ECE285: Semidefinite and sum-of-squares optimization Winter 2024

Lecture 5: Conic programming
Lecturer: Yang Zheng Scribe: Yang Zheng

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. Any
typos should be sent to zhengy@eng. ucsd. edul

Learning goals:

1. General conic programming
2. Linear programming

3. Semidefinite programming

In this lecture, we introduce conic programs which are a far-reaching generalization of linear programs. Conic
programs include a hierarchy of convex optimization problems: linear programs (LPs), quadratic programs
(QPs), quadratically constrained quadratic programs (QCQPs), second-order cone programs (SOCPs), and
semidefinite programs (SDPs), which will be discussed in Lecture 6. We present their standard forms and
some selected examples.

1 General conic programming

Let K C R™ be a proper cone (closed, convex, non-empty interior, and pointed). A standard conic program

has the form
-

min c'x
subject to Az =, (1)
r €K,

where A € R™*" b € R™, ¢ € R™ are problem data, and the optimization variable is € R™. The feasible
region is the set of € R™ satisfying the constraints x € K and Ax = b. In other words, the feasible set is
the intersection of the proper cone K with the affine subspace {x € R™ | Az = b} and thus is a closed convex
set.

An inequality-form conic program is an optimization problem of the form

min ¢’z @)
subject to Fx+ g =<k 0,
where F' € R"*™ g € R™ ¢ € R™ are problem data, and the optimization variable is € R™ (the dimension
here is different from that in [(1)|). The feasible set is the pre-image of the proper cone K under the affine
function f(x) = —Fz — g, i.e., f"}(K)={z | f(z) = —Fx — g € K}, which is thus a closed convex set (the
closedness comes from the fact that the pre-image of a continuous function on a closed set is closed).

The standard-form conic program and the inequality-form conic program can be converted from each
other equivalently. The conversion often involves adding or introducing new variables, leading to potentially
different dimensions of the proper cone K (note that this conversion is very different from the duality that
will be discussed in Lectures 7 & 8). We present some conversion details in [Section 2| and [Section 3|
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2 Linear programming

2.1 Standard and inequality forms

A linear program (LP) is a conic program over the nonnegative orthant K = R’. Accordingly, the standard-
form LP is a problem of the form

min ¢’z
rER™
subject to Ax =b (3)

x>0,

where A € R™*" b € R™, ¢ € R™ are problem data, and > 0 denotes component-wise inequalities,
x; > 0,4 = 1,...,n. The feasible region of the LP is defined by a set of finite linear inequalities and
equations, which is called a polyhedron. Geometrically, an LP exactly corresponds to the minimization of a
linear function over a polyhedron.

Example 5.1. The following optimization problem is an LP

min 1 + a2
xT

subject to  2x1 — x9 =1,
r1 2 0,22 > 0.

This problem is an instance of where x € R?, K = Rﬁ_, the cost vector is ¢ = [1,1]7, the matriz A and
vector b are given by A =1[2,—1] and b= 1. a

The inequality-form LP is an optimization problem written as

min e’z
z€RF (4)
subject to Fz+g >0,

where e € R¥, F € R"** and g € R™ are problem data, and the proper cone is K = R?. The standard-form
LP and the inequality-form LP can be converted equivalently from each other:

e To go from to we eliminate the affine constraint in . In particular, choose a point g in the
affine subspace {z € R" | Az = b}, and let F' € R"** be the matrix whose range is the same as ker(A),
where & = dimker(A4). Then we have

{reR"| Az =b} = {Fz+g |2z c R}

Thus, is equivalent to

min ¢ (Fz+g)
zERF (5)
subject to Fz+4g > 0.

We see that is equivalent to the inequality-form LP by letting e = F'"c and noting that c'g is
a constant.

e To go from to we add slack variables s; for the inequalities, leading to

subject to Fz+ g = s, (6)
s > 0.
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This problem @ is very close to [(3)| with one difference that the variable z is free. We next express
the variable z as the difference of two nonnegative variables z = z+ — 2z~ with z+ > 0,2~ > 0. Then,
the problem [(6)] is equivalent to

min e (2t —27)
zt,z7 s

subject to F(z" —27) —s = —g, (™
2t >0,27>0,5>0.

