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Learning goals:

1. Distributed control in static state feedback and output dynamic feedback;

2. Quadratic Invariance (QI) for sparsity constraints and delay constraints;

3. QI in finite horizon, and gradient dominance;

4. Sparsity Invariance (SI) in both static feedback and dynamic feedback;

1 Recap

The problem setup is as follows: we consider continuous-time linear time-invariant (LTI) systems of
the form

ẋ = Ax+B1w +B2u,

z = C1x+D11w +D12u,

y = C2x+D21w +D22u,

(1)

where x ∈ Rn, u ∈ Rm, w ∈ Rd, y ∈ Rp, z ∈ Rq are the state vector, control action, external
disturbance, measurement, and regulated output, respectively. Consider a dynamic output feedback
controller u = Ky, where K has a state-space realization

ξ̇ = Akξ +Bky,

u = Ckξ +Dky,
(2)

where ξ ∈ Rnk is the internal state of controller K.

We have introduced the following optimal control problem

min
K

‖P11 + P12K(I −P22K)−1P21‖

subject to K ∈ Cstab,
(3)

and its corresponding state-space version (where we have assumed that D22 = 0) is

min
Ak,Bk,Ck,Dk

∥∥∥∥∥∥
 A+B2DkC2 B2Ck B1 +B2DkD21

BkC2 Ak BkD21

C1 +D12DkC2 D12Ck D11 +D12DkD21

∥∥∥∥∥∥
subject to

[
A+B2DkC2 B2Ck

BkC2 Ak

]
is stable.

(4)

1
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Both (3) and (4) are non-convex in its present form. Note that the formulation (3) or (4) is very
general, including LQR/LQG/H2/H∞ optimal control [8].

We have shown that (3) or (4) is equivalent to

• An convex problem in Youla parameterization:

min
Q

‖T11 + T12QT21‖

subject to Q ∈ RH∞.
(5)

where T11 = P11 + P12VrMlP21,T12 = −P12Mr, and T21 = MlP21. The controller is
recovered by K = (Vr −MrQ)(Ur −NrQ)−1.

• An convex problem in the input-output parameterization

min
Y,U,W,Z

‖P11 + P12UP21‖

subject to
[
I −P22

] [Y W
U Z

]
=
[
I 0

]
,[

Y W
U Z

] [
−P22

I

]
=

[
0
I

]
,

Y,U,W,Z ∈ RH∞.

(6)

The optimal controller is recovered by K = UY−1.

• An convex problem in the system-level parameterization

min
R,M,N,L

∥∥∥∥[C1 D12

] [R N
M L

] [
B1

D21

]
+D11

∥∥∥∥
subject to

[
sI −A −B2

] [R N
M L

]
=
[
I 0

]
,[

R N
M L

] [
sI −A
−C2

]
=

[
I
0

]
,

R,M,N ∈ RH∞, L ∈ RH∞.

(7)

The controller is recovered by K = L−MR−1N.

In addition, we have shown that the state-feedback H2 optimal control is equivalent to

min
P,X,Z

trace(Z)

subject to (AP +B2X) + (AP +B2X)T +B1B
T
1 ≺ 0,[

Z C1P +D12X
(C1P +D12X)T P

]
� 0,

(8)

and the optimal H2 optimal state feedback gain is recovered by Dk = XP−1.

In this lecture, we focus on the classical distributed control problem, where a subspace constraint is
imposed on the controller K. It is known that the notion of Quadratic Invariance [6] allows deriving
an equivalent convex formulation. More recently, a notion of Sparsity Invariance [3] generalizes the
QI and allows to derive convex restriction of the largest class of distributed control problems with
sparsity constraints. We also talk about Youla parameterization in the finite horizon, and prove a
gradient dominance condition for distributed control problems with QI constraints [1].
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2 Classical distributed control and Quadratic Invariance

A canonical problem one would like to solve in distributed control is to minimize a norm of the
closed-loop map subject to a subspace constraint as follows

min
K

‖P11 + P12K(I −P22K)−1P21‖

subject to K ∈ Cstab,
K ∈ S,

(9)

where S is a subspace demoting sparsity or delay constraints on the controller. After applying the
change of variables in Youla, input-output, or system-level parameterization, we need to introduce
the following non-convex constraint on the decision variables

(Vr −MrQ)(Ur −NrQ)−1 ∈ S,
UY−1 ∈ S,

L−MR−1N ∈ S.

In this section, we introduce the notion of Quadratic Invariance [4] to deal with the constraints
above. When S represents a sparsity pattern, we will introduce a generalize notion of Sparsity
Invariance [3] in the next section.

