Learning goals:

1. Youla parameterization for open-loop stable plants;
2. Disturbance feedback implementation and internal model principle;
3. Youla parameterization in finite-time horizon;
4. Doubly-coprime factorization and Youla
5. Equivalence with System-level synthesis, and input-output parameterization.

1 Recap

Consider a linear time-invariant system

\[\dot{x} = Ax + B_2 u + \delta_x, \]
\[y = C_2 x + \delta_y, \]
(1)

and a dynamic output feedback controller \(u = Ky \), where \(K \) has a state-space realization

\[\dot{\xi} = A_k \xi + B_k y, \]
\[u = C_k \xi + D_k y, \]
(2)

with \(\xi \in \mathbb{R}^{n_k} \) being the internal state of controller \(K \). We define the set of internally stabilizing controllers as

\[C_{\text{stab}} := \{ K \mid K \text{ internally stabilizes } P \}, \]

and its state-space characterization is

\[C_{\text{stab}} = \left\{ K \mid \hat{A} := \begin{bmatrix} A + B_2 D_k C_2 & B_2 C_k \\ B_k C_2 & A_k \end{bmatrix} \text{ is stable} \right\}, \]

where \(K = C_k (zI - A_k)^{-1} B_k + D_k \). We have introduced external transfer matrix characterizations of internal stability, and the corresponding system-level parameterization [9] and input-output parameterization [5] for \(C_{\text{stab}} \).

In this lecture, we present the classical Youla parameterization for \(C_{\text{stab}} \) [10], as well as a useful disturbance-based implementation. We also present an explicit equivalence among Youla, system-level, and input-output parameterizations [11].
2 Youla parameterization for open-loop stable plants

When the plant is open-loop stable, \(i.e., A \) is stable, then the Youla parameterization has a simple form.

Theorem 1. Suppose the plant is open-loop stable. Then, the set of all stabilizing controllers can be represented as

\[
C_{\text{stab}} = \{ K = Q(I + GQ)^{-1} | Q \in \mathcal{RH}_\infty \},
\]

where \(G = C_2(sI - A)^{-1}B_2 \).

Proof. \(\Rightarrow \): Suppose \(K_0 \in C_{\text{stab}} \). Then, we have \(Q_0 := K_0(I - GK_0)^{-1} \in \mathcal{RH}_\infty \) (which is the closed-loop response from \(\delta_y \) to \(u \)). It can be verified that \(K_0 \) can be expressed as follows

\[
Q_0(I + GQ_0)^{-1} = K_0(I - GK_0)^{-1}(I + GK_0(I - GK_0)^{-1})^{-1} = K_0.
\]

\(\Leftarrow \): Suppose \(Q \in \mathcal{RH}_\infty \), and define \(K = Q(I + GQ)^{-1} \). We verify this controller internally stabilizes the plant. Since the plant is open-loop stable, we only need to check the closed-loop response from \(\delta_y \) to \(u \) is stable.

\[
u = K(I - GK)^{-1}\delta_y
= Q(I + GQ)^{-1}(I - GQ(I + GQ)^{-1})^{-1}\delta_y
= Q\delta_y.
\]

This completes the proof. \(\Box \)

From the proof above, it is easy to see that the Youla parameter \(Q \) is exactly the same as the closed-loop response from \(\delta_y \) to \(u \). This is identical to the input-output parameterization [5].

2.1 Disturbance feedback implementation

The controller \(K = Q(I + GQ)^{-1} \) can be implemented in a disturbance-based form (see Figure 1 for illustration):

\[
\beta = y - Gu,
\]

\[
u = Q\beta.
\] \hspace{1cm} (4)

Recall that there is measurement noise in the plant dynamics, \(i.e., y = Gu + \delta_y \). Thus, if there is no noise in the control input, then in (4), we have \(\beta = \delta_y \), and

\[
u = Q\delta_y,
\]

which is a disturbance feedback implementation. Note that \(\delta_y \) is referred to as “nature’s \(y \)” in [8].

 Especially, in the discrete time, when the plant \(G \) is strictly proper and approximated by a finite impulse response with length \(p \) and the Youla parameter is approximated by a finite impulse response with length \(q \), \(i.e., \)

\[
G = \sum_{k=1}^{p} G_k \frac{1}{z^k}, \quad Q = \sum_{k=0}^{q} Q_k \frac{1}{z^k},
\]

then (4) can be implemented as

\[
\beta_t = y_t - \sum_{k=1}^{p} G_k u_{t-k},
\]

\[
u_t = \sum_{k=0}^{q} Q_k \beta_{t-k}.
\]
Figure 1: Internal model principle, where $P_{22} := G$.

