivalent to
P ≻ 0, AT

kPAk − P ≺ 0, ∀k = 1, . . .m,

which is a semidefinite program.

2 Stabilization with state feedback

We now consider the case of linear systems with control input uk,

xk+1 = Axk +Buk, (3)

starting from an initial state x0 ∈ Rn. The problem here is to choose the control input uk at each time
step k such that the system behavior xk converges to zero globally. Here, we consider static state feedback
uk = Kxk. Then the closed-loop system becomes

xk+1 = Axk +Buk = (A+BK)xk.

Given matrices A ∈ Rn×n, B ∈ Rn×m, find a matrixK ∈ Rm×n such that A+BK is stable, i.e., ρ(A+BK) <
1. This problem is equivalent to solve

P ≻ 0, (A+BK)TP (A+BK)− P ≺ 0. (4)

Unfortunately, this formulation is not convex since it is bilinear in (P,K), meaning that it becomes linear if
fixing either P or K and searching for the other. This problem is actually fairly complicated in its present
form.

We will show an exact reformulation of the problem above into an SDP by introducing a change of variables.
Let us first recall the Schur complement theorem.

Lemma 9.1. Consider a block symmetric matrix

X =

[
A B
BT C

]
.

We have

• If A ≻ 0, then X ⪰ 0 if and only if C −BTA−1B ⪰ 0.

• X ≻ 0 if and only if A ≻ 0 and C −BTA−1B ≻ 0.

Step 1: By the Schur complement theorem, (4) is equivalent to[
P (A+BK)TP

P (A+BK) P

]
≻ 0.

Step 2: define Q = P−1. The condition above is equivalent to[
Q Q(A+BK)T

(A+BK)Q Q

]
≻ 0.
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Step 3: A change of variables. Define Y = KQ, and we have[
Q QAT + Y TBT

AQ+BY Q

]
≻ 0,

which is linear in the new variables (Q,Y ). This is indeed an SDP. After solving it, the controller is recovered
as K = Y Q−1.

Semidefinite optimization techniques have become central in many analysis and design of control systems. A
great collection of problems in control that can be handled by semidefinite optimization can be found in [5].

It is not always obvious to see whether a problem admit a reformulation as an SDP. Many non-convex
problems in their natural forms can be reformulated into SDPs via a sequence of “tricks” (which often
happens in control). Still, a systematic understanding of these tricks is far from complete. As mentioned in
the previous lecture, the following basic geometric question is not fully understood: when can a convex set
be written as the feasible region of an SDP or the projection of the feasible region of a higher dimensional
SDP?

2.1 Some “simple” control problems that are hard

Similar to stability and stabilization problems above, many other control problems admit efficient SDP
reformulations; see [5] for an excellent survey. However, there are some seemingly “benign” control problems
that are fundamentally harder to solve. Here are a few of them [3]

• Static output stabilization: Given matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, find a matrix K ∈ Rm×p

such that A+BKC is stable.

• State feedback with bounds: Given matrices A ∈ Rn×n, B ∈ Rn×m, and bounds k̄ij , kij , find a matrix

K ∈ Rm×p with kij ≤ kij ≤ k̄ijsuch that A+BK is stable.

• Decentralized control : Given matrices A ∈ Rn×n, B ∈ Rn×m, and a binary matrix S ∈ {0, 1}m×n, find
a matrix K ∈ Rm×p with kij = 0 if Sij = 0 such that A+BK is stable.

3 Eigenvalue and matrix norm optimization

Semidefinite optimization is often the right method for problems involving eigenvalues of matrices or matrix
norms. This is not surprising considering the fact that positive semidefiniteness of a matrix is a direct
characterization of eigenvalues.

3.1 Maximizing the minimum eigenvalue

Define A(x) = A0 + x1A1 + . . . + xmAm, where Ai ∈ Sn are problem data. We consider the problem of
maximizing the minimum eigenvalue

max
x

λmin(A(x)).

This problem is equivalent to an SDP

max
x,t

t

subject to A0 + x1A1 + . . .+ xmAm − tI ⪰ 0.

This is simply due to the fact that

λi(B + αI) = λi(B) + α, ∀B ∈ Sn, α ∈ R.
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3.2 Minimizing the maximum eigenvalue

Similarly, we consider the problem of minimizing the maximum eigenvalue

min
x

λmax(A(x)),

where A(x) = A0 + x1A1 + . . .+ xmAm, with Ai ∈ Sn. This problem is equivalent to an SDP

min
x,t

t

subject to A0 + x1A1 + . . .+ xmAm − tI ⪯ 0.

3.3 Minimizing the spectral norm

Here we define A(x) = A0 + x1A1 + . . . + xmAm, with matrices Ai ∈ Rn×p. We consider the optimization
problem

min
x

∥A(x)∥.

Here, ∥ · ∥ denotes the induced-2 norm, i.e., the spectral norm, ∥B∥ =
√
λmax(BTB) for any matrix B. Let

us minimize the square of the norm, which does not change the optimal solution. Then, we have

min
x,t

t

subject to ∥A(x)∥2 ≤ t.

By definition, this is equivalent to

min
x,t

t

subject to λmax(A(x)TA(x)) ≤ t.

Similarly to the previous section, we now have

min
x,t

t

subject to A(x)TA(x)− tIp ⪯ 0.

We now apply the Schur complement theorem, leading to

min
x,t

t

subject to

[
In A(x)

A(x)T tIp

]
⪰ 0,

which is an SDP.

3.4 Minimizing the nuclear norm

The nuclear norm of a matrix A ∈ Rn×p is defined as

∥A∥∗ =

r∑
i=1

σi(A),

where σi is the ith singular value of A and r is the rank of A.

The nuclear norm is alternatively known by several other names including the Schatten 1-norm, the Ky Fan
r-norm, and the trace class norm. The nuclear norm is particularly useful in optimization problems involving
ranks of matrices (see [6] for an excellent discussion).
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In Homework 4, you will prove that the nuclear norm is the dual norm of the spectral norm, i.e.,

∥X∥∗ = max
Y ∈Rn×p

⟨X,Y ⟩

subject to ∥Y ∥ ≤ 1.
(5)

Furthermore, in Homework 4, you will prove that the nuclear norm ∥X∥∗ corresponds to the optimal value
of the primal-dual pair of SDPs

max
Y ∈Rn×p

⟨X,Y ⟩

subject to

[
In Y
Y T Ip

]
⪰ 0,

(6)

and

min
W1,W2

1

2
trace(W1) +

1

2
trace(W2)

subject to

[
W1 X
XT W2

]
⪰ 0.

(7)

Remark 9.1. This dual norm characterization can be viewed as a generalization of vector norms in Rn in
the following sense

• When n = 1, i.e., X ∈ Rm×1 is a column vector, it is easy to verify that

σmax(X) =
√

X2
1 + . . .+X2

m.

Thus both the spectral norm ∥X∥ and the nuclear norm ∥X∥∗ correspond to the standard l2 norm of
vectors in Rm. Thus (5) is reduced to the case where the dual norm of l2 norm is itself.

• When m = n and X is a diagonal matrix of the form

X =

x1

. . .

xn

 ,

it is easy to verify that

σmax(X) = max
i=1,...,n

|xi|, ∥X∥∗ =

n∑
i=1

|xi|.

Now, (5) is reduced to the case where the dual norm of l1 norm in Rn is the l∞ norm.

Notes

The preparation of this lecture was based on [1, Lecture 10]. Further reading for this lecture can refer
to [2, Chapter 2.2] and [4, Chapter 4].
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