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Learning goals:

1. Hardy Spaces H2 and H∞;

2. H2 and H∞ norms and their state-space computations;

3. H2 and H∞ optimal control: state feedback case

4. H2 and H∞ optimal control: output feedback case

1 Recap

The problem setup is as follows: we consider continuous-time linear time-invariant (LTI) systems of
the form

ẋ = Ax+B1w +B2u,

z = C1x+D11w +D12u,

y = C2x+D21w +D22u,

(1)

where x ∈ Rn, u ∈ Rm, w ∈ Rd, y ∈ Rp, z ∈ Rq are the state vector, control action, external
disturbance, measurement, and regulated output, respectively. Consider a dynamic output feedback
controller u = Ky, where K has a state-space realization

ξ̇ = Akξ +Bky,

u = Ckξ +Dky,
(2)

where ξ ∈ Rnk is the internal state of controller K.

We have introduced the following optimal control problem

min
K

‖P11 + P12K(I −P22K)−1P21‖

subject to K ∈ Cstab,
(3)

and its corresponding state-space version (where we have assumed that D22 = 0) is

min
Ak,Bk,Ck,Dk

∥∥∥∥∥∥
 A+B2DkC2 B2Ck B1 +B2DkD21

BkC2 Ak BkD21

C1 +D12DkC2 D12Ck D11 +D12DkD21

∥∥∥∥∥∥
subject to

[
A+B2DkC2 B2Ck

BkC2 Ak

]
is stable.

(4)
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Both (3) and (4) are non-convex in its present form. Note that the formulation (3) or (4) is very
general, including LQR/LQG/H2/H∞ optimal control [5].

In Lectures 2 and 3, we have presented convex reformulation of (3) by introducing a suitable change
of variables (i.e., Youla, IOP and SLP) in the frequency domain. In this lecture, we will take a
closer look at the cost function and its state-space solution via solving linear matrix inequalities in
both state feedback and output feedback cases.

2 Hardy Spaces H2 and H∞

The presentation of this section largely follows [5, Section 4.3]. Let S ⊂ C be an open set, and let
f(s) be a complex valued function defined on S:

f(s) : S → C.

Then, f(s) is said to be analytic at a point z0 in S if it is differentiable at z0 and also at each point
in some neighborhood of z0. The following limit exists

lim
z→z0

f(z)− f(z0)

z − z0
.

In fact, if f(s) is analytic at z0 then f has continuous derivatives of all orders at z0. Hence, a
function f(s) analytic at z0 has a power serices representation at z0, i.e.,

f(s) = c0 +

∞∑
n=1

cn(s− z0)n,

converges for some neighborhood of z0. The converse is also true, i.e., if a function has a power
series representation at z0, then it is analytic at z0.

A function f(s) is said to be analytic in S if it has a derivative or is analytic at each point of S. A
matrix valued function is analytic in S if every element of the matrix is analytic in S. For example,
all real rational stable transfer matrices are analytic in the right-half plane and e−s is analytic
everywhere. A well-known property of the analytic functions is the so-called Maximum Modulus
Theorem.

Theorem 1. If f(s) is defined and continuous on a closed-bounded set S and analytic on the interior
of S, then the maximum of |f(s)| on S is attained on the boundary of S, i.e.,

max
s∈S
|f(s)| = max

s∈∂S
|f(s)|,

where ∂S denotes the boundary of S.

Next we consider some frequently used complex (matrix) function spaces.

1. L2(jR) Space: L2(jR) is a Hilbert space of matrix-valued function on jR and consists of all
complex matrix functions F such that the integral below is bounded, i.e.,∫ ∞

−∞
Trace [F ∗(jω)F (jω)] dω <∞.
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The inner product for this Hilbert space is defined as

〈F,G〉 =
1

2π

∫ ∞
−∞

Trace [F ∗(jω)G(jω)] dω <∞,

for F,G ∈ L2, and the inner product induced norm is given by

‖F‖2 :=
√
〈F, F 〉.

All real rational strictly proper transfer functions with no poles on the imaginary axis form a
subspace of L2. which is denoted by RL2.

2. H2 Space: H2 is subspace of L2 with matrix functions F (s) analytic in Re(s) > 0 (open
right-half plane). The corresponding norm is defined as

‖F‖22 := sup
σ>0

{
1

2π

∫ ∞
−∞

Trace [F ∗(σ + jω)F (σ + jω)] dω

}
.

