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Learning goals:

1. Hardy Spaces Ho and Hoo;
2. Hy and Hoo norms and their state-space computations;
3. Hs and Ho optimal control: state feedback case

4. Ho and Ho optimal control: output feedback case

1 Recap

The problem setup is as follows: we consider continuous-time linear time-invariant (LTT) systems of

the form
T = Ax + Byw + Bou,

zZ = leL' + an + .D12’Ll,7 (1)
y = Cox + Da1w + Daau,

where z € R",u € R™,w € R%y € RP,z € RY are the state vector, control action, external
disturbance, measurement, and regulated output, respectively. Consider a dynamic output feedback
controller u = Ky, where K has a state-space realization

§ = Axé + By, @)
u = Cp& + Dyy,
where £ € R™ is the internal state of controller K.
We have introduced the following optimal control problem
min P11 + P1oK (7 — PoyK) 'Pa |
subject to K € Cgtab,

and its corresponding state-space version (where we have assumed that Dy = 0) is

A+ ByDy.Co ByCy, By + B2Dy, Doy

4 Bmiél D Bk-cg Ak. BkDgl
o C1+ D12DxCy  D15Cy | Diy + D12Dy. Dy (4)
subject to 4 +BBZC{)]“CQ Bzck} is stable.
kCo k
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Both (3) and (4) are non-convex in its present form. Note that the formulation (3) or (4) is very
general, including LQR/LQG/Hz2/Hoo optimal control [5].

In Lectures 2 and 3, we have presented convex reformulation of (3) by introducing a suitable change
of variables (i.e., Youla, IOP and SLP) in the frequency domain. In this lecture, we will take a
closer look at the cost function and its state-space solution via solving linear matrix inequalities in
both state feedback and output feedback cases.

2 Hardy Spaces H, and H.,

The presentation of this section largely follows [5, Section 4.3]. Let S C C be an open set, and let
f(s) be a complex valued function defined on S:

f(s): 8 —>C.

Then, f(s) is said to be analytic at a point zg in S if it is differentiable at zy and also at each point
in some neighborhood of zy. The following limit exists

O]
Z—r 20 Z— 20

In fact, if f(s) is analytic at zo then f has continuous derivatives of all orders at zp. Hence, a
function f(s) analytic at zp has a power serices representation at zp, i.e.,

f(s)=co+ Y enls—2)",
n=1

converges for some neighborhood of zg. The converse is also true, i.e., if a function has a power
series representation at zp, then it is analytic at zg.

A function f(s) is said to be analytic in S if it has a derivative or is analytic at each point of S. A
matrix valued function is analytic in S if every element of the matrix is analytic in S. For example,
all real rational stable transfer matrices are analytic in the right-half plane and e™* is analytic
everywhere. A well-known property of the analytic functions is the so-called Mazimum Modulus
Theorem.

Theorem 1. If f(s) is defined and continuous on a closed-bounded set S and analytic on the interior
of S, then the maximum of |f(s)| on S is attained on the boundary of S, i.e.,

max |f(s)] = max|[f(s)],

s€dSs

where 0S denotes the boundary of S.
Next we consider some frequently used complex (matrix) function spaces.

1. L2(jR) Space: L2(jR) is a Hilbert space of matrix-valued function on jR and consists of all
complex matrix functions F' such that the integral below is bounded, i.e.,

/_OO Trace [F*(jw)F(jw)] dw < 0.
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3

The inner product for this Hilbert space is defined as
1 (o)
(F,G) = 2—/ Trace [F* (jw)G(jw)] dw < o0,
T J -0

for F,G € L5, and the inner product induced norm is given by

[Fl2 := V/(F, F).

All real rational strictly proper transfer functions with no poles on the imaginary axis form a
subspace of Lo. which is denoted by RLs.

