
ECE285: Semidefinite and sum-of-squares optimization Winter 2024

Lecture 5: Conic programming
Lecturer: Yang Zheng Scribe: Yang Zheng

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. Any
typos should be sent to zhengy@ eng. ucsd. edu .

Learning goals:

1. General conic programming

2. Linear programming

3. Semidefinite programming

In this lecture, we introduce conic programs which are a far-reaching generalization of linear programs. Conic
programs include a hierarchy of convex optimization problems: linear programs (LPs), quadratic programs
(QPs), quadratically constrained quadratic programs (QCQPs), second-order cone programs (SOCPs), and
semidefinite programs (SDPs), which will be discussed in Lecture 6. We present their standard forms and
some selected examples.

1 General conic programming

Let K ⊆ Rn be a proper cone (closed, convex, non-empty interior, and pointed). A standard conic program
has the form

min cTx

subject to Ax = b,

x ∈ K,

(1)

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn are problem data, and the optimization variable is x ∈ Rn. The feasible
region is the set of x ∈ Rn satisfying the constraints x ∈ K and Ax = b. In other words, the feasible set is
the intersection of the proper cone K with the affine subspace {x ∈ Rn | Ax = b} and thus is a closed convex
set.

An inequality-form conic program is an optimization problem of the form

min cTx

subject to Fx+ g ⪯K 0,
(2)

where F ∈ Rn×m, g ∈ Rn, c ∈ Rm are problem data, and the optimization variable is x ∈ Rm (the dimension
here is different from that in (1)). The feasible set is the pre-image of the proper cone K under the affine
function f(x) = −Fx− g, i.e., f−1(K) = {x | f(x) = −Fx− g ∈ K}, which is thus a closed convex set (the
closedness comes from the fact that the pre-image of a continuous function on a closed set is closed).

The standard-form conic program (1) and the inequality-form conic program (2) can be converted from each
other equivalently. The conversion often involves adding or introducing new variables, leading to potentially
different dimensions of the proper cone K (note that this conversion is very different from the duality that
will be discussed in Lectures 7 & 8). We present some conversion details in Section 2 and Section 3.
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2 Linear programming

2.1 Standard and inequality forms

A linear program (LP) is a conic program over the nonnegative orthant K = Rn
+. Accordingly, the standard-

form LP is a problem of the form

min
x∈Rn

cTx

subject to Ax = b

x ≥ 0,

(3)

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn are problem data, and x ≥ 0 denotes component-wise inequalities,
xi ≥ 0, i = 1, . . . , n. The feasible region of the LP (3) is defined by a set of finite linear inequalities and
equations, which is called a polyhedron. Geometrically, an LP exactly corresponds to the minimization of a
linear function over a polyhedron.

Example 5.1. The following optimization problem is an LP

min
x

x1 + x2

subject to 2x1 − x2 = 1,

x1 ≥ 0, x2 ≥ 0.

This problem is an instance of (3) where x ∈ R2, K = R2
+, the cost vector is c = [1, 1]T, the matrix A and

vector b are given by A = [2,−1] and b = 1. □

The inequality-form LP is an optimization problem written as

min
z∈Rk

eTz

subject to Fz + g ≥ 0,
(4)

where e ∈ Rk, F ∈ Rn×k and g ∈ Rn are problem data, and the proper cone is K = Rn
+. The standard-form

LP (3) and the inequality-form LP (4) can be converted equivalently from each other:

• To go from (3) to (4), we eliminate the affine constraint in (3). In particular, choose a point g in the
affine subspace {x ∈ Rn | Ax = b}, and let F ∈ Rn×k be the matrix whose range is the same as ker(A),
where k = dimker(A). Then we have

{x ∈ Rn | Ax = b} = {Fz + g | z ∈ Rk}.

Thus, (3) is equivalent to

min
z∈Rk

cT(Fz + g)

subject to Fz + g ≥ 0.
(5)

We see that (5) is equivalent to the inequality-form LP (4) by letting e = FTc and noting that cTg is
a constant.

• To go from (4) to (3), we add slack variables si for the inequalities, leading to

min
z,s

eTz

subject to Fz + g = s,

s ≥ 0.

(6)



Lecture 5: Conic programming 3

This problem (6) is very close to (3) with one difference that the variable z is free. We next express
the variable z as the difference of two nonnegative variables z = z+ − z− with z+ ≥ 0, z− ≥ 0. Then,
the problem (6) is equivalent to

min
z+,z−,s

eT(z+ − z−)

subject to F (z+ − z−)− s = −g,

z+ ≥ 0, z− ≥ 0, s ≥ 0.