This disturbance-based implementation is explicitly used in [8] for regret analysis.

Internal model principle: In Fig. 1, we note that the controller K explicitly incorporates the plant dynamics G, which is known as the internal model principle [4] applied in Youla parameterization. The following paragraph is quoted from [2]: “The concept of internal models plays a crucial role in regulator problems. The internal model principle can intuitively be expressed as: ‘Any good regulator must create a model of the dynamic structure of the environment in the closed loop system’.”

3 Youla parameterization in finite-time horizon

In this section, we discuss the Youla parameterization in the finite-time horizon. The disturbance-based parameterization allows us to get a convex characterization of time-varying feedback policies with constraints on state and inputs. For simplicity, we consider state feedback policies in this section. The presentation of this section is based on [6].

Consider the following discrete-time LTI system:

$$x_{t+1} = Ax_t + Bu_t + w_t,$$

where $x_t \in \mathbb{R}^n$ is the system state, $u_t \in \mathbb{R}^m$ is the control input, and $w \in \mathbb{R}^n$ is the disturbance at the current time instant. The system is subject to mixed constraints on the state and input:

$$Z := \{(x, u) \in \mathbb{R}^n \times \mathbb{R}^m \mid Cx + Du \leq b\},$$

where the matrices $C \in \mathbb{R}^{s \times n}, D \in \mathbb{R}^{s \times m}$ and the vector $b \in \mathbb{R}^s$. It is assumed that Z is bounded and contains the origin in its interior. A primary design goal is to guarantee that the state and input of the closed-loop system remain in Z for all time and for all allowable disturbance sequences. Finally, a target/terminal constraint set X_f is given by

$$X_f := \{x \in \mathbb{R}^n \mid Yx \leq z\},$$

where the matrix $Y \in \mathbb{R}^{r \times n}$ and the vector $z \in \mathbb{R}^r$. It is assumed that X_f is bounded and contains the origin in its interior.

In the sequel, predictions of the system’s evolution over a finite control/planning horizon will be used to define a number of suitable control policies. Let the length N of this planning horizon be a positive integer and define stacked versions of the predicted input, state and disturbance vectors $u \in \mathbb{R}^{mN}, x \in \mathbb{R}^{n(N+1)}$ and $w \in \mathbb{R}^{nN}$, respectively, as

$$x := \begin{bmatrix} x_0^T, \ldots, x_N^T \end{bmatrix}^T,$$

$$u := \begin{bmatrix} u_0^T, \ldots, u_{N-1}^T \end{bmatrix}^T,$$

$$w := \begin{bmatrix} w_0^T, \ldots, w_{N-1}^T \end{bmatrix}^T,$$
where $x_0 = x$ denotes the current measured value of the state. Finally, let the set $W := W \times \ldots \times W$, so that $w \in W$.

Then, the system can be compactly written as

$$ x = Ax + Bu + Ew, $$

where

$$ A = \begin{bmatrix} I & 0 & 0 & \ldots & 0 \\ A & 0 & 0 & \ldots & 0 \\ 0 & A & 0 & \ldots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & \ldots & 0 & A & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 0 & \ldots & 0 \\ B & 0 & \ldots & 0 \\ 0 & B & \ldots & 0 \\ \vdots & \vdots & \ddots & \ddots \\ 0 & \ldots & 0 & B \end{bmatrix}, \quad E = \begin{bmatrix} 0 & 0 & \ldots & 0 \\ I & 0 & \ldots & 0 \\ 0 & I & \ldots & 0 \\ \vdots & \vdots & \ddots & \ddots \\ 0 & \ldots & 0 & I \end{bmatrix}. $$

State feedback parameterization: One natural approach to controlling the system in (5), while ensuring the satisfaction of the constraints, is to search over the set of time-varying affine state feedback control policies with knowledge of prior states:

$$ u_t = \sum_{i=0}^{t} L_{t,i} x_i + g_t, \quad t = 0, \ldots, N - 1, \quad (8) $$

where each $L_{t,i} \in \mathbb{R}^{m \times n}$ and $g_t \in \mathbb{R}^m$. For notational convenience, we also define the block lower triangular matrix $L \in \mathbb{R}^{mN \times n(N+1)}$ and stacked vector $g \in \mathbb{R}^{mN}$ as

$$ L = \begin{bmatrix} L_{0,0} & 0 & \ldots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ L_{N,0} & \ldots & L_{N,N-1} & 0 \end{bmatrix}, \quad g = \begin{bmatrix} g_0 \\ g_1 \\ \vdots \\ g_{N-1} \end{bmatrix}. \quad (9) $$