. H2 Space: H is subspace of Lo with matrix functions F'(s) analytic in Re(s) > 0 (open

right-half plane). The corresponding norm is defined as

1 oo
| F|3 := sup{/ Trace [F* (o + jw)F (o + jw)] dw}.
>0 2m

—00

It can be shown that

o0
113 = o / Trace [F* (ju) F(jw)] do.
Tr — 00

The real rational subspace of Hs, which consists of all strictly proper and real rational stable
transfer matrices, is denoted by RHo.

. Loo(jR) Space: L (jR) or simply L., is a Banach space of matrix-valued complex function

that are bounded on jR, with norm defined as

[F'lloo == sup omax[F (jw)].
weR

The real rational subspace of L., denoted by RL.,, consists of all proper and real rational
transfer matrices with no poles on imaginary axix.

. Ho Space: H., is a subspace of L., with functions that are analytic and bounded in the

open right-half plane. The H,, norm is defined as

IF|loo := Sup Omax(F(s)) = sup omax(F(jw)).
Re(s)>0 w€eR

The second equality can be regarded as a generalization of the maximum modulus theorem for
matrix functions. The real rational subspace of H, is denoted by RH ,, which consists of all
proper and real rational stable transfer matrices.

Computation of H, and H,, norms

In this lecture, we mainly consider the norm in the space RHs and RH. Given a stable transfer
matrix T(s) € RHa (or T(s) € RHs), the norm | T(s)|l2 (or ||T(s)||ec) can, in principle, be
computed from its definition, it is useful in many applications to have alternative characterizations
and to take advantage of the state space representations of G(s).

Lemma 1. Consider a transfer matrix
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with A stable. Then, we have

T3, = Trace(BTQB), where ATQ + QA+ CTC =0,
T3, = Trace(CPCT), where AP + PA" + BBT = 0.

where QQ and P are observability and controllability Gramians.
Interpretation of the #; norm of stable transfer matrices:

e Deterministic interpretation: Let e be the standard unit vector and denote the output
= Az, z=Cz, x(0)= Bey,

by zi(t). Note that this is the response to an impulse input to the channel k. Since z(t) =
Ce?!Bey,, we have

/ () 2 (t)dt = e (/ BTeATtCTCeAtht) €k-
0 0

Therefore, Squared Ho norm is energy sum of transients of output responses:
m oo 0o
3 / ()T 20 (t)dt = / Trace (Ce*'B)T(Ce*' B)) dt = || T|2,,.
ey 70 0

e Stochastic interpretation: If w is white noise and & = Ax + Bw, z = Cx then

lim E (2(t)"2(t)) = | T2,

t—o00

The squared Ho-norm equals the asymptotic variance of output.

The H, of stable transfer matrices can be quantified by the following linear matrix inequalities
(LMIs).

Lemma 2. Consider a transfer matrix

- [22]

with A stable. Then, we have ||T(s)||2 < v if and only if there exists P > 0 such that
trace(CPCT) < ~%,  and AP+ PAT + BB' <0,
and there exists @ = 0 such that

trace(BTQB) <+, and ATQ+QA+CTC <0.

Proof. = if ||T(s)||2 < 7, then we have
Trace(CPyCT) <%, where  APy+ PyAT + BBT = 0. (5)
Now we consider a perturbed Lyapunov equation

AP. + P.AT + BBT + ¢l =0,
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which has a unique solution P. > 0,Ve > 0 since A is stable. Note that every element of P, is a
continuous function of € > 0, and

lim P, = P,.

e—0

Since Trace(CPyCT) < 42, there exists a € > 0 such that Trace(CP.CT) < 42 and
AP, + P.AT + BB" = —eI < 0.

< We need to prove (5). We first have
AP + PA" + BB" — (APy + Py A" + BB") = A(P — Py) + (P — Py)AT < 0.
This indicates that P — Py > 0 (since A is stable). Then
trace(CPyCT) < trace(CPCT) < 2.
We have proved that ||G(s)]]2 < . O

For the computation of H,, norm, we have the following KYP lemma.

