## 2. Convex reformulation in the frequency domain

Yang Zheng

Postdoc, Harvard University

April 16, 2020

# Outline

- 1. Recap & LQR as as special case
- 2. External transfer matrix characterization of internal stability
- 3. Closed-loop parameterization of stabilizing controllers: SLP and IOP
- 4. Robust stability and it connections with learning-based control
- 5. Summary

# Outline

- 1. Recap & LQR as as special case
- 2. External transfer matrix characterization of internal stability
- 3. Closed-loop parameterization of stabilizing controllers: SLP and IOP
- 4. Robust stability and it connections with learning-based control
- 5. Summary

Recap & LQR as as special case

#### Linear time-invariant systems

State-space model

$$\begin{aligned} \dot{x} &= Ax + B_1 w + B_2 u, \\ z &= C_1 x + D_{11} w + D_{12} u, \\ y &= C_2 x + D_{21} w + D_{22} u, \end{aligned} \tag{1}$$

where  $x \in \mathbb{R}^n, u \in \mathbb{R}^m, w \in \mathbb{R}^d, y \in \mathbb{R}^p, z \in \mathbb{R}^q$  are the state vector, control action, external disturbance, measurement, and regulated output, respectively.

Dynamic controller

$$\dot{\xi} = A_k \xi + B_k y,$$
  

$$u = C_k \xi + D_k y,$$
(2)

where  $\xi \in \mathbb{R}^{n_k}$  is the internal state of the controller.

## **Frequency domain**

Plant model

$$\mathbf{P} = \begin{bmatrix} A & B_1 & B_2 \\ \hline C_1 & D_{11} & D_{12} \\ C_2 & D_{21} & D_{22} \end{bmatrix} = \begin{bmatrix} \mathbf{P}_{11} & \mathbf{P}_{12} \\ \mathbf{P}_{21} & \mathbf{P}_{22} \end{bmatrix},$$

where  $\mathbf{P}_{ij} = C_i(sI - A)^{-1}B_j + D_{ij}$ . We refer to  $\mathbf{P}$  as the open-loop plant model.

• Controller  $\mathbf{u} = \mathbf{K}\mathbf{y}$ , where  $\mathbf{K} = C_k(sI - A)^{-1}B_k + D_k$ .



Figure: Interconnection of the plant  ${\bf P}$  and controller  ${\bf K}$ 

Recap & LQR as as special case

## **Optimal control**

General optimal control formulation

$$\min_{\mathbf{K}} \quad f(\mathbf{P}, \mathbf{K})$$
subject to **K** internally stabilizes **P**.

where  $f(\mathbf{P}, \mathbf{K})$  defines a certain performance index.

Specifically

Frequency-domain formulation

State-space formulation

$$\begin{split} \min_{\mathbf{K}} & \|\mathbf{T}_{zw}\| \\ \text{subject to} & \mathbf{K} \in \mathcal{C}_{\text{stab}}, \\ \text{where} \\ \mathbf{T}_{zw} &= \mathbf{P}_{11} + \mathbf{P}_{12}\mathbf{K}(I - \mathbf{P}_{22}\mathbf{K})^{-1}\mathbf{P}_{21}. \end{split} \\ \text{min} & \left\| \begin{bmatrix} A + B_2 D_k C_2 & B_2 C_k & B_1 + B_2 D_k D_{21} \\ B_k C_2 & A_k & B_k D_{21} \\ \hline C_1 + D_{12} D_k C_2 & D_{12} C_k & D_{11} + D_{12} D_k D_{21} \end{bmatrix} \right| \\ \text{s.t.} & \begin{bmatrix} A + B_2 D_k C_2 & B_2 C_k \\ B_k C_2 & A_k \end{bmatrix} \text{ is stable}. \end{split}$$

#### Recap & LQR as as special case

(3)

## LQR as a special case of $\mathcal{H}_2$ optimal control

#### Deterministic case

#### Stochastic case

min 
$$\int_0^\infty x^\mathsf{T} Q x + u^\mathsf{T} R u \, dt$$
  
s.t.  $\dot{x} = Ax + Bu$   
 $x(0) = x_0,$ 

where  $Q \succ 0, R \succ 0$  are weight matrices and  $x_0 \in \mathbb{R}^n$ .

