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Learning goals:

1. Youla parameterization for open-loop stable plants;

2. Disturbance feedback implementation and internal model principle;

3. Youla parameterization in finite-time horizon;

4. Doubly-coprime factorization and Youla

5. Equivalence with System-level synthesis, and input-output parameterization.

1 Recap

Consider a linear time-invariant system

ẋ = Ax+B2u+ δx,

y = C2x+ δy,
(1)

and a dynamic output feedback controller u = Ky, where K has a state-space realization

ξ̇ = Akξ +Bky,

u = Ckξ +Dky,
(2)

with ξ ∈ Rnk being the internal state of controller K. We define the set of internally stabilizing
controllers as

Cstab := {K | K internally stabilizes P},

and its state-space characterization is

Cstab =

{
K | Â :=

[
A+B2DkC2 B2Ck

BkC2 Ak

]
is stable

}
,

where K = Ck(zI − Ak)−1Bk + Dk. We have introduced external transfer matrix characteriza-
tions of internal stability, and the corresponding system-level parameterization [9] and input-output
parameterization [5] for Cstab.

In this lecture, we present the classical Youla parameterization for Cstab [10], as well as a useful
disturbance-based implementation. We also present an explicit equivalence among Youla, system-
level, and input-output parameterizations [11].
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2 Youla parameterization for open-loop stable plants

When the plant is open-loop stable, i.e., A is stable, then the Youla parameterization has a simple
form.

Theorem 1. Suppose the plant is open-loop stable. Then, the set of all stabilizing controllers can
be represented as

Cstab = {K = Q(I + GQ)−1 | Q ∈ RH∞}, (3)

where G = C2(sI −A)−1B2.

Proof. ⇒: Suppose K0 ∈ Cstab. Then, we have Q0 := K0(I − GK0)−1 ∈ RH∞ (which is the
closed-loop response from δy to u). It can be verified that K0 can be expressed as follows

Q0(I + GQ0)−1 = K0(I −GK0)−1(I + GK0(I −GK0)−1)−1 = K0.

⇐: Suppose Q ∈ RH∞, and define K = Q(I+GQ)−1. We verify this controller internally stabilizes
the plant. Since the plant is open-loop stable, we only need to check the closed-loop response from
δy to u is stable.

u = K(I −GK)−1δy

= Q(I + GQ)−1(I −GQ(I + GQ)−1)−1δy

= Qδy.

This completes the proof.

From the proof above, it is easy to see that the Youla parameter Q is exactly the same as the
closed-loop response from δy to u. This is identical to the input-output parameterization [5].

2.1 Disturbance feedback implementation

The controller K = Q(I + GQ)−1 can be implemented in a disturbance-based form (see Figure 1
for illustration):

β = y −Gu,

u = Qβ.
(4)

Recall that there is measurement noise in the plant dynamics, i.e., y = Gu + δy. Thus, if there is
no noise in the control input, then in (4), we have β = δy, and

u = Qδy,

which is a disturbance feedback implementation. Note that δy is referred to as “nature’s y” in [8].
Especially, in the discrete time, when the plant G is strictly proper and approximated by a finite
impulse response with length p and the Youla parameter is approximated by a finite impulse response
with length q, i.e.,

G =

p∑
k=1

Gk
1

zk
, Q =

q∑
k=0

Qk
1

zk
,

then (4) can be implemented as

βt = yt −
p∑

k=1

Gkut−k,

ut =

q∑
k=0

Qkβt−k.
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Figure 1: Internal model principle, where P22 := G.

This disturbance-based implementation is explicitly used in [8] for regret analysis.

Internal model principle: In Fig. 1, we note that the controller K explicitly incorporates the plant
dynamics G, which is known as the internal model principle [4] applied in Youla parameterization.
The following paragraph is quoted from [2]: “The concept of internal models plays a crucial role in
regulator problems. The internal model principle can intuitively be expressed as: ’Any good regulator
must create a model of the dynamic structure of the environment in the closed loop system’ ”.

3 Youla parameterization in finite-time horizon

In this section, we discuss the Youla parameterization in the finite-time horizon. The disturbance-
based parameterization allows us to get a convex characterization of time-varying feedback policies
with constraints on state and inputs. For simplicity, we consider state feedback policies in this
section. The presentation of this section is based on [6].