2.1 Quadratic Invariance

Definition 1 (Quadratic Invariance (QI) [6]). Given a plant P22 and a subspace S. The subspace
S is called quadratically invariant under P22 if

KP22K ∈ S, ∀K ∈ S.

The subspace S can be used to represent a sparsity pattern or a delay pattern. Note that QI is an
algebraic condition, which is independent of how to parameterize the set of stabilizing controllers.
It is not suprising that QI can be combined with either Youla parameterization, SLP or IOP. In
particular, under the notion of QI, we have the following result:

Theorem 1 (QI with the IOP). If S is QI under P22, then

1. We have

Cstab ∩ S = {K =UY−1 | Y,U,W,Z are in the affine subspace of (6),U ∈ S}. (10)

2. Problem (9) can be equivalently formulated as a convex problem

min
Y,U,W,Z

‖P11 + P12UP21‖

subject to affine constraint in (6),

U ∈ S.

(11)

Proof. It is easy to see that the second point directly follows the result in point 1. Here we prove
the equivalence in (10).
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⇒: Given a controller K ∈ Cstab, we have already proved that there exist Y,U,W,Z satisfying the
affine constraints in (6) and K = UY−1. Considering the affine constraint in (6), we have

Y −P22U = I ⇒ Y = I + P22U.

Then, we have
K = U(I + P22U)−1 ⇒ U = K(I −P22K)−1.

According to the Cayley-Hamilton Theorem, we have

(I −P22K)−1 = α0 + α1(I −P22K) + . . .+ αm−1(I −P22K)m−1,

for some transfer functions αk, k = 1, . . . ,m− 1. Considering the QI condition, we have

K(I −P22K) ∈ S, K(I −P22K)k ∈ S, k = 0, . . . ,m− 1.

Thus, U = K(I −P22K)−1 ∈ S.

⇐: We have proved that given any Y,U,W,Z in the affine subspace of (6), the controller K =
UY−1 ∈ Cstab.

Now, it is easy to see that K = U(I + P22U)−1. If U ∈ S and S is QI with repsect to P22, it is
similar to derive

K = U(I + P22U)−1 ∈ S.
This completes the proof.

The result in Theorem 1 shows that under the QI condition, the constraint on the controller K can
be equivalently translated to the decision variable U. Considering the equivalence among Youla,
SLP and IOP [7], we have the following results.

Corollary 1 (QI with the SLP). If S is QI under P22, then

1. We have

Cstab ∩ S = {K = L−MR−1N | R, M, N, L are in the affine subspace (12),L ∈ S}.

2. Problem (9) can be equivalently formulated as a convex problem

min
R,M,N,L

∥∥∥∥[C1 D12

] [R N
M L

] [
B1

D21

]
+D11

∥∥∥∥
subject to affine constraint (12),

L ∈ S.

(12)

Corollary 2 (QI with Youla). If S is QI under P22, then

1. We have

Cstab ∩ S = {K = (Vr −MrQ)(Ur −NrQ)−1 | (Vr −MrQ)Ml ∈ S,Q ∈ RH∞}.

2. Problem (9) can be equivalently formulated as a convex problem

min
Q

‖T11 + T12QT21‖

subject to (Vr −MrQ)Ml ∈ S,
Q ∈ RH∞.

(13)

There are some typical examples of QI conditions; see [6] for details. When S is a sparsity constraint,
we may need not to know the exact dynamic P22 to check whether the QI holds.
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2.2 Special QI cases: Delay patterns and sparsity patterns

Following [4], we discuss some typical QI constraint: including delay patterns, symmetric constraints,
and sparsity patterns.

Distributed control with delays: Suppose there are n subsystems with transmission delay t ≥ 0,
propagation delay p ≥ 0, and computational delay c ≥ 0. We define the following allowable set of
controllers: K ∈ S if and only if

K =


DcH11 Dt+cH12 . . . D(n−1)t+cH1n

Dt+cH21 DcH22 . . . D(n−2)t+cH2n

...
...

. . .
...

D(n−1)t+cHn1 D(n−2)t+cHn2 . . . DcHnn


where D is a delay operator on L2e and Hij ∈ Rp are transfer functions of appropriate dimensions.
The corresponding system G is given by

G =


A11 DpA12 . . . D(n−1)pA1n

DpA21 A22 . . . D(n−2)pA2n

...
...

. . .
...

D(n−1)pAn1 D(n−2)pAn2 . . . Ann


for some Aij ∈ Rsp. Then, we have the following result

Theorem 2 ([4]). Suppose that G and S are defined as above, then S is QI with respect to G if
and only if

t ≤ p+
1

n− 1
.

The proof is based on direct verification; see [4, Thoerem 22] for details.