Both of them are equivalent to

min 
$$\mathbb{E}\left[\lim_{T \to \infty} \frac{1}{T} \int_0^T x^\mathsf{T} Q x + u^\mathsf{T} R u \, dt\right]$$
  
s.t.  $\dot{x} = A x + B u + w$ 

where  $Q \succ 0, R \succ 0$  are weight matrices and  $w \sim N(0, I)$ .

$$\min_{K} \qquad \|\mathbf{T}_{zw}\|_{\mathcal{H}_{2}}^{2}$$
  
subject to  $\dot{x} = Ax + B_{1}w + B_{2}u$   
 $z = \begin{bmatrix} Q^{\frac{1}{2}} \\ 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ R^{\frac{1}{2}} \end{bmatrix} u$   
 $u = Kx,$ 

where  $B_1 = I, B_2 = B$ . Recap & LQR as as special case

## $\mathcal{H}_2$ norm

Consider a stable transfer matrix  $\mathbf{T} = C(sI - A)^{-1}B$ 

$$\begin{split} \|\mathbf{T}\|_{\mathcal{H}_2}^2 &:= \frac{1}{2\pi} \int_{-\infty}^{\infty} \operatorname{Trace}\left(T^*(j\omega)T(j\omega)\right) d\omega \\ &= \int_0^{\infty} \operatorname{Trace}\left((Ce^{At}B)^{\mathsf{T}}(Ce^{At}B)\right) dt \end{split}$$

Deterministic interpretation: Let e<sub>k</sub> be the standard unit vector and denote the output

$$\dot{x} = Ax, \quad z = Cx, \quad x(0) = Be_k,$$

by  $z_k(t)$ . Squared  $\mathcal{H}_2$  norm is energy sum of output transients:

$$\sum_{k=1}^{m} \int_{0}^{\infty} z_{k}(t)^{\mathsf{T}} z_{k}(t) dt = \int_{0}^{\infty} \operatorname{Trace}\left( \left( Ce^{At} B \right)^{\mathsf{T}} \left( Ce^{At} B \right) \right) dt = \|\mathbf{T}\|_{\mathcal{H}_{2}}^{2}.$$

Stochastic interpretation: If w is white noise and  $\dot{x} = Ax + Bw, z = Cx$  then

$$\lim_{t \to \infty} \mathbb{E}\left(z(t)^{\mathsf{T}} z(t)\right) = \|\mathbf{T}\|_{\mathcal{H}_2}^2$$

The squared  $\mathcal{H}_2$ -norm equals the asymptotic variance of output.

#### Recap & LQR as as special case

# Outline

- 1. Recap & LQR as as special case
- 2. External transfer matrix characterization of internal stability
- 3. Closed-loop parameterization of stabilizing controllers: SLP and IOP
- 4. Robust stability and it connections with learning-based control
- 5. Summary

External transfer matrix characterization of internal stability

#### Static state feedback

Set of internally stabilizing controllers

$$\mathcal{C}_{\mathsf{stab}} = \left\{ \mathbf{K} \mid \hat{A} := \begin{bmatrix} A + B_2 D_k C_2 & B_2 C_k \\ B_k C_2 & A_k \end{bmatrix} \text{is stable} \right\},$$

where  $\mathbf{K} = C_k (zI - A_k)^{-1} B_k + D_k$ .

Consider a static state feedback case

Lyapunov inequality

$$\begin{array}{ll} A + B_2 K \text{ is stable} & \Longleftrightarrow & \exists P \succ 0, \ (A + B_2 K)^{\mathsf{T}} P + P(A + B_2 K) \prec 0 \\ & \Longleftrightarrow & \exists X \succ 0, \ X(A + B_2 K)^{\mathsf{T}} + (A + B_2 K) X \prec 0 \\ & \Longleftrightarrow & \exists X \succ 0, Y \in \mathbb{R}^{m \times n}, \ XA^{\mathsf{T}} + YB_2^{\mathsf{T}} + AX + B_2 Y \prec 0 \end{array}$$

Therefore, we have

$$\mathcal{C}_{ss} = \{ K = YX^{-1} \mid X \succ 0, Y \in \mathbb{R}^{m \times n}, \ XA^{\mathsf{T}} + YB_2^{\mathsf{T}} + AX + B_2Y \prec 0 \},\$$

External transfer matrix characterization of internal stability

#### Lemma

Consider a transfer matrix  $\mathbf{T}(s) = C(sI - A)^{-1}B + D$ . If (A, B, C) is detectable and stabilizable, then

$$\mathbf{T}(s) \in \mathcal{RH}_{\infty} \quad \Leftrightarrow \quad A \text{ is stable.}$$

