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Learning goals:

1. LQR as a special case of H2 optimal control;

2. Convex characterization of stabilizing controllers;

3. Transfer matrix characterization of internal stability;

4. System-level synthesis, Input-output parameterization, and Youla;

5. Robust stability;

1 Recap

The problem setup is as follows: we consider continuous-time linear time-invariant (LTI) systems of
the form

ẋ = Ax+B1w +B2u,

z = C1x+D11w +D12u,

y = C2x+D21w +D22u,

(1)

where x ∈ Rn, u ∈ Rm, w ∈ Rd, y ∈ Rp, z ∈ Rq are the state vector, control action, external
disturbance, measurement, and regulated output, respectively. Consider a dynamic output feedback
controller u = Ky, where K has a state-space realization

ξ̇ = Akξ +Bky,

u = Ckξ +Dky,
(2)

where ξ ∈ Rnk is the internal state of controller K.

We have introduced the following optimal control problem

min
K

‖P11 + P12K(I −P22K)−1P21‖

subject to K ∈ Cstab,
(3)

and its corresponding state-space version is

min
Ak,Bk,Ck,Dk

∥∥∥∥∥∥
 A+B2DkC2 B2Ck B1 +B2DkD21

BkC2 Ak BkD21

C1 +D12DkC2 D12Ck D11 +D12DkD21

∥∥∥∥∥∥
subject to

[
A+B2DkC2 B2Ck

BkC2 Ak

]
is stable.

(4)
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Both (3) and (4) are non-convex in its present form. Note that the formulation (3) or (4) is very
general, including LQR/LQG/H2/H∞ optimal control [8].

In this lecture, we aim to present convex reformulation of (3) by introducing a suitable change of
variables. We will characterize the set of stabilizing controllers Cstab, and then look at the cost
function.

2 LQR as a special case of H2 optimal control

The classical Linear Quadratic Regulator has different forms. One typical deterministic form is as
follows

min

∫ ∞
0

xTQx+ uTRu dt

subject to ẋ = Ax+Bu

x(0) = x0,

(5)

where Q � 0, R � 0 are weight matrices and x0 ∈ Rn is the initial value. Another typical stochastic
version is

min E

[
lim

T→∞

1

T

∫ T

0

xTQx+ uTRu dt

]
subject to ẋ = Ax+Bu+ w

(6)

where Q � 0, R � 0 are weight matrices and w ∼ N(0, I) is a Guassian noise. Both (5) and (6) can
be reformulated as a special case of H2 optimal control in the form of (3) or (4).

H2 norm of transfer matrices:

Given a stable transfer matrix T = C(sI −A)−1B, its H2 norm is defined as

‖T‖2H2
: =

1

2π

∫ ∞
−∞

Trace (T ∗(jω)T (jω)) dω

=

∫ ∞
0

Trace
(
(CeAtB)T(CeAtB)

)
dt

where the second equality comes from the Parseval theorem. Although ‖T‖H2
can, in principle, be

computed from its definition above, we have simple state-space characterizations

‖T‖2H2
= Trace(BTQB), where ATQ+QA+ CTC = 0

‖T‖2H2
= Trace(CP0C

T), where AP + PAT +BBT = 0.

Note thatQ and P are observability and controllability Gramians. H2 norm can also be characterized
by LMIs, which will be introduced in later lectures. We have two interpretations:

• Deterministic interpretation: Let ek be the standard unit vector and denote the output

ẋ = Ax, z = Cx, x(0) = Bek,

by zk(t). Note that this is the response to an impulse input to the channel k. Since zk(t) =
CeAtBek, we have ∫ ∞

0

zk(t)Tzk(t)dt = eTk

(∫ ∞
0

BTeA
TtCTCeAtBdt

)
ek.
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Therefore, squared H2 norm is energy sum of transients of output responses:

m∑
k=1

∫ ∞
0

zk(t)Tzk(t)dt =

∫ ∞
0

Trace
(
(CeAtB)T(CeAtB)

)
dt = ‖T‖2H2

.

• Stochastic interpretation: If w is white noise and ẋ = Ax+Bw, z = Cx then

lim
t→∞

E
(
z(t)Tz(t)

)
= ‖T‖2H2

The squared H2-norm equals the asymptotic variance of output.

According to the deterministic and stochastic interpretations of H2 norm, it it not difficult to show
that both (5) and (6) are equivalent to the following problem

min
K

‖Tzw‖2H2

subject to ẋ = Ax+B1w +B2u

z =

[
Q

1
2

0

]
x+

[
0

R
1
2

]
u

u = Kx,

(7)

where B1 = I,B2 = B. Problem (7) is a special case of (3).