(7)

The problem (7) is equivalent to the standard-form LP (3) by choosing

c =

 e
−e
0

 , A =
[
F −F −I

]
, b = −g, x =

z+z−
s

 .

Very often, we also see a general linear program of the form

min
x∈Rn

cTx

subject to Ax = b

Fx ≤ h,

(8)

where A ∈ Rm×n, F ∈ Rp×n, b ∈ Rm, h ∈ Rp, c ∈ Rn are problem data. Similar to the conversion process
above, we can transform a general LP (8) into the standard form LP (3) or the inequality-form LP (4). In
all different forms of LPs (3), (4) or (8), it is clear that their feasible sets are polyhedra (see ??), and thus
we are optimizing a linear function over a polyhedron.

2.2 An LP example

LPs have a huge number of applications in many areas of applied sciences, engineering, and economics; see
examples from e.g., [1, Chapter 1.3] and [3, Chapter 4.3]. We here discuss a simple example of LPs that has
attracted extensive attention in machine learning and signal processing communities.

Consider the following optimization problem

min
x∈Rn

∥x∥1

subject to Mx = d,
(9)

where M ∈ Rm×n and d ∈ Rm are problem data, and m < n. In (9), the linear equation Mx = d is
under-determined, and we aim to find a solution to Mx = d that has the smallest l1 norm. Recall that
∥x∥1 =

∑n
i=1 |xi|.

Problem (9) is not an LP in its current form, since the cost function is not linear (instead, it is a piece-wise
linear function). We shall see that (9) can be equivalently transformed into an LP by introducing new
variables. The following result is a simple fact about the l1 norm.

Lemma 5.1. Let x ∈ Rn. Its l1 norm can be computed as

∥x∥1 = min
y∈Rn

n∑
i=1

yi

subjectto y + x ≥ 0, y − x ≥ 0.

Proof. First, we have y ≥ −x, y ≥ x, thus |xi| = max(xi,−xi) ≤ yi. We then have ∥x∥1 ≤
∑n

i=1 yi for any
feasible y. On the other hand, the equality can be achieved by choosing yi = |xi|, i = 1, . . . , n.
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By Lemma 5.1, we claim that (4) is equivalent to

min
x,y∈Rn

n∑
i=1

yi

subject to Mx = d,

y + x ≥ 0, y − x ≥ 0.

(10)

Any solution of (10) can be converted to a solution of (9), and vice versa. Problem (10) is similar to an LP
in the form (3), but it is not exactly in the form of (3). Let us define two new variables, u = y + x and
v = y − x, then (10) can be written as

min
x,y,u,v∈Rn

n∑
i=1

yi

subject to Mx = d,

u = y + x, v = y − x

u ≥ 0, v ≥ 0.

This problem is almost in the form of (3) with a small difference that x, y are not constrained to be nonneg-
ative. In this case, we can eliminate x, y since x = 1

2 (u− v), y = 1
2 (u+ v). Then, the problem becomes

min
u,v∈Rn

1

2

n∑
i=1

(ui + vi)

subject to M(u− v) = 2d,

u ≥ 0, v ≥ 0,

which is an LP in the standard form (3) with matrices

A =
[
M −M

]
∈ Rm×2n, b = 2d ∈ Rm, c =

1

2

[
1, 1, . . . , 1

]
∈ R2n.

The conversion from a problem (10) to its standard-form LP can be tedious. With some abuse of terminology,
it is common to refer to a problem in (10) as an LP. However, note that the conversion from (9) to (10) is
less obvious and cannot be generally taken for granted.

3 Semidefinite programming

3.1 Standard and inequality forms

A semidefinite program (SDP) is a conic optimization problem over the positive semidefinite cone Sn+. The
standard-form SDP is a problem of the form

min
X

⟨C,X⟩

subject to ⟨Ai, X⟩ = bi, i = 1, . . . ,m

X ∈ Sn+,

(11)

where C ∈ Sn and Ai ∈ Sn, i = 1, . . . ,m, bi ∈ R, i = 1, . . . ,m are problem data, and the optimization
variable is a matrix is X ∈ Sn. Very often, we also use a linear map A : Sn → Rm, defined as

A(X) =

 ⟨A1, X⟩
...

⟨Am, X⟩


Then the affine constraints in (11) can also be written as A(X) = b.
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Example 5.2. The following optimization problem is an SDP

min
X

2x11 + 2x12

subject to x11 + x22 = 1[
x11 x12

x21 x22

]
⪰ 0.