Consider the following discrete-time LTI system:

xt+1 = Axt +But + wt, (5)

where xt ∈ Rn is the system state, ut ∈ Rm is the control input, and w ∈ Rn is the disturbance at
the current time instant. The system is subject to mixed constraints on the state and input:

Z := {(x, u) ∈ Rn × Rm | Cx+Du ≤ b}, (6)

where the matrices C ∈ Rs×n, D ∈ Rs×m and the vector b ∈ Rs. It is assumed that Z is bounded
and contains the origin in its interior. A primary design goal is to guarantee that the state and
input of the closed-loop system remain in Z for all time and for all allowable disturbance sequences.
Finally, a target/terminal constraint set Xf is given by

Xf := {x ∈ Rn | Y x ≤ z}, (7)

where the matrix Y ∈ Rr×n and the vector z ∈ Rr. It is assumed that Xf is bounded and contains
the origin in its interior.

In the sequel, predictions of the system’s evolution over a finite control/planning horizon will be
used to define a number of suitable control policies. Let the length N of this planning horizon be
a positive integer and define stacked versions of the predicted input, state and disturbance vectors
u ∈ RmN , x ∈ Rn(N+1) and w ∈ RnN , respectively, as

x :=
[
xT0 , . . . , x

T
N

]T
,

u :=
[
uT0 , . . . , u

T
N−1

]T
,

w :=
[
wT

0 , . . . , w
T
N−1

]T
,
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where x0 = x denotes the current measured value of the state. Finally, let the setW := W× . . .×W ,
so that w ∈ W.

Then, the system can be compactly written as

x = Ax + Bu + Ew,

where

A =


I 0 0 . . . 0
A 0 0 . . . 0
0 A 0 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 A 0

 , B =


0 0 . . . 0
B 0 . . . 0
0 B . . . 0
...

. . .
. . .

...
0 . . . 0 B

 , E =


0 0 . . . 0
I 0 . . . 0
0 I . . . 0
...

. . .
. . .

...
0 . . . 0 I

 .

State feedback parameterization: One natural approach to controlling the system in (5), while
ensuring the satisfaction of the constraints, is to search over the set of time-varying affine state
feedback control policies with knowledge of prior states:

ut =

t∑
i=0

Lt,ixi + gt, t = 0, . . . , N − 1, (8)

where each Lt,i ∈ Rm×n and gt ∈ Rm. For notational convenience, we also define the block lower
triangular matrix L ∈ RmN×n(N+1) and stacked vector g ∈ RmN as

L =

 L0,0 0 . . . 0
...

. . .
. . .

...
LN1,0 . . . LN1,N−1 0

 ,g =


g0
g1
...

gN−1

 . (9)

Then, the input sequence can be written as

u = Lx + g.

For a given initial state x, we say that the pair (L,g) is admissible if the control policy (8) guarantees
that for all allowable disturbance sequences of length N , the constraints (6) are satisfied over the
horizon t = 0, . . . , N−1 and that the state is in the target set (7) at the end of the horizon. Precisely,
the set of admissible (L,g) is defined as

Πsf
N (x) :=


(L,g)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(L,g) satisfy (9), x0 = x,

xt+1 = Axt +But + wt

ut =

t∑
i=0

Lt,ixi + gt

(xt, ut) ∈ Z, xN ∈ Xf

t = 0, . . . , N − 1,∀w ∈ W


. (10)

Proposition 1 ( [6]). The set of admissible affine state feedback parameters Πsf
N (x) is non-convex.

Disturbance feedback parameterization: An alternative to (8) is to parameterize the control
policy as an affine function of the sequence of past disturbances, so that

ut =

t−1∑
i=0

Mt,iwt + vt, t = 0, . . . , N − 1 (11)
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where each Mt,i ∈ Rm×n and vt ∈ Rm. It should be noted that, since full state feedback is assumed,
the past disturbance sequence is easily calculated as the difference between the predicted and actual
states at each step, i.e.

wt−1 = xt −Axt−1 −But−1.
For notational convenience, we define the vector v ∈ RmN and the strictly block lower triangular
matrix M ∈ RmN×nN such that

M =


0 . . . . . . 0

M1,0 0 . . . 0
...

. . .
. . .

...
MN−1,0 . . . MN−1,N−2 0

 ,v =


v0
v1
...

vN−1

 . (12)

Then, the input sequence can be written as

u = Mw + v.

In a manner similar to (10), we define the set of admissible (M,v) as

Πdf
N (x) :=


(M,v)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(M,v) satisfy (12), x0 = x,

xt+1 = Axt +But + wt

ut =

t−1∑
i=0

Mt,iwi + vt

(xt, ut) ∈ Z, xN ∈ Xf

t = 0, . . . , N − 1,∀w ∈ W


. (13)

It can be checked that one can find matrices F ∈ Rl×mN , G ∈ Rl×nN , H ∈ Rl×n and a vector c ∈ Rs,
where l := sN + r (see the Appendix of [6]), such that the expression for Πdf

N (x) can be rewritten
more compactly as

Πdf
N (x) :=

(M,v)

∣∣∣∣∣∣∣
(M,v) satisfy (12)

Fv + (FM +G)w ≤ c+Hx,

∀w ∈ W

 .

