
ECE285: Semidefinite and sum-of-squares optimization Winter 2024

Lecture 17: Robust optimization
Lecturer: Yang Zheng Scribe: Yang Zheng

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. Any
typos should be sent to zhengy@ eng. ucsd. edu .

Learning goals:

1. Robust optimization

2. Robust LP

3. Robust SOCP/(convex) QCQP

4. Robust SDP

1 Robust Optimization

In this course, we have focused on an optimization problem of the from

min
x

f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m,

hj(x) = 0, j = 1, . . . , p,

(1)

where the functions f, gi, hj are exactly known. However, in practice, they always come from some real
applications, and the exact functions are often not precisely known or at best known with some noise.

Robust optimization is an important sub-field of optimization, which deals with uncertainty in the data of
optimization problems. In this framework, the objective and constraints are assumed to belong to certain
sets. In particular, we consider the minimization of an objective f(x) subject to constraints gi(x, ui) ≤ 0
with uncertain parameters ui. The general formulation of robust optimization is

min
x

f(x)

subject to gi(x, ui) ≤ 0, ∀ui ∈ Ui, i = 1, . . . ,m,
(2)

where x ∈ Rn is a vector of decision variables, f, gi : Rn → R are functions, and the uncertainty parameters
ui ∈ Rk are assumed to take arbitrary values in the uncertainty sets Ui ⊂ Rk. The goal of (2) is to
find a solution with the minimum cost among all those solutions that are feasible for all realization of the
uncertainty ui ∈ Ui. Some comments on (2) are

• If Ui only contain one single point, then the corresponding constraint has no uncertainty.

• If all the uncertainty sets Ui contain finite discrete points, then (2) is the same as (1) with more con-
straints. If some of the uncertainty sets are continuous, then (2) has an infinite number of constraints.

• It is without loss of generality to assume that the objective function has no uncertainty. We can always
introduce a new variable t and minimize t subject to an additional constraint f(x, u0) ≤ t, ∀u0 ∈ U0.
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• It is not at all clear whether (2) is efficiently solvable. The computational complexity of (2) will depend
on the functions f, gi : Rn → R and the uncertainty sets Ui. In general, the robust counterpart to a
general convex optimization problem is intractable. For some special classes of f, gi : Rn → R and
special uncertainty sets Ui, there are tractable reformulations.

In this lecture, under some assumptions, we introduce the following hierarchies

Robust LP → SOCP

Robust SOCP → SDP

Robust SDP → SOS

Remark 17.1. Robustness is a natural requirement in many science and engineering problems. Another
very related field is robust control. Indeed, much of the motivation of developing robust optimization came
from the robust control community [4]. We have seen a few other important results in optimization (e.g., S-
lemma, S-procedure, early developments/applications of SDPs/SOS) from control communities. For classical
textbooks on robust control, please refer to [5, 8]. □

2 Robust Linear programs

In this section, we consider the robust counterpart of linear programs, and we consider two types of uncer-
tainty sets: polytopic and ellipsoidal. A robust LP is a problem of the form

min
x∈Rn

cTx

subject to aTi x ≤ bi, ∀ai ∈ Ui, i = 1, . . . ,m.
(3)

2.1 Robust LP with polytopic uncertainty

Here, we assume the uncertainty set Ui is a polyhedron, i.e.,

Ui = {ai ∈ Rn | Diai ≤ di},

where Di ∈ Rki×n, di ∈ Rki are given problem data. It is clear that (3) can be equivalently written as

min
x∈Rn

cTx

subject to max
ai∈Ui

aTi x ≤ bi, i = 1, . . . ,m.
(4)

This a min-max problem. The strategy is to change this min-max problem to a min-min problem and then
combine two minimization problems into a single one. To do this, we first deal with the inner maximization
problem in (4), which is i = 1, . . . ,m

max
ai∈Rn

aTi x

subject to Diai ≤ di.
(5)

By strong duality of LPs (Ui is naturally feasible), we can obtain the same objective value of (5) by looking
at the dual of (5), which is given as

min
pi∈Rki

dTi pi

subject to DT
i pi = x,

pi ≥ 0.

(6)
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Therefore, we can rewrite (4) into

min
x

cTx

subject to


min

pi∈Rki

dTi pi

subject to DT
i pi = x,

pi ≥ 0.

 ≤ bi, i = 1, . . . ,m.
(7)

This min-min problem (7) is also equivalent to

min
x∈Rn,pi∈Rki

cTx

subject to dTi pi ≤ bi, i = 1, . . . ,m

DT
i pi = x, i = 1, . . . ,m

pi ≥ 0, i = 1, . . . ,m.

(8)

The equivalence is not difficult to see:

• Suppose we have an optimal solution x, pi for (8). Then x is also feasible for (7) with the same objective
value.

• Suppose x is feasible for (7). There must exist pi verifying the inner LP constraint. Now, (x, pi) is also
feasible to (8) and gives the same objective value.

In summary, the strong duality of LPs allows us to solve a robust LP with polytopic uncertainty (4) by
solving a regular LP (of a larger size) in (8).

2.2 Robust LP with ellipsoidal uncertainty

In this section, we consider the robust LP (3) with ellipsoidal uncertainty

Ui = {āi + Piu | ∥u∥2 ≤ 1}, i = 1, . . . ,m,

where Pi ∈ Rn×n, āi ∈ Rn are problem data. It is clear that the sets Ui are ellipsoids, which justifies the
name ellipsoidal uncertainty. If Pi = I, then the uncertainty sets are exactly spheres. If Pi = 0, there is no
uncertainty. We have seen this problem in Lecture 5.