#### Two useful facts:

- ▶ The set of stable matrices  $\{A \in \mathbb{R}^{n \times n} \mid A \text{ is stable}\}$  is non-convex, but finite-dimensional;
- ► The set of stable transfer matrices {T(s) | T(s) ∈ RH<sub>∞</sub>} is convex, but infinite-dimensional;

Set of internally stabilizing controllers

$$\mathcal{C}_{\mathsf{stab}} = \left\{ \mathbf{K} \mid \hat{A} := \begin{bmatrix} A + B_2 D_k C_2 & B_2 C_k \\ B_k C_2 & A_k \end{bmatrix} \text{is stable} \right\},$$

where  $\mathbf{K} = C_k (zI - A_k)^{-1} B_k + D_k$ .

• Consider the plant 
$$\mathbf{P}_{22} = C_2(sI - A)^{-1}B_2$$

$$\dot{x} = Ax + B_2 u + \delta_x,$$
  
$$y = C_2 x + \delta_y$$

A dynamic controller

$$\dot{\xi} = A_k \xi + B_k y$$
$$u = C_k \xi + D_k y + \delta_u.$$

Closed-loop responses from  $(\delta_y, \delta_u)$  to  $(\mathbf{y}, \mathbf{u})$  as

$$\begin{bmatrix} \mathbf{y} \\ \mathbf{u} \end{bmatrix} = \begin{bmatrix} \mathbf{Y} & \mathbf{W} \\ \mathbf{U} & \mathbf{Z} \end{bmatrix} \begin{bmatrix} \delta_y \\ \delta_u \end{bmatrix},$$

where  $\mathbf{Y} = (I - \mathbf{P}_{22}\mathbf{K})^{-1}$ ,  $\mathbf{W} = (I - \mathbf{P}_{22}\mathbf{K})^{-1}\mathbf{P}_{22}$ , and  $\mathbf{U} = \mathbf{K}(I - \mathbf{P}_{22}\mathbf{K})^{-1}$ ,  $\mathbf{Z} = (I - \mathbf{K}\mathbf{P}_{22})^{-1}$ .

External transfer matrix characterization of internal stability

Closed-loop responses from  $(\delta_y,\delta_u)$  to  $(\mathbf{y},\mathbf{u})$  as

$$\begin{bmatrix} \mathbf{y} \\ \mathbf{u} \end{bmatrix} = \begin{bmatrix} \mathbf{Y} & \mathbf{W} \\ \mathbf{U} & \mathbf{Z} \end{bmatrix} \begin{bmatrix} \delta_y \\ \delta_u \end{bmatrix},$$

#### Lemma

The feedback system is internally stable if and only if the transfer matrix from  $(\delta_y, \delta_u)$  to  $(\mathbf{y}, \mathbf{u})$  is stable.

State-space realization of the transfer matrix from  $(\delta_y, \delta_u)$  to  $(\mathbf{y}, \mathbf{u})$  as

$$\left( \begin{bmatrix} \delta_y \\ \delta_u \end{bmatrix} \to \begin{bmatrix} \mathbf{y} \\ \mathbf{u} \end{bmatrix} \right) = \hat{C}_2 (zI - \hat{A})^{-1} \hat{B}_2 + \begin{bmatrix} I & 0 \\ D_k & I \end{bmatrix},$$

where

$$\hat{A} = \begin{bmatrix} A + B_2 D_k C_2 & B_2 C_k \\ B_k C_2 & A_k \end{bmatrix}, \quad \hat{B}_2 = \begin{bmatrix} B_2 D_k & B_2 \\ B_k & 0 \end{bmatrix}, \quad \hat{C}_2 = \begin{bmatrix} C_2 & 0 \\ D_k C_2 & C_k \end{bmatrix}.$$

It remains to prove that  $(\hat{A}, \hat{B}_2)$  is stabilizable and  $(\hat{A}, \hat{C}_2)$  is detectable. External transfer matrix characterization of internal stability

The stabilizability of  $(\hat{A},\hat{B}_2)$  can be seen from the following fact

$$\begin{bmatrix} A + B_2 D_k C_2 & B_2 C_k \\ B_k C_2 & A_k \end{bmatrix} + \begin{bmatrix} B_2 D_k & B_2 \\ B_k & 0 \end{bmatrix} \begin{bmatrix} -C_2 & F_k \\ F & 0 \end{bmatrix} = \begin{bmatrix} A + B_2 F & B_2 C_k + B_2 D_k F_k \\ 0 & A_k + B_k F_k, \end{bmatrix}$$

which will be stable if  $A + B_2F$  and  $A_k + B_kF_k$  are stable. The detectability of  $(\hat{A}, \hat{C}_2)$  can be shown in a similar way.