(12)

This SDP is in the standard-form (11) with problem data C =

[
2 1
1 0

]
, A1 =

[
1 0
0 1

]
, b1 = 1 and the conic

constraint X ∈ K = S2+. □

The inequality-form SDP is a problem with one linear matrix inequality (LMI)

min
x∈Rk

cTx

subject to A0 + x1A1 + · · ·+ xkAk ⪰ 0,
(13)

where A0, A1, . . . , Ak ∈ Sn and c ∈ Rk are problem data. Similar to the LPs, the standard-form SDP (11)
and the inequality-form SDP (13) can be converted equivalently from each other: to go from (11) to (13),
we eliminate the affine constraints A(X) = b by finding a special solution and the basis of the nullspace of
the linear mapping; to go from (13) to (11), we can add a slack variable A0 + x1A1 + · · · + xkAk = Z ⪰ 0
and split xi = x+

i − x−
i with x+

i ≥ 0, x−
i ≥ 0, i = 1, . . . , k (note that R1

+ = S1+).

Example 5.3. Consider the following problem

min
x1,x2

2x1 + 2x2

subject to

[
x1 x2

x2 1− x1

]
⪰ 0.

(14)

It is clear that (14) is equivalent to (12). Meanwhile, this problem is an inequality-form SDP (13), where

c =

[
2
2

]
, A0 =

[
0 0
0 1

]
, A1 =

[
1 0
0 −1

]
, A2 =

[
0 1
1 0

]
.

□

A general-form SDP is an optimization problem of the form

min
x

cTx

subject to Ax = b

F0 + x1F1 + . . .+ xkFk ⪯ 0,

(15)

where Fi ∈ Sn, i = 0, . . . , k, A ∈ Rm×k, b ∈ Rm and c ∈ Rk are problem data.

Recall that a polyhedron is a set defined by finitely many linear inequalities (note that an equality cTj x = dj
is the same as two inequalities cTj x − dj ≤ 0, dj − cTj x ≤ 0) and the feasible region of LPs are polyhedra.
Similarly, we define a spectrahedron as a set defined by finitely many linear matrix inequalities (LMIs). Note
that several LMIs

F (i)(x) = F
(i)
0 + x1F

(i)
1 + . . .+ xkF

(i)
k ⪯ 0, i = 1, . . . , q

are equivalent to a single and large block-diagonal LMI as follows

diag(F (1)(x), . . . , F (q)(x)) ⪯ 0.
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Definition 5.1 (Spectrahedra). A set C ⊆ Rk is called a spectrahedron if it has the form

C =
{
x ∈ Rk | A0 + x1A1 + · · ·+ xmAm ⪰ 0

}
, (16)

for some matrices Ai ∈ Sn, i = 0, . . . ,m.

Geometrically, a spectrahedron is an intersection of the positive semidefinite cone and an affine subspace
{A0 + x1A1 + · · · + xmAm | x ∈ Rm}, and is thus a closed convex set (on the other hand, a spectrahedron
can also be viewed as the pre-image of the positive semidefinite cone under the affine function A(x) =
A0 + x1A1 + · · · + xmAm). When the matrices Ai, i = 0, . . . ,m in (16) are all diagonal, then the set C
becomes a polyhedron. However, spectrahedra are much more general than polyhedra.

Example 5.4. The unit disk D = {(x, y) ∈ R2 | x2 + y2 ≤ 1} is not polyhedral, but it is a spectradedron.
Indeed, we have

D =

{
(x, y) ∈ R2 |

[
1− x y
y 1 + x

]
⪰ 0

}
.

Also, the feasible region of the SDP (14) is a closed disk{
(x1, x2) ∈ R2 | (x1 −

1

2
)2 + x2 ≤ 1

4

}
,

which not a polyhedron. □

In all different forms of SDPs (11), (13) or (15), it is clear that their feasible sets are spectrahedra. Geo-
metrically, an SDP is a linear optimization problem over a spectrahedron. Any spectradedron is a closed
convex set, but deciding which convex sets are spectradra (i.e., representing the convex set using an LMI of
the form (16)) is an open research question. There are no known simple necessary and sufficient conditions
(some nontrivial necessary conditions are known). We refer the interested reader to [2, Chapter 6] for details.

3.2 An SDP example

Semidefinite optimization is one central problem in this course. We will review more properties of SDPs
(and the general conic programs) in Lecture 8 and discuss a wide range of applications in Lectures 9-11.