Again, we can formulate the same min-max problem in (4). In this case, the inner maximization problem
has an explicit solution. Indeed, we have

max
ai∈Ui

aTi x = āTi x+ max
∥u∥2≤1

uTPT
i x = āTi x+ ∥PT

i x∥2,

where the last step is from the fact that the dual norm of l2 norm is l2 norm. Thus, (4) can be rewritten as

min
x

cTx

subject to āTi x+ ∥PT
i x∥2 ≤ bi, i = 1, . . . ,m,

(9)

which is an SOCP.

In summary, a robust LP with ellipsoidal uncertainty can be solved efficiently by solving a single SOCP (9).
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3 Robust SOCP and (convex) QCQP

Convex QCQPs in (2) have functions gi of the form

gi(x, ui) = ∥Aix∥22 + bTi x+ ci, i = 1, . . . ,m.

SOCPs in (2) have functions of the form

gi(x, ui) = ∥Aix+ bi∥ − cTi x− di, i = 1, . . . ,m.

In both cases, if the uncertainty U is a single ellipsoid (called simple ellipsoidal uncertainty), the robust coun-
terpart amounts to solve an SDP. If U is polyhedral or the intersection of ellipsoids, the robust counterpart
is NP-hard [3].

Here, we only briefly describe how to obtain an explicit reformulation of a robust quadratic constraint,
subject o a single ellipsoidal uncertainty (see [3] for details). We consider a quadratic constraint

xTATAx ≤ 2bTx+ c, ∀(A, b, c) ∈ U , (10)

where the uncertainty set U is an ellipsoid about a normal point (A0, b0, c0),

U =

{
(A, b, c) = (A0, b0, c0) +

l∑
i=1

ui(Ai, bi, ci)

∣∣∣∣∣ ∥u∥2 ≤ 1

}
,

with (Ai, bi, ci), i = 0, 1, . . . , l being problem data.

It is clear that a point x satisfies (10) if and only if p∗ ≤ 0 where

p∗ := max
A,b,c

xTATAx− 2bTx− c

subject to (A, b, c) ∈ U
(11)

Problem (11) is the maximization of a convex quadratic objective subject to a single quadratic constraint.
This problem is non-convex, but we can apply S-lemma to transform it into an SDP and solve it exactly (see
S-lemma in Lecture 11).

Taking the dual of the SDP resulting from the S-lemma, we have an exact SDP for the inner maximization
problem in the robust optimization problem. In particular, x is feasible to (10) if and only if there exists a
scalar τ ∈ R such that the following linear matrix inequality is feasible

c0 + 2xTb0 − τ 1
2c1 + xTb1 . . . 1

2cl + xTbl (A0x)
T

1
2c1 + xTb1 τ (A1x)

T

...
. . .

...
1
2cl + xTbl τ (Alx)

T

A0x A1x . . . Alx I

 ⪰ 0

In summary, the robust counterpart of convex QCQPs and SOCPs subject to a single ellipsoid uncertainty
amounts to solve a single SDP [3].

4 Robust semidefinite programs

Finally, we briefly describe a robust version of SDPs; see [6, 7] for more details. Consider a robust SDP of
the form

inf
λ∈Rℓ

bTλ

subject to P (x, λ) := P0(x)−
ℓ∑

i=1

Pi(x)λi ⪰ 0 ∀x ∈ K,
(12)
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where λ ∈ Rℓ is the optimization variable, P0, . . . , Pℓ are m×m symmetric polynomial matrices depending
on the uncertainty parameter x ∈ Rn, and the uncertainty set

K = {x ∈ Rn : g1(x) ≥ 0, . . . , gq(x) ≥ 0} (13)

is a basic semialgebraic set defined by inequalities on fixed polynomials g1, . . . , gq.

Verifying polynomial matrix inequalities is generally an NP-hard problem, which makes (12) intractable.
Nevertheless, feasible vectors λ can be found via semidefinite programming if one imposes the stronger SOS
condition that

P (x, λ) = S0(x) + g1(x)S1(x) + · · ·+ gq(x)Sq(x) (14)

for some m×m sum-of-squares (SOS) polynomial matrices S0, . . . , Sq. A polynomial matrix S(x) is SOS if
S(x) = H(x)TH(x) for some polynomial matrix H(x), and it is well known that linear optimization problems
with SOS matrix variables can be reformulated as semidefinite programs (SDPs).

Now, we can solve an SOS program to get an upper bound for (12), which is

inf
λ∈Rℓ

bTλ

subject to P (x, λ) := S0(x) + g1(x)S1(x) + · · ·+ gq(x)Sq(x),

S1(x), . . . , Sq(x) are SOS matrices.

(15)

Upon fixing the degrees of S1(x), . . . , Sq(x), the problem (15) can be reformulated into a larger SDP. Under
mild assumptions (the set K is Archimedean and there exists a λ0 such that P (x, λ0) is strictly positive
definite on K), the optimal cost value of (15) will converge to the optimal cost value of (12) when we
increase the degree of the SOS matrices S1(x), . . . , Sq(x); see [6, Theorem 2] and [7, Theorems 3.1 & 3.2].

In summary, if the set K is Archimedean and there exists a λ0 such that P (x, λ0) is strictly positive definite on
K, then the robust SDP (12) is amount to solve a sequence of SOS programs of larger sizes (15) [6, Theorem
2] and [7, Theorems 3.1 & 3.2].

Notes

The preparation of this lecture was based on [1, Lecture 16] and [4]. Further reading for this lecture can
refer to [2, 4].
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