A nice physical interpretation of Theorem 2 is that the constraint is QI if the controllers can commu-
nicate faster than the dynamics propagate, i.e., t ≤ p. In this case, the optimal distributed controller
may be found via convex programming. Note that this interpretation has been widely used in the
literature.

Symmetric constraints: When the plant is symmetric, the constraint of symmetric controllers is
naturally QI. In particular, we have the following result:

Theorem 3 ([4]). Suppose Hn = {A ∈ Cn×n | A = A∗}, and S = {K ∈ Rp | K(jω) ∈ Hn,∀ω ∈ R}.
If G ∈ Rp with G(jω) ∈ Hn, then S is QI with respect to G.

Sparsity constraints: Many problems in distributed control can be expressed in the form of
problem 9, where S is the set of controllers that satisfy a specified sparsity constraint. Here, we
provide a computational test for quadratic invariance when the subspace S is defined by sparsity
constraints. We first introduce some notation.

Suppose Abin ∈ {0, 1}m×n is a binary matrix. We define the subspace

Sparse(Abin) = {B ∈ Rp | Bij(ω) = 0, for all, i, j, such that Abin
ij = 0, for almost all ω ∈ R}.
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Also, if B ∈ Rp, let Abin = Pattern(B) be the binary matrix given by

Abin
ij =

{
0, if Bij(jω) = 0 for almost all ω ∈ R,
1, otherwise.

The following result provides a computational test for quadratic invariance when S is defined by
sparsity constraints.

Theorem 4 ([4]). Suppose S = Sparse(Kbin), and let Gbin = Pattern(G). Then, the following
condition are equivalent:

1. S is QI with respect to G.

2. KGJ ∈ S,∀K,J ∈ S.

3. Kbin
ki G

bin
ij K

bin
jl (1−Kbin

kl ) = 0,∀i, l = 1, . . . , ny and j, k = 1, . . . , nu.

Here, we show a negative result: perfectly decentralized control is never QI except for the trivial
case where no subsystem affects any other.

Corollary 3. Suppose there exists i, j with i 6= j such that Gij 6= 0. Suppose Kbin is diagonal and
S = Sparse(Kbin). Then, S is not QI under G.

2.3 Non-QI cases

Consider a sparsity pattern Kbin and a subspace S = Sparse(KBin). Given a plant G, if S is not
QI with respect to G, i.e.,

KbinGbinKbin � Kbin.

In [5], the authors proposed the closest subset and superset of S to make it QI

• Closest Superset: we aim to solve the following binary optimization problem

min
Z

N (Z)

subject to ZGbinZ ≤ Z
Kbin ≤ Z,

where Z is a binary matrix and N (Z) denotes the number of non-zero elements in Z. Even
though this is nonlinear integer program, it is proved in [5] that this problem adimits a poly-
nomial time solution as follow

Z0 = Kbin

Zm+1 = Zm + ZmG
binZm, m ≥ 0

which will converge within finite iterations.

• Closet subset: we aim to solve the following binary optimization problem

max
Z

N (Z)

subject to ZGbinZ ≤ Z
Z ≤ Kbin.

There is no known efficient algorithms to solve the problem above.
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Here, we present a dual approach to approximate the plant dynamics G, which can be combined
with robust control to provide suboptimality guarantee.

min
G0

‖G0 −G‖∞

subject to Kbin · Pattern(G0) ·Kbin ≤ Kbin.
(14)

We note that (14) is equivalent to

max
G0

N (G0)

subject to G0 ≤ Pattern(G)

KbinG0K
bin ≤ Kbin.

(15)

Unlike the nearest QI subset approach, the constraint in (15) is linear in the decision version G0,
and Problem (15) admits a globally optimal solution.

3 Distributed control in finite horizon and Gradient Domi-
nance

Here, we discuss a result of gradient dominance for distributed control in finite horizon with QI
constraints. The presentation of this section largely follows [1].

3.1 Problem setup

We consider time-varying linear systems in discrete-time

xt+1 = Atxt +Btut + wt ,

yt = Ctxt + vt ,
(16)

where xt ∈ Rn is the system state at time t affected by process noise wt ∼ Dw with x0 = µ0 + δ0,
δ0 ∼ Dδ0 , yt ∈ Rp is the observed output at time t affected by measurement noise vt ∼ Dv, and
ut ∈ Rm is the control input at time t to be designed. We assume that the distributions Dw,Dδ0
Dv are bounded, have zero mean and variances of Σw,Σδ0 ,Σv � 0 respectively. We consider the
evolution of (16) in finite-horizon for t = 0, . . . N , where N ∈ N. By defining the matrices

A = blkdg(A0, . . . , AN ), B=

[
blkdg(B0, . . . , BN−1)

