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Linear time-invariant systems

I State-space model

ẋ = Ax+B1w +B2u,

z = C1x+D11w +D12u,

y = C2x+D21w +D22u,

(1)

where x ∈ Rn, u ∈ Rm, w ∈ Rd, y ∈ Rp, z ∈ Rq are the state vector,
control action, external disturbance, measurement, and regulated
output, respectively.

I Dynamic controller
ξ̇ = Akξ +Bky,

u = Ckξ +Dky,
(2)

where ξ ∈ Rnk is the internal state of the controller.
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Frequency domain

I Plant model

P =

 A B1 B2

C1 D11 D12

C2 D21 D22

 =

[
P11 P12

P21 P22

]
,

where Pij = Ci(sI −A)−1Bj +Dij . We refer to P as the
open-loop plant model.

I Controller u = Ky, where K = Ck(sI −A)−1Bk +Dk.
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Figure: Interconnection of the plant P and controller K
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Optimal control

I General optimal control formulation

min
K

f(P,K)

subject to K internally stabilizes P.
(3)

where f(P,K) defines a certain performance index.

I Specifically

Frequency-domain formulation State-space formulation

min
K

‖Tzw‖

subject to K ∈ Cstab,
where

Tzw = P11+P12K(I−P22K)−1P21.

min

∥∥∥∥∥∥
 A + B2DkC2 B2Ck B1 + B2DkD21

BkC2 Ak BkD21

C1 + D12DkC2 D12Ck D11 + D12DkD21

∥∥∥∥∥∥
s.t.

[
A + B2DkC2 B2Ck

BkC2 Ak

]
is stable.
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LQR as a special case of H2 optimal control

Deterministic case Stochastic case

min

∫ ∞
0

xTQx+ uTRu dt

s.t. ẋ = Ax+Bu

x(0) = x0,

where Q � 0, R � 0 are weight
matrices and x0 ∈ Rn.

min E
[

lim
T→∞

1

T

∫ T

0

xTQx+ uTRu dt

]
s.t. ẋ = Ax+Bu+ w

where Q � 0, R � 0 are weight matrices
and w ∼ N(0, I).

Both of them are equivalent to

min
K

‖Tzw‖2H2

subject to ẋ = Ax+B1w +B2u

z =

[
Q

1
2

0

]
x+

[
0

R
1
2

]
u

u = Kx,

where B1 = I, B2 = B.
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H2 norm

Consider a stable transfer matrix T = C(sI −A)−1B

‖T‖2H2
: =

1

2π

∫ ∞
−∞

Trace (T ∗(jω)T (jω)) dω

=

∫ ∞
0

Trace
(

(CeAtB)T(CeAtB)
)
dt

I Deterministic interpretation: Let ek be the standard unit vector and
denote the output

ẋ = Ax, z = Cx, x(0) = Bek,

by zk(t). Squared H2 norm is energy sum of output transients:

m∑
k=1

∫ ∞
0

zk(t)Tzk(t)dt =

∫ ∞
0

Trace
(

(CeAtB)T(CeAtB)
)
dt = ‖T‖2H2

.

I Stochastic interpretation: If w is white noise and ẋ = Ax+Bw, z = Cx
then

lim
t→∞

E
(
z(t)Tz(t)

)
= ‖T‖2H2

The squared H2-norm equals the asymptotic variance of output.
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Static state feedback

I Set of internally stabilizing controllers

Cstab =

{
K | Â :=

[
A+B2DkC2 B2Ck

BkC2 Ak

]
is stable

}
,

where K = Ck(zI −Ak)−1Bk +Dk.

I Consider a static state feedback case

ẋ = Ax+B2u

u = Dkx. Css = {Dk ∈ Rm×n | A+B2Dk is stable}.
I Lyapunov inequality

A+B2K is stable ⇐⇒ ∃P � 0, (A+B2K)TP + P (A+B2K) ≺ 0

⇐⇒ ∃X � 0, X(A+B2K)T + (A+B2K)X ≺ 0

⇐⇒ ∃X � 0, Y ∈ Rm×n, XAT + Y BT
2 +AX +B2Y ≺ 0

Therefore, we have

Css = {K = Y X−1 | X � 0, Y ∈ Rm×n, XAT + Y BT
2 +AX +B2Y ≺ 0},
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External transfer function characterization

Lemma
Consider a transfer matrix T(s) = C(sI −A)−1B +D. If (A,B,C) is
detectable and stabilizable, then

T(s) ∈ RH∞ ⇔ A is stable.