The problem is equivalent to the standard-form LP by choosing

e 2t
c=|—e|, A:[F -F —1]7 b=—g, x= |z~
0 S

Very often, we also see a general linear program of the form

min ¢z
reR™
subject to Az =0 (8)
Fax <h,

where A € R™*" F € RP*™ b € R™, h € RP,c € R™ are problem data. Similar to the conversion process
above, we can transform a general LP |(8)|into the standard form LP or the inequality-form LP In
all different forms of LPs or|(8)] it is clear that their feasible sets are polyhedra (see 77), and thus
we are optimizing a linear function over a polyhedron.

2.2 An LP example

LPs have a huge number of applications in many areas of applied sciences, engineering, and economics; see
examples from e.g., |1, Chapter 1.3] and |3, Chapter 4.3]. We here discuss a simple example of LPs that has
attracted extensive attention in machine learning and signal processing communities.

Consider the following optimization problem

min |||y
RSN (9)
subject to Max =d,

where M € R™*" and d € R™ are problem data, and m < n. In @ the linear equation Mz = d is
under-determined, and we aim to find a solution to Mx = d that has the smallest Iy norm. Recall that

el = 325y fasl.

Problem @ is not an LP in its current form, since the cost function is not linear (instead, it is a piece-wise
linear function). We shall see that @ can be equivalently transformed into an LP by introducing new
variables. The following result is a simple fact about the {; norm.

Lemma 5.1. Let x € R". Its Iy norm can be computed as

n
7]y = min > i

i=1

subjectto y+x >0,y —x > 0.

Proof. First, we have y > —z,y > z, thus |z;| = max(z;, —x;) < y;. We then have ||z||; < i, y; for any
feasible y. On the other hand, the equality can be achieved by choosing y; = |z;|,i =1,...,n. O
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By we claim that is equivalent to
n
min i
min, ; vi

subject to Mz =d,
y+x>0,y—x>0.

(10)

Any solution of can be converted to a solution of (9)), and vice versa. Problem is similar to an LP
in the form , but it is not exactly in the form of (3). Let us define two new variables, u = y + 2 and
v =1y — x, then can be written as

min E Yi
x,y,u,vER™ —
i=

subject to Mz =d,
u=y+r,v=y—2x
u>0,v>0.

This problem is almost in the form of with a small difference that x,y are not constrained to be nonneg-

ative. In this case, we can eliminate x,y since x = %(u —v),y= %(u + v). Then, the problem becomes

RS
i, g 2 i+ v)
subject to M (u —v) =
w>0,0>0,
which is an LP in the standard form (3)) with matrices
1
A=[M —-M]eR™?*,  b=2dcR",  c= 5 [1,1,...,1] e R*,

The conversion from a problem to its standard-form LP can be tedious. With some abuse of terminology,
it is common to refer to a problem in as an LP. However, note that the conversion from @D to is
less obvious and cannot be generally taken for granted.

3 Semidefinite programming

3.1 Standard and inequality forms

A semidefinite program (SDP) is a conic optimization problem over the positive semidefinite cone S;. The
standard-form SDP is a problem of the form

min (C, X)
X
subject to (A4;,X) =b,i=1,...,m (11)
X €Sy,
where C € S™ and 4; € S",i = 1,...,m, b; € R,i = 1,...,m are problem data, and the optimization
variable is a matrix is X € S™. Very often, we also use a linear map A : S” — R™, defined as
<A17 X>
AX) =]
(Am, X)

Then the affine constraints in can also be written as A(X) = b.
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Example 5.2. The following optimization problem is an SDP

min 2%11 +2£L’12
X

subject to 11 + xo2 =1 (12)
Ti1 Tiz| 0.
T21 T22|
. L . 2 1 1 0 .
This SDP is in the standard-form with problem data C' = 10 J A = 0 1 ,b1 =1 and the conic
constraint X € K =S7. O

