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Linear time-invariant systems

» State-space model

T = Az + Biw + Bau,
z = Ciz + Dijjw + Diou, (1)
y = Cox + Doyw + Daou,

where € R",u € R™,w € R% y € RP, 2 € RY are the state vector,
control action, external disturbance, measurement, and regulated
output, respectively.

» Frequency-domain model

A| B B
P P
P—|CiDn Dn | =[5 22
Cy | Da1 Do

where P;; = C;(sI — A)"'B;j + D;j. We refer to P as the
open-loop plant model.
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LTI dynamic controller

» Frequency-domain model

u = Ky,
> State-space realization
¢ = Ar& + By, )
u = Cr€ + Dyy,

where £ € R™ is the internal state of controller K. We have

K= Ck(SI — Ak)_lBk + Dy.

» Example: static output feedback controller K = Dy, and
observer-based dynamic controller

&= Ai + Bu+ L(C# —y) | Ay =A+BF+LC By=-L
u=Fi Cp=F Dy, = 0.
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Closed-loop system

» Interconnected system:

z w
< Py Py
Py Poof
y u
» K

Figure: Interconnection of the plant P and controller K
We focus on input-output behaviors. Recall that
i = Az + Byw + Bau,
z=Ciz + Djyw + Dyou,
y = Cox + Da1w + Daau,

> Very general set-up: including LQR/LQG/H2/H o control
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Optimal control

» Interconnected system:

Z
< Py

Py

>
-

K

Figure: Interconnection of the plant P and controller K

» Informally speaking, we aim to find a controller K such that the
closed-loop system is internally stable and achieves/minimizes

desired performance specification

i P, K
min  f(P,K)
subject to K internally stabilizes P.

where f(P,K) defines a certain performance index.
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Frequency-domain formulation

By (1), we have
z =Py 1w+ Pjou,

y = Paw + Poou

Considering the controller u = Ky, some simple algebra leads to
z = (P11 + PK( — PypK) 'Py)w. (4)
Thus, the closed-loop response from w to z is
T.., = P11 + P12K(I — P52 K) ' Poy.
In (3), the cost function is typically chosen as
f(P,K) = ||P1; + P1oK(I — PyoK) Py,
where || - || can be chosen the Hy or H, norm.
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Optimal control

» Optimal control formulation in frequency domain
HlIéIl HP11 + P12K(I — P22K)71P21”

subject to K internally stabilizes P.
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State-space formulation

» Combining (1) with (2) leads to
il = [0 al [ W10 e
0[5 &0 B3 o
z=[Cy 0] m +[0 D) m + Diyw (5¢)

3
» From (5b), we have

[ e I

» This equation has a unique solution if and only if the following

matrix
I —Doo
—Dy, I
is invertible, which is equivalent to that I — Doy Dy, or I — D Do is
invertible
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Well-posedness of feedback systems

Definition
A feedback system is said to be well-posed if the solutions u(t) and y(t)
are unique, given any initial condition z(0) and £(0) and w(t).

Z w
) P11 Piof®
Py Py B
y u
> K

Figure: Interconnection of the plant P and controller K

Lemma
The system above is well-posed if and only if I — Dy Dy, is invertible.
This is equivalent to T — Pa3(00)K(00) is invertible.
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State-space formulation

» It is assumed that the plant is strictly proper, i.e. Dy = 0.
» Now, (6) becomes

yl _ | C2 0] [«] Doy
[u} B [chz Ck_ {5 * [DkDm] v

Substituting this into (7) leads to

i x _ A+ ByD;.Cy ByCh x] n _Bl + By Dy Doy w (73)
dt |§ By Cs A | €] | BrDa ’

X

£

This is a state-space version of the closed-loop response from w to z. We
can write

z=[Cy + D12DyCo  D12Cy] ] + (D11 + D12DyDar)w. (7b)

A+ ByD.Co By, B1+ BsDy. Doy
T, = B C, Ay, By Doy
C1 + D12DxCy  D13Cy | D1y + D12Dy Dy
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State-space formulation

> Case 1: Static output feedback K = Dj. The closed-loop matrix is
A+ By;D;C5, and we have

_ [ A+ ByDyCs | Bi+ ByDyDy
C1+ D12DyCy | D11+ D12Dy Dy |

TZ’[U

» Case 2, static state feedback C; = I. The closed-loop matrix is
A+ ByDy,
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Optimal control

» Optimal control formulation in frequency domain
mlén HPll + PlzK(I — PQQK)71P21||
subject to K internally stabilizes P.
» Optimal control formulation in state-space domain

A+ ByDCy  ByCy | B+ B2DypDan
B Bmiél b Bi.Cy Ay, By Day
R C1+ D12DCy  D12Cy | D1y + D12Dy Doy

subject to K internally stabilizes P.
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Internal stability

Definition

The system in Fig. 1 is internally stable if it is well-posed, and the states
(x(t),£(t)) converge to zero as t — oo for all initial states x(0), £(0)
when w(t) = 0, Vt.

Lemma
The system in Fig 3 is internally stable if and only if

A L A+B2Dk02 BQCk

is stable.
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Internal stability

The set of all stabilizing controllers is defined as
Cstab := {K | K internally stabilizes P}.

Then, we have

. s [A4+ByDiCy ByCly| .
Cstab = {K | A= { B,.Cy A, ] is stable} ,

where K = Cy(zI — Ay) 1By + Dy.. Unfortunately, the stability
condition on A in (8) is still non-convex in terms of the parameters
(Aka Bk7 Cka Dk)

(8)
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Summary

» The optimal controller synthesis problem (3) can be precisely written
as
mlén HPll + Png(I — P22K)71P21||

subject to K € Cqtap-

» The state-space version is

By + ByDy Doy

A+ ByD,;.Cy ByC,,

B Bmicr} 5 B.Cy Ay By D21
e Cy + D12D.Cy D13Cy | Diy + D1 Dy Doy
subject to A JrBBZCDkCQ leck] is stable.

kC2 k

» These two formulations are both non-convex in their present forms.
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Other topics

» Performance specification: Hy and H., norms of transfer matrices
and their computations via convex optimization (LMls).

» Convex reformulation in the frequency domain (Youla
parameterization, system-level synthesis, and closed-loop
parameterization).

» Convex reformulation in the state-space domain (convex
optimization via LMls).

» Analytical solutions via solving Algebraic Riccati Equation (ARE).

» Distributed control by introducing a subspace constraint on the
controller K € S (Quadratic Invariance, Sparsity Invariance, etc.).
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