Two useful facts:

I The set of stable matrices {A ∈ Rn×n | A is stable} is non-convex,
but finite-dimensional;

I The set of stable transfer matrices {T(s) | T(s) ∈ RH∞} is convex,
but infinite-dimensional;

External transfer matrix characterization of internal stability 11



External transfer function characterization

Set of internally stabilizing controllers

Cstab =

{
K | Â :=

[
A+B2DkC2 B2Ck

BkC2 Ak

]
is stable

}
,

where K = Ck(zI −Ak)−1Bk +Dk.

I Consider the plant P22 = C2(sI −A)−1B2,

ẋ = Ax+B2u+ δx,

y = C2x+ δy

I A dynamic controller
ξ̇ = Akξ +Bky

u = Ckξ +Dky + δu.

Closed-loop responses from (δy, δu) to (y,u) as[
y
u

]
=

[
Y W
U Z

] [
δy
δu

]
,

where Y = (I −P22K)−1, W = (I −P22K)−1P22, and

U = K(I −P22K)−1, Z = (I −KP22)−1.
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External transfer function characterization

Closed-loop responses from (δy, δu) to (y,u) as[
y
u

]
=

[
Y W
U Z

] [
δy
δu

]
,

Lemma
The feedback system is internally stable if and only if the transfer matrix from
(δy, δu) to (y,u) is stable.

State-space realization of the transfer matrix from (δy, δu) to (y,u) as([
δy
δu

]
→
[
y
u

])
= Ĉ2(zI − Â)−1B̂2 +

[
I 0
Dk I

]
,

where

Â =

[
A+B2DkC2 B2Ck

BkC2 Ak

]
, B̂2 =

[
B2Dk B2

Bk 0

]
, Ĉ2 =

[
C2 0

DkC2 Ck

]
.

It remains to prove that (Â, B̂2) is stabilizable and (Â, Ĉ2) is detectable.
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External transfer function characterization

The stabilizability of (Â, B̂2) can be seen from the following fact

[
A+B2DkC2 B2Ck

BkC2 Ak

]
+

[
B2Dk B2

Bk 0

] [
−C2 Fk

F 0

]
=

[
A+B2F B2Ck +B2DkFk

0 Ak +BkFk,

]

which will be stable if A+B2F and Ak +BkFk are stable. The detectability
of (Â, Ĉ2) can be shown in a similar way.

-?-
δy e
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� δu
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u

K

P22
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+
+

Figure: Input-output stability
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External transfer matrix characterization

Look at closed-loop response from (δx, δy) to x,u. It is not difficult to
derive that [

x
u

]
=

[
R N
M L

] [
δx
δy

]
,

where R = (zI −A−B2KC2)
−1,M = KC2R, and

U = RB2K, L = KC2RB2K+K.

Lemma
The feedback system is internally stable if and only if the transfer matrix
from (δx, δy) to (x,u) is stable.

A state-space realization of the transfer matrix from (δx, δy) to (x,u) as([
δx
δy

]
→
[
x
u

])
= Ĉ1(zI − Â)−1B̂1 +

[
0 0
0 Dk

]
,

where

B̂1 =

[
I B2Dk

0 Bk

]
, Ĉ1 =

[
I 0

DkC2 Ck

]
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A summary

Four equivalent statements

I K internally stabilizes the plant P;

I Â :=

[
A+B2DkC2 B2Ck

BkC2 Ak

]
is stable

I The following closed-loop responses are stable (input-output
parameterization) [

y
u

]
=

[
Y W
U Z

] [
δy
δu

]
,

I The following closed-loop responses are stable (system-level
parameterization) [

x
u

]
=

[
R N
M L

] [
δx
δy

]
,
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Two special cases

I Open-loop stable plants:

Corollary
If the LTI system is open-loop stable (i.e., A is stable), then K ∈ Cstab if and
only if (δy → u) := U ∈ RH∞.