Then, the input sequence can be written as

$$ u = Lx + g. $$

For a given initial state x, we say that the pair (L, g) is admissible if the control policy (8) guarantees that for all allowable disturbance sequences of length N, the constraints (6) are satisfied over the horizon $t = 0, \ldots, N - 1$ and that the state is in the target set (7) at the end of the horizon. Precisely, the set of admissible (L, g) is defined as

$$ \Pi_{sf}^N(x) := \left\{ (L, g) \mid (L, g) \text{ satisfy (9)}, x_0 = x, \\
\text{s.t. } x_{t+1} = Ax_t + Bu_t + w_t \right\}. \quad (10) $$

Proposition 1 ([6]). The set of admissible affine state feedback parameters $\Pi_{sf}^N(x)$ is non-convex.

Disturbance feedback parameterization: An alternative to (8) is to parameterize the control policy as an affine function of the sequence of past disturbances, so that

$$ u_t = \sum_{i=0}^{t-1} M_{t,i} w_t + v_t, \quad t = 0, \ldots, N - 1 \quad (11) $$
where each $M_{t,i} \in \mathbb{R}^{m \times n}$ and $v_t \in \mathbb{R}^m$. It should be noted that, since full state feedback is assumed, the past disturbance sequence is easily calculated as the difference between the predicted and actual states at each step, i.e.

$$w_{t-1} = x_t - Ax_{t-1} - Bu_{t-1}.$$

For notational convenience, we define the vector $v_t \in \mathbb{R}^m$ and the strictly block lower triangular matrix $M \in \mathbb{R}^{mN \times nN}$ such that

$$M = \begin{bmatrix} 0 & \cdots & \cdots & 0 \\ M_{1,0} & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ M_{N-1,0} & \cdots & M_{N-1,N-2} & 0 \end{bmatrix}, \quad v = \begin{bmatrix} v_0 \\ v_1 \\ \vdots \\ v_{N-1} \end{bmatrix}. \tag{12}$$

Then, the input sequence can be written as

$$u = Mw + v.$$

In a manner similar to (10), we define the set of admissible (M, v) as

$$\Pi^{df}_N(x) := \left\{ (M, v) \mid (M, v) \text{ satisfy (12)}, x_0 = x, \right. \right. \left. \left. x_{t+1} = Ax_t + Bu_t + w_t \right. \right. \left. \right. \right.$$

$$u_t = \sum_{i=0}^{t-1} M_{t,i} w_i + v_t, \quad (x_t, u_t) \in \mathcal{Z}, \quad x_N \in \mathcal{X},$$

$$t = 0, \ldots, N-1, \forall w \in \mathcal{W}.$$

It can be checked that one can find matrices $F \in \mathbb{R}^{l \times mN}, G \in \mathbb{R}^{l \times nN}, H \in \mathbb{R}^{l \times n}$ and a vector $c \in \mathbb{R}^s$, where $l := sN + r$ (see the Appendix of [6]), such that the expression for $\Pi^{df}_N(x)$ can be rewritten more compactly as

$$\Pi^{df}_N(x) := \left\{ (M, v) \mid (M, v) \text{ satisfy (12)} \right. \right. \left. \right. \right.$$

$$Fv + (FM + G)w \leq c + Hx, \quad \forall w \in \mathcal{W}.$$

We note that this is easily seen from the fact that under the policy (11), the state and input sequences can be written as

$$x = (I - A)^{-1}(BM + E)w + (I - A)^{-1}Bv,$$

$$u = Mw + v. \tag{14}$$

Then it is easy to see the following result.

Proposition 2. The set of admissible affine disturbance feedback parameters $\Pi^{df}_N(x)$ is convex.

Also, we have the following equivalence.

Theorem 2 ([6]). For any admissible (L, g), an admissible (M, v) can be found that yields the same state and input sequence for all allowable disturbance sequences, and vice-versa.

Proof. \Rightarrow Given (L, g), we find (M, v) that yields the same state and input sequence. First, we have

$$x = Ax + B(Lx + g) + Ew$$

$$\Rightarrow x = (I - A - BL)^{-1}Ew + (I - A - BL)^{-1}Bg$$

$$\Rightarrow u = L(I - A - BL)^{-1}Ew + L(I - A - BL)^{-1}Bg + g$$
Let us define
\[M = L(I - A - BL)^{-1}E, \quad v = L(I - A - BL)^{-1}Bg + g, \]
then, the closed-loop system with \((M, v)\) yields the same state and input sequence. It is routinely to show that \((M, v)\) has the same structure in (12).

\[\Leftarrow \text{Almost similar; see [6] for details.} \]

We note that the disturbance feedback implementation has recently been employed in online learning with adversarial disturbances in [1].