0n×mN

]
, C = blkdg(C0, . . . , CN ) ,

and the vectors
x =

[
xT0 . . . xTN

]T
,

y =
[
yT0 . . . yTN

]T
,

u =
[
uT0 . . . uTN−1

]T
,

w =
[
xT0 wT

0 . . . wT
N−1

]T
,

v =
[
vT0 . . . vTN

]T
,

and the block-down shift matrix

Z =

[
01×N 0
IN 0N×1

]
⊗ In ,
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we can write the system (16) compactly as x = ZAx + ZBu + w, y = Cx + v, leading to

x = P11w + P12u , y = Cx + v, (17)

where P11 = (I − ZA)−1 and P12 = (I − ZA)−1ZB. We consider linear output-feedback policies

ut = Kt,0y0 +Kt,1y1,+ . . . ,Kt,tyt, t = 0, 1, . . . , N − 1.

More compactly

u = Ky, K ∈ K , (18)

where K is a subspace in RmN×p(N+1) that 1) ensures causality of K by setting to 0 those entries that
correspond to future outputs, 2) can enforce a time-varying spatio-temporal information structure
for distributed control.

3.2 Distributed control in finite horizon

The distributed Linear Quadratic (LQ) optimal control problem in finite-horizon is:

min
K∈K

J(K) , (19)

where the cost J(K) is defined as

J(K) :=Ew,v

[
N−1∑
t=0

(
yTt Mtyt+u

T
t Rtut

)
+ yTNMNyN

]
, (20)

and Mt � 0 and Rt � 0 for every t. We denote the optimal value of problem LQK as J?. By rear-
ranging (17)-(18), it can be observed that J(K) is in general a non-convex multivariate polynomial
in the entries of K. Note that LQK is a constrained problem over the subspace K; it is convenient
to observe that LQK is actually equivalent to an unconstrained problem.

Lemma 1. Let d ∈ N be the dimension of K, and the columns of P ∈ RmpN(N+1)×d be a basis of
the subspace {vec(K)| ∀K ∈ K}. Define the function f : Rd → R as f(z) := J(vec−1(Pz)). Then,
LQK is equivalent to the unconstrained problem1

min
z∈Rd

f(z) . (21)

Proof. Since the columns of P are a basis of K, we have 1) ∀K ∈ K, ∃z ∈ Rd such that vec(K) = Pz
and 2) ∀z ∈ Rd, vec−1(Pz) ∈ K. Hence, (21) is equivalent to LQK.

The function f(z) is generally a non-convex multivariate polynomial in z ∈ Rd which may possess
multiple local-minima, thus preventing global convergence of model-free algorithms. Fortunately,
f(z) admits a unique global minimum if it is gradient dominated i.e.,

µ(f(z)− J?) ≤ ‖∇f(z)‖22 , ∀z ∈ Rd

for some µ > 0.

1Throughout this lecture, J(K) is reserved for the LQ cost function in (20) and f(z) is reserved for the equivalent
cost function f(z) := J(vec−1(Pz)).
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3.3 QI and gradient dominance

It is well-known since the work of [4] that problem (19) can be equivalently transformed into a
strongly convex program if and only if QI holds, that is

KCP12K ∈ K, ∀K ∈ K . (22)

Here, we prove a local gradient dominance property for 1) the class of all QI instances of (19) 2)
other non-QI instances of (19).

Theorem 5 ( [1]). Let K be QI with respect to CP12, i.e., (22) holds. For any δ > 0 and initial value
z0 ∈ Rd, define the sublevel set G10δ−1 = {z ∈ Rd | f(z)− J? ≤ 10δ−1∆0}, where ∆0 := f(z0)− J?
is the initial optimality gap. Then, the following statements hold.

1. G10δ−1 is compact.

2. f(z) has a unique stationary point.

3. f(z) admits a local gradient dominance constant µδ > 0 over G10δ−1 , that is

µδ(f(z)− J?) ≤ ‖∇f(z)‖22 , ∀z ∈ G10δ−1 . (23)

The notion of QI guarantees existence of a gradient dominance constant µδ which is “global” on
G10δ−1 , for any δ > 0. By inspection of (23), for every δ > 0, the only stationary point contained in
G10δ−1 is the global optimum, since whenever ∇f(z) = 0, we have f(z) = J?.

Proof. to add

4 Sparsity Invariance

The QI condition put a strict requirement on the subspace S. If the subspace S does not satisfy the
QI condition, then none of the formulations (11), (12), (13) can be used to solve the problem (9).

In this section, we introduce a new notion of Sparsity Invariance (SI) [3] that always leads to a
convex restriction of (9). This SI notion aims to deal with sparsity subspace S only, and can be
viewed as a generalization of the QI notion; see [3] for the output feedback case, and [2] for the
static feedback case.
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