The inequality-form SDP is a problem with one linear matrix inequality (LMI)

min ¢’z
veRt (13)
subject to  Ag +x1 A1+ -+ xpAg = 0,

where Ag, A1,...,A; € S” and ¢ € R* are problem data. Similar to the LPs, the standard-form SDP
and the inequality-form SDP can be converted equivalently from each other: to go from to [(13)
we eliminate the affine constraints A(X) = b by finding a special solution and the basis of the nullspace of
the linear mapping; to go from to we can add a slack variable Ag + 2141 + -+ 2, A, =2 =0
and split z; = z;7 — z; with 27 > 0,2, > 0,i=1,...,k (note that Rl = S1).

Example 5.3. Consider the following problem

min 2x1 + 2o
T1,T2

. (14)

. T
subject to [@ 1— 2

B

It is clear that is equivalent to . Meanwhile, this problem is an inequality-form SDP , where

2 0 0 10 0 1
=i o= fo V-l )]

O
A general-form SDP is an optimization problem of the form
min ¢’z
subject to Ax =10 (15)

Fo+z1 1+ ...+ apFr X0,

where F; € S",i=0,...,k, A€ R™** b c R™ and ¢ € RF are problem data.

Recall that a polyhedron is a set defined by finitely many linear inequalities (note that an equality c]Tx =d;
is the same as two inequalities c]Ta: —d; £0,d; — ch-z < 0) and the feasible region of LPs are polyhedra.
Similarly, we define a spectrahedron as a set defined by finitely many linear matrix inequalities (LMIs). Note

that several LMIs 4 . '
FO@)=F" + 2, FY + . 42, FY <0,i=1,...,q

are equivalent to a single and large block-diagonal LMI as follows

diag(FM (z),..., F9(z)) < 0.
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Definition 5.1 (Spectrahedra). A set C C R¥ is called a spectrahedron if it has the form
C’:{xERk|Ao+x1A1+~--+xmAm§0}, (16)

for some matrices A; € S*,i=0,...,m.

Geometrically, a spectrahedron is an intersection of the positive semidefinite cone and an affine subspace
{Ag + 21 A1+ -+ 2 A | € R™}, and is thus a closed convex set (on the other hand, a spectrahedron
can also be viewed as the pre-image of the positive semidefinite cone under the affine function A(z) =
Ag + 2141 + -+ + £ Ap). When the matrices 4;,4 = 0,...,m in are all diagonal, then the set C
becomes a polyhedron. However, spectrahedra are much more general than polyhedra.

Example 5.4. The unit disk D = {(x,y) € R? | 22 + y? < 1} is not polyhedral, but it is a spectradedron.

Indeed, we have
_ 2 |1—2 Y
D—{(aj,y)ER |{ y 14 =0p.

Also, the feasible region of the SDP|(14)| is a closed disk

1 1
{(3317152) €R?| (21 — 5)2 + a2 < 4}7

which not a polyhedron. O

In all different forms of SDPs |(11)] |(13)| or [(15)} it is clear that their feasible sets are spectrahedra. Geo-
metrically, an SDP is a linear optimization problem over a spectrahedron. Any spectradedron is a closed
convex set, but deciding which convex sets are spectradra (i.e., representing the convex set using an LMI of
the form ) is an open research question. There are no known simple necessary and sufficient conditions
(some nontrivial necessary conditions are known). We refer the interested reader to |2, Chapter 6] for details.

3.2 An SDP example

Semidefinite optimization is one central problem in this course. We will review more properties of SDPs
(and the general conic programs) in Lecture 8 and discuss a wide range of applications in Lectures 9-11.