4 Doubly co-prime factorization and Youla parameterization

Here, we introduce the Youla parameterization for general plants, which is based on a doubly coprime factorization.

Definition 1. A collection of stable transfer matrices, \(U_l, V_l, N_l, M_l, U_r, V_r, N_r, M_r \in \mathcal{RH}_\infty\) is called a doubly-coprime factorization of \(G\) if
\[G = N_r M_r^{-1} = M_l^{-1} N_l \quad \text{and} \quad \begin{bmatrix} U_l & -V_l \\ -N_l & M_l \end{bmatrix} \begin{bmatrix} M_r & V_r \\ N_r & U_r \end{bmatrix} = I. \]

Such doubly-coprime factorization can always be computed if the state-space realization of \(G\) is stabilizable and detectable [7]. We have the following equivalence [10]
\[C_{\text{stab}} = \{ K = (V_r - M_r Q)(U_r - N_r Q)^{-1} \mid Q \in \mathcal{RH}_\infty \}, \quad (15) \]
where \(Q\) is denoted as the Youla parameter. Note that the Youla parameter \(Q\) can be freely chosen in \(\mathcal{RH}_\infty\). We refer the interested reader to [3,10,12] for more details on the Youla parameterization. Note that it is not difficult to derive a convex reformulation of the original optimal control problem in terms of the Youla parameter: Using the change of variables \(K = (V_r - M_r Q)(U_r - N_r Q)^{-1}\), one can derive
\[f(P, K) = T_{11} + T_{12} Q T_{21}, \]
where \(T_{11} = P_{11} + P_{12} V_r M_l P_{21}, T_{12} = -P_{12} M_r,\) and \(T_{21} = M_l P_{21}\). Consequently, the optimal control problem can be equivalently reformulated in terms of the Youla parameter as
\[\min_Q \| T_{11} + T_{12} Q T_{21} \| \]
subject to \(Q \in \mathcal{RH}_\infty \).

Computation of doubly-coprime factorization: It is numerically easy to find a doubly coprime factorization if the plant is stabilizable and detectable [12, Theorem 5.9].

Theorem 3. Suppose \(G(s)\) is a proper real-rational matrix and
\[G = \begin{bmatrix} A & B \\ C & D \end{bmatrix}, \]
is a stabilizable and detectable realization. Let F and L be such that $A + BF$ and $A + LC$ are both stable, and a doubly co-prime factorization of G is as follows.

$$
\begin{bmatrix}
M_r & V_r \\
N_r & U_r
\end{bmatrix} = \begin{bmatrix}
\begin{array}{cc}
A + BF & B \\
F & I \\
C + DF & D \\
\end{array}
\end{bmatrix},
$$

(17)

$$
\begin{bmatrix}
U_l & -V_l \\
-N_l & M_l
\end{bmatrix} = \begin{bmatrix}
\begin{array}{cc}
A + LC & -(B + LD) \\
F & I \\
C & -D \\
\end{array}
\end{bmatrix},
$$

Proof. It is based on directly verification. See [7] for details.

Feedback control interpretation: The coprime factorization of a transfer matrix can be given a feedback control interpretation. For example, right coprime factorization comes out naturally from changing the control variable by a state feedback. Consider the state-space model

$$
\dot{x} = Ax + Bu,
$$

$$
y = Cx + Du.
$$

Next, introduce a state feedback and change the variable

$$
v := u - Fx
$$

where F is such that $A + BF$ is stable. Then, we get

$$
\dot{x} = (A + BF)x + Bv,
$$

$$
u = Fx + v
$$

$$
y = (C + DF)x + Dv.
$$

From these equations, the transfer matrix from v to u is

$$
M_r(s) = \begin{bmatrix}
A + BF & B \\
F & I
\end{bmatrix},
$$

and that from v to y is

$$
N_r(s) = \begin{bmatrix}
A + BF & B \\
C + DF & D
\end{bmatrix}.
$$

Therefore, we have

$$
u = M_r v, \quad y = N_r v,
$$

so that $y = N_r M_r^{-1} u$, i.e., $G = N_r M_r^{-1}$.

5 Equivalence with SLP and IOP

An explicit equivalence among Youla, the SLP, and the IOP has been recently revealed in [11].
References