It can be shown that

‖F‖22 =
1

2π

∫ ∞
−∞

Trace [F ∗(jω)F (jω)] dω.

The real rational subspace of H2, which consists of all strictly proper and real rational stable
transfer matrices, is denoted by RH2.

3. L∞(jR) Space: L∞(jR) or simply L∞ is a Banach space of matrix-valued complex function
that are bounded on jR, with norm defined as

‖F‖∞ := sup
ω∈R

σmax[F (jω)].

The real rational subspace of L∞, denoted by RL∞, consists of all proper and real rational
transfer matrices with no poles on imaginary axix.

4. H∞ Space: H∞ is a subspace of L∞ with functions that are analytic and bounded in the
open right-half plane. The H∞ norm is defined as

‖F‖∞ := sup
Re(s)>0

σmax(F (s)) = sup
ω∈R

σmax(F (jω)).

The second equality can be regarded as a generalization of the maximum modulus theorem for
matrix functions. The real rational subspace of H∞ is denoted by RH∞, which consists of all
proper and real rational stable transfer matrices.

3 Computation of H2 and H∞ norms

In this lecture, we mainly consider the norm in the space RH2 and RH∞. Given a stable transfer
matrix T(s) ∈ RH2 (or T(s) ∈ RH∞), the norm ‖T(s)‖2 (or ‖T(s)‖∞) can, in principle, be
computed from its definition, it is useful in many applications to have alternative characterizations
and to take advantage of the state space representations of G(s).

Lemma 1. Consider a transfer matrix

T(s) =

[
A B
C 0

]
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with A stable. Then, we have

‖T‖2H2
= Trace(BTQB), where ATQ+QA+ CTC = 0,

‖T‖2H2
= Trace(CPCT), where AP + PAT +BBT = 0.

where Q and P are observability and controllability Gramians.

Interpretation of the H2 norm of stable transfer matrices:

• Deterministic interpretation: Let ek be the standard unit vector and denote the output

ẋ = Ax, z = Cx, x(0) = Bek,

by zk(t). Note that this is the response to an impulse input to the channel k. Since zk(t) =
CeAtBek, we have ∫ ∞

0

zk(t)Tzk(t)dt = eTk

(∫ ∞
0

BTeA
TtCTCeAtBdt

)
ek.

Therefore, Squared H2 norm is energy sum of transients of output responses:

m∑
k=1

∫ ∞
0

zk(t)Tzk(t)dt =

∫ ∞
0

Trace
(
(CeAtB)T(CeAtB)

)
dt = ‖T‖2H2

.

• Stochastic interpretation: If w is white noise and ẋ = Ax+Bw, z = Cx then

lim
t→∞

E
(
z(t)Tz(t)

)
= ‖T‖2H2

The squared H2-norm equals the asymptotic variance of output.

The H2 of stable transfer matrices can be quantified by the following linear matrix inequalities
(LMIs).

Lemma 2. Consider a transfer matrix

T(s) =

[
A B
C 0

]
with A stable. Then, we have ‖T(s)‖2 < γ if and only if there exists P � 0 such that

trace(CPCT) < γ2, and AP + PAT +BBT ≺ 0,

and there exists Q � 0 such that

trace(BTQB) < γ2, and ATQ+QA+ CTC ≺ 0.

Proof. ⇒: if ‖T(s)‖2 < γ, then we have

Trace(CP0C
T) < γ2, where AP0 + P0A

T +BBT = 0. (5)

Now we consider a perturbed Lyapunov equation

APε + PεA
T +BBT + εI = 0,
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which has a unique solution Pε � 0,∀ε > 0 since A is stable. Note that every element of Pε is a
continuous function of ε > 0, and

lim
ε→0

Pε = P0.

Since Trace(CP0C
T) < γ2, there exists a ε > 0 such that Trace(CPεC

T) < γ2 and

APε + PεA
T +BBT = −εI ≺ 0.

⇐ We need to prove (5). We first have

AP + PAT +BBT − (AP0 + P0A
T +BBT) = A(P − P0) + (P − P0)AT ≺ 0.

This indicates that P − P0 � 0 (since A is stable). Then

trace(CP0C
T) < trace(CPCT) < γ2.

We have proved that ‖G(s)‖2 < γ.

For the computation of H∞ norm, we have the following KYP lemma.