We here discuss a symmetric matrix completion problem. This problem can be considered as a matrix
analogue to @: We observe certain entries of an unknown symmetric matrix and our goal is to recover the
symmetric matrix with the smallest nuclear norm. Recall that the nuclear norm of a matrix A € R™*" is the
sum of its singular values ||X||puec = Z?;irf{m’n} oi(A). For symmetric matrices, the nuclear norm becomes
the sum of the absolute values of its eigenvalues

”XHnuc = Z ‘)‘z(X)L
i=1

where \;(X) is the i-th eigenvalue of X. It can be interpreted as the I; norm of the eigenvalues of X (indeed,
given a matrix A € R”™*™ the nuclear norm is the /; norm of the singular eigenvalues, the spectral norm is
the lo norm of the singular eigenvalues, and the Frobenius norm is the I3 norm of the singular eigenvalues).

Let £ C {1,...,n} x {1,...,n} be the set of entries that we observe and M;;, (i,j) € £ be the observed
values. Then, we aim to solve the following problem

min || X||nuc

Xesn (17)
subject to  X;; = M;;, V(i,7) € €.

For the nuclear norm of symmetric matrices, we have the following result.
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Lemma 5.2. Let X € S™. Its nuclear norm can be computed as follows

[ X nue = %lé}l trace(Y') (18)
subjectto Y+ X >0,Y — X > 0.

Proof. Similar to it suffices to prove the following two statements:

e Any Y in the feasible region of satisfies || X ||lnuc < trace(Y).
e The equality can be achieved by a feasible Y.

Let us first show statement 2: denote the eigendecomposition of X and choose Y as

n n

2 : T 2 : T
X = /\ﬂ}ﬂ}i 5 Y = |/\i\vivi .

i=1 i=1

It is easy to see | X ||lnuc = trace(Y). In addition, we have

Y£X =) (Al £ X)) =0,
i=1

since |A;| = A; > 0. Thus, Y is in the feasible region of (T8).

Pt = g v, P = E v,

Ai>0 2i<0
which satisfies P™ 4+ P~ = I (this is because V .., vy, is orthonormal, VVT = I) and trace(X (P* —

= [Ul, .
P7)) = || X|lnue- Since Y — X = 0 and PT = 0, we have trace((Y — X)P*) > 0. Similarly, we have
trace((Y + X)P~) > 0. This leads to

For statement 1, we denote

0 <trace((Y — X)P™) + trace((Y + X)P")
=trace((Y(PT +P7) - X(PT - P7))
=trace(Y) — || X |lnuc-

This completes the proof. O

We can now claim that can be equivalently formulated into an SDP below

min  trace(Y)
Y, X esn
subject to  X;; = M;;, V(i,j) € &, (19)

Y4+X»=0,YV—X>0.

We can further introduce U =Y + X, V =Y — X and then eliminate X and Y, leading to the standard-form
SDP

. 1
Spin i(trace(U) + traceV)

subject to Uy + Vij = 2M;5, Y(i,5) € &,
U0,V >0

It is common to refer to a problem in as an SDP. We note that the conversion from to is not
obvious and often requires non-trivial analysis. As you will see in HWSs, the nuclear norm of a general matrix
A € R™*™ can be computed by solving an SDP; see [5] for more details.
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3.3 Solving semidefinite programs

There are efficient polynomial-time algorithms to solve the class of semidefinite optimization problems (e.g.,
interior-point algorithms); see |2 Section 2.3] for a summary of software implementation. We will not discuss
these algorithms in this course. These algorithms can very reliably solve with n up to a few hundreds and
m up to a few thousands on a personal computer. Larger instances may be solved by exploiting structures
(see, e.g., |6, Section 3.5] for a summary of algorithm implementation).

We recommend the MATLAB packages YALMIP (https://yalmip.github.io/)) or CVX (http://cvxr.
com/cvx/)) (implementations in other languages, such as python, Julia, and R, are also available.) which
allows us to use the natural description of SDPs and call another SDP solver to get a solution.

Notes

The preparation of this lecture was based on [4l Lectures 3 & 4]. Further reading for this lecture can refer
to [2, Chapter 2].
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