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Learning goals:

Problem formulation of optimal control;
State-space model of the closed-loop system;

Well-posedness of feedback systems;

Ll

Internal stability.

1 Problem formulation

We consider continuous-time linear time-invariant (LTT) systems of the form
& = Ax + Biw + Bau,
z = Ciz + D11w + Dysu, (1)
y = Cox + Dayw + Daou,

where z € R",u € R™,w € R%y € RP,z € RY are the state vector, control action, external
disturbance, measurement, and regulated output, respectively. System (1) can be written as
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P=|Ci|Du D2 | =
Co | Da1 Do
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where P;; = Ci(sI — A)"'B; + D;;. We refer to P as the open-loop plant model.

Consider a dynamic output feedback controller u = Ky, where K has a state-space realization
¢ = A€ + By,
u=Cp& + Dyy,

where ¢ € R™ is the internal state of controller K. We have K = Cj(sI — Ay) !By + Dy,. Figure 1
shows a schematic diagram of the interconnection of plant P and controller K.

(2)

Problem formulation: Optimal control
Informally speaking, we aim to find a controller K such that the closed-loop system is internally
stable and achieves/minimizes desired performance specification:

min P . K
in f(P,K) o

subject to K internally stabilizes P.
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Figure 1: Interconnection of the plant P and controller K

where f(P,K) defines a certain performance index.

In (3), the performance index f(P,K) quantifies the influence of the disturbance w on the perfor-
mance output z, which is usually captured by a certain norm (Hs or H) of the closed-loop response
from w to z.

1.1 Closed-loop system in the frequency domain

By (1), we have

zZ = P11W + Plgll,
y = P21W + P22u.

Considering the controller u = Ky, some simple algebra leads to
z= (P + PLK(I — PyK) 'Py)w. (4)
Thus, the closed-loop response from w to z is
T... = P11 + P1oK(I — PyK) 'Poy.
In (3), the cost function is typically chosen as
f(P,K) =[Py + PoK(I — PyoK) 'Py

where || - || can be chosen as the Hy or He norm.

In (4), one question to ask is when the inverse (I — P2, K) ™! exists. This is related to the the notion
of well-posedness of feedback systems, which will be defined later.
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1.2 Closed-loop system in the state-space domain

We can also derive the closed-loop system in the state-space domain, which is a state-space realization
of (4). Combining (1) with (2) leads to

il [0 ald+a S0 [0]w o
=1 Al o LR ] (5b)

Cl 0 |:§:| 0 D12 |:u:| + Dyjw (50)
From (5b), we have
I —Doo Yyl 02 0 xr Doy
[—Dk I Hu]{o cel le] TLo ™ ©)
This equation has a unique solution if and only if the following matrix
I =Dy
—Dy, 1

is invertible, which is equivalent to that I — Dy D, or I — Dj, Do is invertible!. Note that the matrix
dimension Doy € RP*™ and Dy € R™*P. This is also the condition of well-posedness (there are
other equivalent definitions of well-posedness).

Definition 1. A feedback system is said to be well-posed if the solutions u(t) and y(t) are unique,
given any initial condition z(0) and £(0) and w(t) = 0,Vt > 0.

Lemma 1. The feedback system in Figure 1 is well-posed if and only if I — Das Dy, is invertible.

For simplicity, we make the following assumption.

Assumption 1. It is assumed that the plant is strictly proper, i.e. Dos = 0. By Lemma 1, this
guarantees that the closed-loop system is always well-posed.

1= o al e+ [orm] -

Substituting this into (7) leads to

Now, (6) becomes

i |:{L':| _ |:A + BQDkCQ BQCk:| |:£E:| + |:Bl + BQDkD21:| w (7&)
dt € ByCo Ag | [€ By D2y ’
z = [Cl + D12D,Cy Dlzck] |:2::| + (Dll + DlngDgl)w. (7b)

This is a state-space version of the closed-loop response from w to z. We can write

A+ By DOy B>, B1+ BsD. Doy
T, = B C, A By, Dy
Ci+ D12DyCy  D13Cy | D1y + D12 Dy Dy

I This can be easily seen from the fact {le ?} {—ID;C _?22} = {é I _DD:2D22} .
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Consider the special case of static output feedback control ©w = Dypy. The closed-loop matrix is
A+ B> D;.Cs, and we have

A+ ByD;.Co ‘ By + BsDy Doy

T,w = .
C1+ D12DCy ‘ D11 + D12D D2y

1.3 Internal stability

We now define the fundamental notion of internal stability.

Definition 2. The system in Fig. 1 is internally stable if it is well-posed, and the states (z(t),&(t))
converge to zero ast — oo for all initial states x(0),£(0) when w(t) = 0,Vt.

Lemma 2. The system in Fig 1 is internally stable if and only if

A A+ By DpCy  ByCy,
o B,Cy Ay,

is stable.

The set of all stabilizing controllers is defined as
Cstab := {K | K internally stabilizes P}. (8)

It is well-known that Cgap is non-convex and it is not difficult to find explicit examples where
K, K5 € Csap and %(Kl + K5) ¢ Cstan. Lemma 2 leads to an explicit state-space characterization
of the set Cgiap as follows:

_ s |A+BsDiCy ByCh| .
Cstab = {K | A:= [ B.Co A, } is stable} , (9)

where K = Cy(zI — Ag) !By + Dy. Unfortunately, the stability condition on A. in (9) is still
non-convex in terms of the parameters (Ay, B, Ci, Di)-

2 Optimal control

Now, the optimal controller synthesis problem (3) can be precisely written as

H%H P11 + P1oK(I — Py K) 'Poy ||

(10)
subject to K € Cgtab-
The state-space version is
A+ ByDCy  ByCy | By + BaDip Doy
A Bmiél I BkCQ Ak BkDgl
R C1+ D12DCy  D13Cy | D11 + D12Di Doy (11)
. A+ By DCs ByCyl .
subject to BLCo A, is stable.

Both (10) and (11) are non-convex in its present form.
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The rest of topics will include

. Performance specification: Hy and H, norms of transfer matrices and their computations via

convex optimization (LMIs).

. Convex reformulation of (10) in the frequency domain (Youla parameterization [9], system-level

synthesis [1,8], and input-output parameterization [3,10]).
Convex reformulation of (11) in the state-space domain (convex optimization via LMIs) [6,7].
Analytical solutions via solving Algebraic Riccati Equation (ARE) [2,11].

Distributed control when introducing a subspace constraint on the controller K € S (Quadratic
Invariance [5], Sparsity Invariance [4], etc.).
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