3 External transfer matrix characterization of internal sta-
bility

3.1 Static state feedback

Before introducing the dynamic case, we consider the simplified static state case of (1) and (2) as
follows

ẋ = A+B2u

u = Kx.

Then the set of stabilizing static state feedback gains are defined as follows

Css = {K ∈ Rm×n | A+B2K is stable}.

It is well-known Css is non-convex, but it admits a convex characterization using a change of variable.
In particular

A+B2K is stable ⇐⇒ ∃P � 0, (A+B2K)TP + P (A+B2K) ≺ 0

⇐⇒ ∃X � 0, X(A+B2K)T + (A+B2K)X ≺ 0

⇐⇒ ∃X � 0, Y ∈ Rm×n, XAT + Y BT
2 +AX +B2Y ≺ 0

Therefore, we have

Css = {K = Y X−1 | X � 0, Y ∈ Rm×n, XAT + Y BT
2 +AX +B2Y ≺ 0},
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Figure 1: Interconnection of the plant P and controller K

where the constraint is convex in terms of the new Lyapunov variables X and Y . We note that
the mapping from K to X and Y is not unique in the derivation above, but we can the Lyapunov
equality to make the mapping become one-to-one correspondence.

3.2 Dynamic output-feedback

Throughout this document, we denote RH∞ as the set all stable real-rational proper transfer ma-
trices, i.e., all poles are on the left open-half complex plane. We have the following standard
result [8, Chapter 3].

Lemma 1. Given a transfer matrix T(s) = C(sI −A)−1B +D, we have

• If (A,B,C) is detectable and stabilizable, then T(s) ∈ RH∞ if and only if A is stable;

• If (A,B,C) is not detectable or stabilizable, then the stability of A is sufficient but not necessary
for T(s) ∈ RH∞.

We have already a state-space characterization:

Cstab =

{
K | Â :=

[
A+B2DkC2 B2Ck

BkC2 Ak

]
is stable

}
, (8)

where K = Ck(zI − Ak)−1Bk + Dk. Unfortunately, the stability condition on Acl in (8) is still
non-convex in terms of the parameters (Ak, Bk, Ck, Dk).

There are a few frequency domain characterizations of internal stability. To be precise, let us consider
the plant P22 = C2(sI −A)−1B2,

ẋ = Ax+B2u+ δx,

y = C2x+ δy
(9)

and a dynamic controller u = Ky + δu with a state-space realization as

ξ̇ = Akξ +Bky

u = Ckξ +Dky + δu.
(10)

It is not difficult to derive the closed-loop responses from (δy, δu) to (y,u) as[
y
u

]
=

[
Y W
U Z

] [
δy
δu

]
, (11)
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where

Y = (I −P22K)−1, W = (I −P22K)−1P22, U = K(I −P22K)−1, Z = (I −KP22)−1.

We have a classical transfer matrix characterization of internal stability [8, Lemma 5.3].

Lemma 2. The system in Figure 1 is internally stable if and only if the transfer matrix from (δy, δu)
to (y,u) is stable.

Proof. Here is a sketch proof for the case of strictly proper plants. It is not difficult the derive a
state-space realization of the transfer matrix from (δy, δu) to (y,u) as([

δy
δu

]
→
[
y
u

])
= Ĉ2(zI − Â)−1B̂2 +

[
I 0
Dk I

]
,

where

Â =

[
A+B2DkC2 B2Ck

BkC2 Ak

]
, B̂2 =

[
B2Dk B2

Bk 0

]
, Ĉ2 =

[
C2 0

DkC2 Ck

]
.

It remains to prove that (Â, B̂2) is stabilizable and (Â, Ĉ2) is detectable. Then, the stability of the

transfer matrix

([
δy
δu

]
→
[
y
u

])
is equivalent to the stability of Â. This completes the proof.

The stabilizability of (Â, B̂2) can be seen from the following fact[
A+B2DkC2 B2Ck

BkC2 Ak

]
+

[
B2Dk B2

Bk 0

] [
−C2 Fk

F 0

]
=

[
A+B2F B2Ck +B2DkFk

0 Ak +BkFk,

]
which will be stable if A+B2F and Ak +BkFk are stable. The detectability of (Â, Ĉ2) can be shown
in a similar way.

We can also look at the closed-loop response from (δx, δy) to (x,u). It is not difficult to derive that[
x
u

]
=

[
R N
M L

] [
δx
δy

]
, (12)

where

R = (zI −A−B2KC2)−1, M = KC2R, U = RB2K, L = KC2RB2K + K.

We have a new transfer matrix characterization of internal stability [4].

Lemma 3. The system in Figure 1 is internally stable if and only if the transfer matrix from (δx, δy)
to (x,u) is stable.