Lemma 3. Consider a transfer matrix

- [#3]

with A stable. Then, the following statements are equivalent:

o [T(s)lloo <5
o T*(jw)T(jw) < ¥I,Vw € R.
e We have
, [T (s)wll2
sup ———"
o<llwila<1 w2

o The following LMI is feasible.
ATX +XA XB CT
BTX —~yI DT | <0,X>0. (6)
c D —I

We note the LMI (6) has multiple equivalent forms:

ATX+XA XB CT
BTX —2I DT| <0,X >~ 0.
C D I

(obtained by left- and right- multiplied by diag(wél y2I,v~=1)) and (by applying the Schur com-
plement)
ATX+XA+C'C XB+C'D

BTX+D'C D'D-21| 30  X*0

and
ATX + XA+C'C—(XB+C™D)YD'D—+2)"Y(B"X +D"C) <0, X >0, omax(D) <1

which is a Riccati inequality.
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4 H,; and H,, optimal control: state feedback

Here, we consider static state feedback u = Dy, and the controller synthesis problem (4) becomes

min H A+ ByDy, | By }
Dy, Ci+ D12Dy, | D1y

subject to A + By Dy, is stable.

(7)

4.1 H, optimal control

When we aim to minimize the s norm of the closed-loop system T.,,, we need to assume D17 =0
(otherwise T,,, is not strictly proper and ||T..||2 is not finite). According to Lemma 2, it is easy
to know that (7) is equivalent to

Pr,rll?if“/ 7
subject to (A + BaDy)P + P(A+ BaDy)" + BB <0, (8)
trace((Cy 4+ D12 D) P(Cy + D12 D)7 < 7,
P> 0.

By introducing X = Dy P, this is equivalent to

min vy
P, X,y
subject to (AP + BaX) + (AP + BoX)' + B1B] <0, )
trace((C1 P + D12 X)P™ (C1P + D12 X)T) < v,
P = 0.

This problem is not convex. Note that
trace((C1 P + Do X)P™*(C,1 P + D X)) <~, P30

is equivalent to

A Ci1P+ D12 X

(CLP + DipX)T P =0, trace(Z) <.

Therefore, problem (7) is equivalent to

min  trace(Z)

P,X.Z
subject to (AP 4 BoX) + (AP + BoX)" + BB <0, (10)
Z CiP+ DiX|
(C1P 4 Do X)T P ’

and the optimal H, optimal state feedback gain is recovered by Dy = X P~1.
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4.2 H, optimal control

Here, we aim to minimize ||T,y||co in (7). According to Lemma 3, problem (7) is equivalent to

min 7y
X, Dy
(A+ BaDp)"X + X(A+ BeDy) XBy (Cy+ D12Dy)T
subject to Bl X —I DT =<0, (11)
C1+ D12Dy, D1y —I
X > 0.

This is equivalent to

min
P,Dy,y
P(A+ ByDy)" + (A+ ByDy)P By P(Cy+ DyaDy)T
subject to BT —I DT, =<0, (12)

(01 + Dlng)P D11 —’}/I
P >0,

which is clearly equivalent to

min 7y
P)Y,y
(AP 4+ BoY)T + (AP + ByY) By (C1+DpY)T
subject to 31T —~I DlTl <0, (13)
(Cl + D12Y) D11 —"}/I
P 0.

The optimal H, state feedback gain can be recovered by Dy = Y P~1.

5 Hsy and H, optimal control: output feedback

LMI formulations can be derived for the general Hy and Hoo optimal control (4), where the change
of variables become much more involved; see [4, Chapter 4] for details. The interested reader is also
encouraged to read classical work [2,3]. These problems can be solved via Riccati equations (see [1],
and [5, Chpater 14 and Chapter 17]), where some technical conditions are required on the system
dynamics. Please refer to [2] for a nice comparsion.
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