We note that this is easily seen from the fact that under the policy (11), the state and input sequences
can be written as

x = (I −A)−1(BM + E)w + (I −A)−1Bv,

u = Mw + v.
(14)

Then it is easy to see the following result.

Proposition 2. The set of admissible affine disturbance feedback parameters Πdf
N (x) is convex.

Also, we have the following equivalence.

Theorem 2 ( [6]). For any admissible (L,g), an admissible (M,v) can be found that yields the
same state and input sequence for all allowable disturbance sequences, and vice-versa.

Proof. ⇒ Given (L,g), we find (M,v) that yields the same state and input sequence. First, we have

x = Ax + B(Lx + g) + Ew

⇒x = (I −A−BL)−1Ew + (I −A−BL)−1Bg

⇒u = L(I −A−BL)−1Ew + L(I −A−BL)−1Bg + g



6 Lecture 3: Youla Parameterization

Let us define

M = L(I −A−BL)−1E, v = L(I −A−BL)−1Bg + g,

then, the closed-loop system with (M,v) yields the same state and input sequence. It is routinely
to show that (M,v) has the same structure in (12).

⇐: Almost similar; see [6] for details.

We note that the disturbance feedback implementation has recently been employed in online learning
with adversarial disturbances in [1].

4 Doubly co-prime factorization and Youla parameterization

Here, we introduce the Youla parameterization for general plants, which is based on a doubly coprime
factorization.

Definition 1. A collection of stable transfer matrices, Ul,Vl,Nl,Ml,Ur,Vr,Nr,Mr ∈ RH∞ is
called a doubly-coprime factorization of G if G = NrM

−1
r = M−1

l Nl and[
Ul −Vl

−Nl Ml

] [
Mr Vr

Nr Ur

]
= I.

Such doubly-coprime factorization can always be computed if the state-space realization of G is
stabilizable and detectable [7]. We have the following equivalence [10]

Cstab = {K = (Vr −MrQ)(Ur −NrQ)−1 | Q ∈ RH∞}, (15)

where Q is denoted as the Youla parameter. Note that the Youla parameter Q can be freely chosen
in RH∞. We refer the interested reader to [3,10,12] for more details on the Youla parameterization.
Note that it is not difficult to derive a convex reformulation of the original optimal control problem
in terms of the Youla parameter: Using the change of variables K = (Vr −MrQ)(Ur −NrQ)−1,
one can derive

f(P,K) = T11 + T12QT21,

where T11 = P11 + P12VrMlP21,T12 = −P12Mr, and T21 = MlP21. Consequently, the optimal
control problem can be equivalently reformulated in terms of the Youla parameter as

min
Q

‖T11 + T12QT21‖

subject to Q ∈ RH∞.
(16)

Computation of doubly-coprime factorization: It is numerically easy to find a doubly coprime
factorization if the plant is stabilizable and detectable [12, Theorem 5.9].

Theorem 3. Suppose G(s) is a proper real-rational matrix and

G =

[
A B
C D

]
,
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is a stabilizable and detectable realization. Let F and L be such that A+BF and A+ LC are both
stable, and a doubly co-prime factorization of G is as follows.

[
Mr Vr

Nr Ur

]
=

 A+BF B L
F I 0

C +DF D I

 ,
[

Ul −Vl

−Nl Ml

]
=

 A+ LC −(B + LD) L
F I 0
C −D I

 ,
(17)

Proof. It is based on directly verification. See [7] for details.

Feedback control interpretation: The coprime factorization of a transfer matrix can be given a
feedback control interpretation. For example, right coprime factorization comes out naturally from
changing the control variable by a state feedback. Consider the state-space model

ẋ = Ax+Bu,

y = Cx+Du.

Next, introduce a state feedback and change the variable

v := u− Fx

where F is such that A+BF is stable. Then, we get

ẋ = (A+BF )x+Bv,

u = Fx+ v

y = (C +DF )x+Dv.

From these equations, the transfer matrix from v to u is

Mr(s) =

[
A+BF B

F I

]
,

and that from v to y is

Nr(s) =

[
A+BF B
C +DF d

]
.

Therefore, we have

u = Mrv, y = Nrv,

so that y = NrM
−1
r u, i.e., G = NrM

−1
r .

5 Equivalence with SLP and IOP

An explicit equivalence among Youla, the SLP, and the IOP has been recently revealed in [11].
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