Proof. Let us routinely derive a state-space realization of the transfer matrix from (δx, δy) to (x,u)
as ([

δx
δy

]
→
[
x
u

])
= Ĉ1(zI − Â)−1B̂1 +

[
0 0
0 Dk

]
,

where

B̂1 =

[
I B2Dk

0 Bk

]
, Ĉ1 =

[
I 0

DkC2 Ck

]
It is not difficult to check that (Â, B̂1) is stabilizable and (Â, Ĉ1) is detectable.
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Are there other transfer matrix characterizations for internal stability?

The answer is yes; see a recent report [6].

3.3 Two special cases

Here, we show that the transfer matrix characterization of internal stability can be simplified for
special cases: 1) open-loop stable plants; 2) the state feedback case. The following result is classical,
which is the same as Corollary 5.5 in [8]. For completeness, we provide a proof from a state-space
perspective.

Corollary 1. Consider the system in Figure 1. If the LTI system is open-loop stable (i.e., A is
stable), then K ∈ Cstab if and only if (δy → u) := U ∈ RH∞.

Proof. The “only if” direction is true by definition. We now prove the sufficiency. We can derive
the following state-space representation

U =
[
DkC Ck

]
(zI − Â)−1

[
BDk

Bk

]
+Dk.

Considering the fact that the following matrix

Â+

[
BDk

Bk

] [
−C Fk

]
=

[
A BCk +BDkFk

0 Ak +BkFk

]
,

is stable when A and Ak + BkFk are stable, we know that

(
Â,

[
BDk

Bk

])
is stabilizable. Similarly,

we can show that
(
Â,
[
DkC Ck

])
is detectable. Therefore, if Y ∈ RH∞, we have Acl is stable,

meaning that K ∈ Cstab. This completes the proof.

In the state-feedback case, we have the following result.

Corollary 2. Consider the LTI system (1). If C = I, then K ∈ Cstab if and only if

(
δx →

[
x
u

])
:=[

R
M

]
∈ RH∞.

The proof is similar by looking at the state-space representation. The result in Corollary 2 has been
extensively used in the system-level synthesis [4]. The proof in [4] used a frequency-based method.
Here, we provide an alternative proof from a state-space perspective.

4 Parameterization of stabilizing controllers

4.1 Two special cases

Corollary 1 leads to following parameterization of stabilizing controllers.
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Corollary 3 ([7]). Consider the LTI system (1). If the LTI system is open-loop stable, then we
have

Cstab =

{
K = UY−1

∣∣∣∣[I −P22

] [Y
U

]
= I, U ∈ RH∞

}
.

Proof. ⇒ Given any K ∈ Cstab, we show there exist Y,U ∈ RH∞ such that K = UY−1 and the
equality in the corollary is satisfied.

With K ∈ Cstab, it is not difficult to derive[
y
u

]
=

[
(I −P22K)−1

K(I −P22K)−1

]
δy.

Let us define Y = (I − P22K)−1 and U = K(I − P22K)−1. Since K ∈ Cstab, we know that
U ∈ RH∞. Also, by definition, K = UY−1. Finally, it is very easy to verify that

Y −P22U = (I −P22K)−1 −P22K(I −P22K)−1 = I.

⇐ Given Y and U satisfying the condition, we show that K = UY−1 ∈ Cstab. By corollary 1, we
only need to show the response from δy to u is Stable. In particular, we have

u = K(I −P22K)−1δy

= UY−1(I −P22UY−1)−1δy

= Uδy,

where the last equality used the affine relationship Y −P22U = I.

This result is consistent with the classical one in [8, Theorem 12.7]. Open-loop stability of the plant
does not provide a simplification for the SLP. Instead, if the state is directly measurable for control,
i.e., C = I, Corollary 2 leads to the following simplified SLP parameterization, which is denoted as
the system-level parameterization in the state-feedback case [4, Theorem 1].

Corollary 4 ([4]). Consider the LTI system (1). If C2 = I, then we have

Cstab =

{
K = MR−1

∣∣∣∣[zI −A −B
] [R

M

]
= I, M,R ∈ RH∞

}
.

The proof is very similar to that of Corollary 3.

4.2 General case: System-level parameterization and Input-output pa-
rameterization

It is not surprising that closed-loop responses are not independent to each other. In fact, they lie
in a certain affine space. To be precise, given a stabilizing controller K ∈ Cstab, the closed-loop
responses Y,U,W,Z lie in the following affine subspace [3][

I −P22

] [Y W
U Z

]
=
[
I 0

]
, (13a)[

Y W
U Z

] [
−P22

I

]
=

[
0
I

]
, (13b)

Y,U,W,Z ∈ RH∞. (13c)

Further, we have the following result [3].
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Theorem 1 (Input-output parameterization). The set of all internally stabilizing controllers can
be represented as

Cstab = {K = UY−1 | Y,U,W,Z are in the affine subspace (13a)-(13c)}. (14)

Proof. The proof is based on some straightforward algebra.