We here discuss a symmetric matrix completion problem. This problem can be considered as a matrix
analogue to (9): We observe certain entries of an unknown symmetric matrix and our goal is to recover the
symmetric matrix with the smallest nuclear norm. Recall that the nuclear norm of a matrix A ∈ Rm×n is the

sum of its singular values ∥X∥nuc =
∑min{m,n}

i=1 σi(A). For symmetric matrices, the nuclear norm becomes
the sum of the absolute values of its eigenvalues

∥X∥nuc =
n∑

i=1

|λi(X)|,

where λi(X) is the i-th eigenvalue of X. It can be interpreted as the l1 norm of the eigenvalues of X (indeed,
given a matrix A ∈ Rm×n, the nuclear norm is the l1 norm of the singular eigenvalues, the spectral norm is
the l∞ norm of the singular eigenvalues, and the Frobenius norm is the l2 norm of the singular eigenvalues).

Let E ⊆ {1, . . . , n} × {1, . . . , n} be the set of entries that we observe and Mij , (i, j) ∈ E be the observed
values. Then, we aim to solve the following problem

min
X∈Sn

∥X∥nuc

subject to Xij = Mij , ∀(i, j) ∈ E .
(17)

For the nuclear norm of symmetric matrices, we have the following result.
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Lemma 5.2. Let X ∈ Sn. Its nuclear norm can be computed as follows

∥X∥nuc = min
Y ∈Sn

trace(Y )

subjectto Y +X ⪰ 0, Y −X ⪰ 0.
(18)

Proof. Similar to Lemma 5.1, it suffices to prove the following two statements:

• Any Y in the feasible region of (18) satisfies ∥X∥nuc ≤ trace(Y ).

• The equality can be achieved by a feasible Y .

Let us first show statement 2: denote the eigendecomposition of X and choose Y as

X =

n∑
i=1

λiviv
T
i , Y =

n∑
i=1

|λi|vivTi .

It is easy to see ∥X∥nuc = trace(Y ). In addition, we have

Y ±X =

n∑
i=1

(|λi| ± λi)viv
T
i ⪰ 0,

since |λi| ± λi ≥ 0. Thus, Y is in the feasible region of (18).

For statement 1, we denote

P+ =
∑
λi≥0

viv
T
i , P− =

∑
λi<0

viv
T
i ,

which satisfies P+ + P− = I (this is because V = [v1, . . . , vn] is orthonormal, V V T = I) and trace(X(P+ −
P−)) = ∥X∥nuc. Since Y − X ⪰ 0 and P+ ⪰ 0, we have trace((Y − X)P+) ≥ 0. Similarly, we have
trace((Y +X)P−) ≥ 0. This leads to

0 ≤ trace((Y −X)P+) + trace((Y +X)P−)

= trace((Y (P+ + P−)−X(P+ − P−))

= trace(Y )− ∥X∥nuc.

This completes the proof.

We can now claim that (17) can be equivalently formulated into an SDP below

min
Y,X∈Sn

trace(Y )

subject to Xij = Mij , ∀(i, j) ∈ E ,
Y +X ⪰ 0, Y −X ⪰ 0.

(19)

We can further introduce U = Y +X, V = Y −X and then eliminate X and Y , leading to the standard-form
SDP

min
U,V ∈Sn

1

2
(trace(U) + traceV )

subject to Uij + Vij = 2Mij , ∀(i, j) ∈ E ,
U ⪰ 0, V ⪰ 0.

It is common to refer to a problem in (19) as an SDP. We note that the conversion from (17) to (19) is not
obvious and often requires non-trivial analysis. As you will see in HWs, the nuclear norm of a general matrix
A ∈ Rm×n can be computed by solving an SDP; see [5] for more details.
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3.3 Solving semidefinite programs

There are efficient polynomial-time algorithms to solve the class of semidefinite optimization problems (e.g.,
interior-point algorithms); see [2, Section 2.3] for a summary of software implementation. We will not discuss
these algorithms in this course. These algorithms can very reliably solve (11) with n up to a few hundreds and
m up to a few thousands on a personal computer. Larger instances may be solved by exploiting structures
(see, e.g., [6, Section 3.5] for a summary of algorithm implementation).

We recommend the MATLAB packages YALMIP (https://yalmip.github.io/) or CVX (http://cvxr.
com/cvx/) (implementations in other languages, such as python, Julia, and R, are also available.) which
allows us to use the natural description of SDPs and call another SDP solver to get a solution.

Notes

The preparation of this lecture was based on [4, Lectures 3 & 4]. Further reading for this lecture can refer
to [2, Chapter 2].
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