Solution to Q8
Codes:

```
clc;clear
%f SOLUTION TO Q8
% state-space model
A = [-0.0028 0.0389 0 -32.1740;
            -0.065 -0.317 769.2960 0;
            0.0002 -0.001 -0.4272 0;
            0 0 1.0 0];
B = [1.44 0.0008;
            -17.90 -0.0002;
            -1.1579 0;
            0 0];
C = [0 0 0 1];
% controllability test
Qctr = ctrb(A,B)
R_Qctr = rank(Qctr)
% observability test
Qobs = obsv(A,C)
R_Qobs = rank(Qobs)
% Q8-2
B1 = B(:,1);
rank(ctrb (A,B1))
B1 = B(:,2);
rank(ctrb (A,B1))
```


Results:

Qctr $=$

1.4400	0.0008	-0.7003	-0.0000	2.8225	0.0000	9.7563	-0.0000
-17.9000	-0.0002	-885.1871	0.0000	675.1778	0.0003	298.1060	-0.0002
-1.1579	0	0.5128	0.0000	0.6660	-0.0000	-0.9591	-0.0000
0	0	-1.1579	0	0.5128	0.0000	0.6660	-0.0000

R_Qctr $=$

4

Qobs $=$

0	0	0	1.0000
0	0	1.0000	0
0.0002	-0.0010	-0.4272	0
-0.0000	0.0008	-0.5868	-0.0064

4

4

```
R_Qctr2 =
```

4

Solution to Q9

```
clear; clc;
&% solution to Q9
% state-space model
A = [lllo.0028 0.0389 0 -32.1740;
    -0.065 -0.317 769.2960 0;
    0.0002 -0.001 -0.4272 0;
    0 0 1.0 0];
B = [1.44 0.0008;
    -17.90 -0.0002;
    -1.1579 0;
        0 0];
```

```
ff design controller
    f = [1;0]; %% Q 9.b
    %f = [0;1] % Q 9.c
% desired poles
    p1 = -0.06 + 0.06*1i;
    p2 = -0.06 - 0.06*1i;
    p3 = -4;
    p4 = -5;
% compute Q
Q = [(p1 * eve (4) - A)^(-1)*B*f, (p2 * eye (4) - A)^(-1)*B*f, ...
    (p3 * eye(4) - A)^(-1)*B*f,(p4 * eye(4) - A)^(-1)*B*f]'
k= Q^(-1)* (-ones (4,1))
K=f*k'
```

Results
9. b

```
Q =
    1.0e+03 *
    0.8393 - 1.2587i -0.9010-0.2244i -0.0002 - 0.0001i 0.0028 - 0.0009i
    0.8393 + 1.2587i -0.9010 + 0.2244i -0.0002 + 0.0001i 0.0028 + 0.0009i
    -0.0004 + 0.0000i -0.0594 + 0.0000i 0.0003 + 0.0000i -0.0001 + 0.0000i
    -0.0003 + 0.0000i -0.0365 + 0.0000i 0.0002 + 0.0000i -0.0000 + 0.0000i
k =
    0.0076 + 0.0000i
    -0.0110 + 0.0000i
    -7.0520 + 0.0000i
    -6.7601 + 0.0000i
K =
    0.0076 - 0.0000i -0.0110-0.0000i -7.0520 - 0.0000i -6.7601 - 0.0000i
    0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
Qinv =
    -0.0001 + 0.0005i -0.0001 - 0.0005i 0.0273 + 0.0000i -0.0348 - 0.0000i
    -0.0002 + 0.0001i -0.0002 - 0.0001i -0.0462 + 0.0000i 0.0575 - 0.0000i
    0.0048-0.0027i 0.0048 + 0.0027i -11.6401 + 0.0000i 18.6826 - 0.0000i
    0.1497-0.0998i 0.1497 + 0.0998i -24.0231 + 0.0000i 30.4837 - 0.0000i
\(9 . \mathrm{c}\)
\(Q=\)
    -0.0083 + 0.0025i -0.0014 + 0.0003i -0.0000 + 0.0000i 0.0000 - 0.0000i
    -0.0083 - 0.0025i -0.0014 - 0.0003i -0.0000 - 0.0000i 0.0000 + 0.0000i
    -0.0002 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i -0.0000 + 0.0000i
    -0.0002+0.0000i 0.0000+0.0000i 0.0000 + 0.0000i -0.0000 + 0.0000i
k =
        1.0e+07 *
        0.0002 + 0.0000i
    -0.0034 - 0.0000i
    3.9804 + 0.0000i
    0.1072 + 0.0000i
K =
```

```
    1.0e+07 *
```

 1.0e+07 *
 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
 0.0002 - 0.0000i -0.0034 + 0.0000i 3.9804 - 0.0000i 0.1072 - 0.0000i
    ```
    0.0002 - 0.0000i -0.0034 + 0.0000i 3.9804 - 0.0000i 0.1072 - 0.0000i
```

```
Qinv =
    1.0e+08 *
    -0.0000 + 0.0000i -0.0000 - 0.0000i -0.0000 - 0.0000i 0.0000 + 0.0000i
    -0.0000 + 0.0000i -0.0000 - 0.0000i -0.0008 - 0.0000i 0.0012 + 0.0000i
    -0.0006 + 0.0004i -0.0006 - 0.0004i 1.7682 + 0.0000i -2.1651 - 0.0000i
    -0.0001 + 0.0005i -0.0001 - 0.0005i 0.0382 + 0.0000i -0.0486 - 0.0000i
```