The state-space representation is

U =
[
DkC Ck

]
(zI − Â)−1

[
BDk

Bk

]
+Dk.

Considering the fact that the following matrix

Â+

[
BDk

Bk

] [
−C Fk

]
=

[
A BCk +BDkFk

0 Ak +BkFk

]
,

is stable when A and Ak +BkFk are stable.

I State feedback

Corollary

If C = I, then K ∈ Cstab if and only if

(
δx →

[
x
u

])
:=

[
R
M

]
∈ RH∞.
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Closed-loop parameterization: IOP

Input-output parameterization[
y
u

]
=

[
Y W
U Z

] [
δy
δu

]
,

Corollary
If the LTI system is open-loop stable, then we have

Cstab =

{
K = UY−1

∣∣∣∣[I −P22

] [Y
U

]
= I, U ∈ RH∞

}
.

⇒ With K ∈ Cstab, it is not difficult to derive[
y
u

]
=

[
(I −P22K)−1

K(I −P22K)−1

]
δy.

Let us define Y = (I −P22K)−1 and U = K(I −P22K)−1.
Since K ∈ Cstab, we know that U ∈ RH∞. Also, by definition, K = UY−1.
Finally, it is very easy to verify that

Y −P22U = (I −P22K)−1 −P22K(I −P22K)−1 = I.
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Closed-loop parameterization: IOP

Input-output parameterization[
y
u

]
=

[
Y W
U Z

] [
δy
δu

]
,

Corollary
If the LTI system is open-loop stable, then we have

Cstab =

{
K = UY−1

∣∣∣∣[I −P22

] [Y
U

]
= I, U ∈ RH∞

}
.

⇐. Given Y and U satisfying the condition, we show that K = UY−1 ∈ Cstab.
We only need to show the response from δy to u is Stable.
In particular, we have

u = K(I −P22K)−1δy

= UY−1(I −P22UY−1)−1δy

= Uδy,

where the last equality used the affine relationship Y −P22U = I.
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Closed-loop parameterization: SLP

System-level parameterization[
x
u

]
=

[
R N
M L

] [
δx
δy

]
,

Corollary
If C2 = I, then we have

Cstab =

{
K = MR−1

∣∣∣∣[zI −A −B2

] [R
M

]
= I, M,R ∈ RH∞

}
.

⇐ Consider M,R satisfying the condition. We define K = MR−1, and show
this controller K ∈ Cstab.
It is sufficient to show

x = (sI −A−B2K)−1δx = (sI −A−B2MR−1)−1δx = Rδx

u = K(sI −A−B2K)−1δx = Mδx
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General case: Input-output parameterization

[
I −P22

] [Y W
U Z

]
=
[
I 0

]
, (4a)[

Y W
U Z

] [
−P22

I

]
=

[
0
I

]
, (4b)

Y,U,W,Z ∈ RH∞. (4c)

Theorem (Input-output parameterization)
The set of all internally stabilizing controllers can be represented as

Cstab = {K = UY−1 | Y,U,W,Z are in the affine subspace (4a)-(4c)}.

min
K

‖P11 + P12K(I −P22K)−1P21‖

subject to K ∈ Cstab,

min
Y,U,W,Z

‖P11 + P12UP21‖

subject to (4a)− (4c).
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General case: System-level synthesis

[
sI −A −B2

] [R N
M L

]
=
[
I 0

]
, (5a)[

R N
M L

] [
sI −A
−C2

]
=

[
I
0

]
, (5b)

R,M,N ∈ RH∞, L ∈ RH∞. (5c)

Theorem (System-level parameterization)
For strictly proper plants, the set of all internally stabilizing controllers can be
represented as

Cstab = {K = L−MR−1N | R, M, N, L are in the affine subspace (5a)-(5c)}.

System-level synthesis

min
R,M,N,L

∥∥∥∥[C1 D12

] [R N
M L

] [
B1

D21

]
+D11

∥∥∥∥
subject to (5a)− (5c).
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Summary

I Optimal controller synthesis problem

min
K

‖P11 +P12K(I −P22K)−1P21‖

subject to K ∈ Cstab.