Lemma 3. Consider a transfer matrix

T(s) =

[
A B
C D

]
with A stable. Then, the following statements are equivalent:

• ‖T(s)‖∞ < γ;

• T∗(jω)T(jω) ≺ γ2I, ∀ω ∈ R.

• We have

sup
0<‖w‖2<1

‖T(s)w‖2
‖w‖2

< γ

• The following LMI is feasible.ATX +XA XB CT

BTX −γI DT

C D −γI

 ≺ 0, X � 0. (6)

We note the LMI (6) has multiple equivalent forms:ATX +XA XB CT

BTX −γ2I DT

C D −I

 ≺ 0, X � 0.

(obtained by left- and right- multiplied by diag(γ
1
2 I, γ

1
2 I, γ−

1
2 I)) and (by applying the Schur com-

plement) [
ATX +XA+ CTC XB + CTD

BTX +DTC DTD − γ2I

]
≺ 0, X � 0,

and

ATX +XA+ CTC − (XB + CTD)(DTD − γ2I)−1(BTX +DTC) ≺ 0, X � 0, σmax(D) < γ.

which is a Riccati inequality.
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4 H2 and H∞ optimal control: state feedback

Here, we consider static state feedback u = Dkx, and the controller synthesis problem (4) becomes

min
Dk

∥∥∥∥[ A+B2Dk B1

C1 +D12Dk D11

]∥∥∥∥
subject to A+B2Dk is stable.

(7)

4.1 H2 optimal control

When we aim to minimize the H2 norm of the closed-loop system Tzw, we need to assume D11 = 0
(otherwise Tzw is not strictly proper and ‖Tzw‖2 is not finite). According to Lemma 2, it is easy
to know that (7) is equivalent to

min
P,Dk,γ

γ

subject to (A+B2Dk)P + P (A+B2Dk)T +B1B
T
1 ≺ 0,

trace((C1 +D12Dk)P (C1 +D12Dk)T) < γ,

P � 0.

(8)

By introducing X = DkP , this is equivalent to

min
P,X,γ

γ

subject to (AP +B2X) + (AP +B2X)T +B1B
T
1 ≺ 0,

trace((C1P +D12X)P−1(C1P +D12X)T) < γ,

P � 0.

(9)

This problem is not convex. Note that

trace((C1P +D12X)P−1(C1P +D12X)T) < γ, P � 0

is equivalent to [
Z C1P +D12X

(C1P +D12X)T P

]
� 0, trace(Z) < γ.

Therefore, problem (7) is equivalent to

min
P,X,Z

trace(Z)

subject to (AP +B2X) + (AP +B2X)T +B1B
T
1 ≺ 0,[

Z C1P +D12X
(C1P +D12X)T P

]
� 0,

(10)

and the optimal H2 optimal state feedback gain is recovered by Dk = XP−1.
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4.2 H∞ optimal control

Here, we aim to minimize ‖Tzw‖∞ in (7). According to Lemma 3, problem (7) is equivalent to

min
X,Dk,γ

γ

subject to

(A+B2Dk)TX +X(A+B2Dk) XB1 (C1 +D12Dk)T

BT
1X −γI DT

11

C1 +D12Dk D11 −γI

 ≺ 0,

X � 0.

(11)

This is equivalent to

min
P,Dk,γ

γ

subject to

P (A+B2Dk)T + (A+B2Dk)P B1 P (C1 +D12Dk)T

BT
1 −γI DT

11

(C1 +D12Dk)P D11 −γI

 ≺ 0,

P � 0,

(12)

which is clearly equivalent to

min
P,Y,γ

γ

subject to

(AP +B2Y )T + (AP +B2Y ) B1 (C1 +D12Y )T

BT
1 −γI DT

11

(C1 +D12Y ) D11 −γI

 ≺ 0,

P � 0.

(13)

The optimal H∞ state feedback gain can be recovered by Dk = Y P−1.

5 H2 and H∞ optimal control: output feedback

LMI formulations can be derived for the general H2 and H∞ optimal control (4), where the change
of variables become much more involved; see [4, Chapter 4] for details. The interested reader is also
encouraged to read classical work [2,3]. These problems can be solved via Riccati equations (see [1],
and [5, Chpater 14 and Chapter 17]), where some technical conditions are required on the system
dynamics. Please refer to [2] for a nice comparsion.
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