⇒: Given K ∈ Cstab, we prove that there exist Y,U,W,Z in the affine space (13a)-(13c) such
that K = UY−1. In particular, we consider the closed-loop responses in (11), which are stable by
definition. Then, it is easy to verify

Y −P22U = (I −P22K)−1 −P22K(I −P22K)−1 = I, (15)

and the rest of constraints in (13a) and (13b) are satisfied as well.

⇐: Given Y,U,W,Z in the affine space (13a)-(13c), we prove K = UY−1 ∈ Cstab. To do this, it is
sufficient to check the closed-loop responses from (δy, δu) to (y,u) are stable. For example, it is not
difficult to show that

(I −P22K)−1 = (I −P22UY−1)−1 = Y ∈ RH∞.

Similarly, given a stabilizing controller K ∈ Cstab, the closed-loop responses R,M,N,L lie in the
following affine subspace [4]

[
sI −A −B2

] [R N
M L

]
=
[
I 0

]
, (16a)[

R N
M L

] [
sI −A
−C2

]
=

[
I
0

]
, (16b)

R,M,N ∈ RH∞, L ∈ RH∞. (16c)

Theorem 2 (System-level parameterization). The set of all internally stabilizing controllers can be
represented as

Cstab = {K = L−MR−1N | R, M, N, L are in the affine subspace (16a)-(16c)}. (17)

The proof of Theorem 2 is very similar to that of Theorem 1. The interested reader is encouraged
to verify the proof.

There are other equivalent parameterizations using different sets of closed-loop responses; see [6].

5 Convex reformulation of optimal controller synthesis

According to Theorem 1, the closed-loop response from w to z can be fully characterize by

P11 + P12K(I −P22K)−1P21 = P11 + P12UP21,
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where U is in the affine space (13a)-(13c). Thus, the optimal controller synthesis (3) is equivalent
to the following convex problem [3]

min
Y,U,W,Z

‖P11 + P12UP21‖

subject to (13a)− (13c).
(18)

Similarly, we can derive that [4]

P11 + P12K(I −P22K)−1P21 =
[
C1 D12

] [R N
M L

] [
B1

D21

]
+D11,

and the optimal controller synthesis (3) is equivalent to the following convex problem

min
R,M,N,L

∥∥∥∥[C1 D12

] [R N
M L

] [
B1

D21

]
+D11

∥∥∥∥
subject to (16a)− (16c).

(19)

6 Robust stability and its connection with learning applica-
tions

We provide some quick applications of learning-based control using Corollaries 1 and 2.

6.1 State feedback case

In the state feedback case, suppose we only have estimation Â and B̂2, where ‖A − Â‖ ≤ εA and
‖B− B̂2‖ ≤ εB . How can we design a stabilizing controller for the true system (A,B2) based on the
information (Â, B̂2) and εA, εB?

Using Corollary 2, we find M̂, R̂ ∈ RH∞ that satisfies

[
sI − Â −B̂2

] [R̂

M̂

]
= I. (20)

Then, the controller K = M̂R̂−1 stabilizes (Â, B̂2). What happens if we apply K = M̂R̂−1 to the
true system (A,B2)?

From (21), we have [
sI −A −B2

] [R̂

M̂

]
= I + ∆,

where ∆ = ∆AR̂ + ∆BM̂. Then it is not difficult to show that if ‖∆‖∞ < 1, the controller

K = M̂R̂−1 stabilizes the true system (A,B2) as well. This is one fundamental building block in
the sample complexity and regret analysis of learning LQR controllers [1, 2].

6.2 Open-loop stable plants

In the open-loop stable case, we have similar results. First, suppose we have the transfer matrix
estimation P̂22, with ‖P22 − P̂22‖∞ ≤ ε.
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Using corollary 1, we find Ŷ, Û ∈ RH∞ that satisfies

[
I −P̂22

] [Ŷ
Û

]
= I. (21)

Then, the controller K = ÛŶ−1 stabilizes the plant P̂22. For the true plant P22, we have

[
I −P22

] [Ŷ
Û

]
= I + ∆,

where ∆ = ∆P22. Then it is not difficult to show that if ‖∆‖∞ < 1, the controller K = ÛŶ−1

stabilizes the true system P22 as well.

7 Youla Parameterization

To add

An explicit equivalence among Theorem 1, Theorem 2, and the classical Youla parameterization [5]
has been provided in [7].
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