Four equivalent statements

I K internally stabilizes the plant P;

I Â :=

[
A+B2DkC2 B2Ck

BkC2 Ak

]
is stable

I The following closed-loop responses are stable (IOP)[
y
u

]
=

[
Y W
U Z

] [
δy
δu

]
,

I The following closed-loop responses are stable (SLP)[
x
u

]
=

[
R N
M L

] [
δx
δy

]
,
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Other issues

I Numerical computation: Finite impulse responses (only work for
discrete-time systems)

H(z) =

T∑
k=1

Hk
1

zk

I See a Github repository here:
https://github.com/zhengy09/h2_clp.

I Distributed control K ∈ S:

K = UY−1 ∈ S
K = L−MR−1N ∈ S

I State-space realization of these controllers

I Numerical robustness: the affine constraints can never be exactly
satisfied in numerical computaiton ...
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Robust stability: SLP in the state feedback case

I Suppose we only have estimation Â and B̂2, where ‖A− Â‖ ≤ εA and
‖B − B̂2‖ ≤ εB .

I How can we design a stabilizing controller for the true system (A,B2)
based on the information (Â, B̂2) and εA, εB?

I We find M̂, R̂ ∈ RH∞ that satisfies[
sI − Â −B̂2

] [R̂

M̂

]
= I. (6)

I Then, the controller K = M̂R̂−1 stabilizes (Â, B̂2). What happens if we
apply K = M̂R̂−1 to the true system (A,B2)?

I we have [
sI −A −B2

] [R̂

M̂

]
= I + ∆,

where ∆ = ∆AR̂ + ∆BM̂. Then it is not difficult to show that if
‖∆‖∞ < 1, the controller K = M̂R̂−1 stabilizes the true system (A,B2)
as well.
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Robust stability: IOP for open-loop stable plants

I Suppose we have the transfer matrix estimation P̂22, with
‖P22 − P̂22‖∞ ≤ ε.

I We find Ŷ, Û ∈ RH∞ that satisfies

[
I −P̂22

] [Ŷ
Û

]
= I.

I Then, the controller K = ÛŶ−1 stabilizes the plant P̂22.

I For the true plant P22, we have

[
I −P22

] [Ŷ
Û

]
= I + ∆,

where ∆ = ∆P22.

I Then it is not difficult to show that if ‖∆‖∞ < 1, the controller
K = ÛŶ−1 stabilizes the true system P22 as well.
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A summary

Four equivalent statements

I K internally stabilizes the plant P;

I Â :=

[
A+B2DkC2 B2Ck

BkC2 Ak

]
is stable

I The following closed-loop responses are stable (input-output
parameterization) [

y
u

]
=

[
Y W
U Z

] [
δy
δu

]
,

I The following closed-loop responses are stable (system-level
parameterization) [

x
u

]
=

[
R N
M L

] [
δx
δy

]
,
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Summary

I Optimal controller systhesis

min
K

‖P11 +P12K(I −P22K)−1P21‖

subject to K ∈ Cstab,

I Input-output parameterization

min
Y,U,W,Z

‖P11 +P12UP21‖

subject to (4a)− (4c).

I System-level parameterization

min
R,M,N,L

∥∥∥∥[C1 D12

] [R N
M L

] [
B1

D21

]
+D11

∥∥∥∥
subject to (5a)− (5c).
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Other topics

I State-space formulation

min

∥∥∥∥∥∥
 A+B2DkC2 B2Ck B1 +B2DkD21

BkC2 Ak BkD21

C1 +D12DkC2 D12Ck D11 +D12DkD21

∥∥∥∥∥∥
s.t.

[
A+B2DkC2 B2Ck

BkC2 Ak

]
is stable.

I How to derive convex reformulation in the state space? This needs
to specify the norm of the cost function. We can have LMI
formulations (the topic in the next week).

I How to deal with structural constraint K ∈ S?

Summary 32


	Recap & LQR as as special case
	External transfer matrix characterization of internal stability
	Closed-loop parameterization of stabilizing controllers: SLP and IOP
	Robust stability and it connections with learning-based control
	Summary