External transfer matrix characterization of internal stability

## External transfer matrix characterization

Look at closed-loop response from  $(\delta_x, \delta_y)$  to  $\mathbf{x}, \mathbf{u}$ . It is not difficult to derive that

$$\begin{bmatrix} \mathbf{x} \\ \mathbf{u} \end{bmatrix} = \begin{bmatrix} \mathbf{R} & \mathbf{N} \\ \mathbf{M} & \mathbf{L} \end{bmatrix} \begin{bmatrix} \delta_x \\ \delta_y \end{bmatrix},$$

where  $\mathbf{R} = (zI - A - B_2 \mathbf{K} C_2)^{-1}, \mathbf{M} = \mathbf{K} C_2 \mathbf{R}$ , and

$$\mathbf{U} = \mathbf{R}B_2\mathbf{K}, \quad \mathbf{L} = \mathbf{K}C_2\mathbf{R}B_2\mathbf{K} + \mathbf{K}.$$

#### Lemma

The feedback system is internally stable if and only if the transfer matrix from  $(\delta_x, \delta_y)$  to  $(\mathbf{x}, \mathbf{u})$  is stable.

A state-space realization of the transfer matrix from  $(\delta_x,\delta_y)$  to  $({f x},{f u})$  as

$$\left( \begin{bmatrix} \delta_x \\ \delta_y \end{bmatrix} \to \begin{bmatrix} \mathbf{x} \\ \mathbf{u} \end{bmatrix} \right) = \hat{C}_1 (zI - \hat{A})^{-1} \hat{B}_1 + \begin{bmatrix} 0 & 0 \\ 0 & D_k \end{bmatrix},$$

where

$$\hat{B}_1 = \begin{bmatrix} I & B_2 D_k \\ 0 & B_k \end{bmatrix}, \quad \hat{C}_1 = \begin{bmatrix} I & 0 \\ D_k C_2 & C_k \end{bmatrix}$$

External transfer matrix characterization of internal stability

## A summary

#### Four equivalent statements

K internally stabilizes the plant P;

$$\bullet \ \hat{A} := \begin{bmatrix} A + B_2 D_k C_2 & B_2 C_k \\ B_k C_2 & A_k \end{bmatrix} \text{ is stable}$$

 The following closed-loop responses are stable (input-output parameterization)

$$\begin{bmatrix} \mathbf{y} \\ \mathbf{u} \end{bmatrix} = \begin{bmatrix} \mathbf{Y} & \mathbf{W} \\ \mathbf{U} & \mathbf{Z} \end{bmatrix} \begin{bmatrix} \delta_y \\ \delta_u \end{bmatrix},$$

The following closed-loop responses are stable (system-level parameterization)

$$\begin{bmatrix} \mathbf{x} \\ \mathbf{u} \end{bmatrix} = \begin{bmatrix} \mathbf{R} & \mathbf{N} \\ \mathbf{M} & \mathbf{L} \end{bmatrix} \begin{bmatrix} \delta_x \\ \delta_y \end{bmatrix},$$

### **Two special cases**

#### Open-loop stable plants:

# Corollary

If the LTI system is open-loop stable (i.e., A is stable), then  $\mathbf{K} \in C_{\text{stab}}$  if and only if  $(\delta_y \to \mathbf{u}) := \mathbf{U} \in \mathcal{RH}_{\infty}$ .

The state-space representation is

$$\mathbf{U} = \begin{bmatrix} D_k C & C_k \end{bmatrix} (zI - \hat{A})^{-1} \begin{bmatrix} BD_k \\ B_k \end{bmatrix} + D_k.$$

Considering the fact that the following matrix

$$\hat{A} + \begin{bmatrix} BD_k \\ B_k \end{bmatrix} \begin{bmatrix} -C & F_k \end{bmatrix} = \begin{bmatrix} A & BC_k + BD_kF_k \\ 0 & A_k + B_kF_k \end{bmatrix},$$

is stable when A and  $A_k + B_k F_k$  are stable.

#### State feedback

### Corollary

If 
$$C = I$$
, then  $\mathbf{K} \in \mathcal{C}_{stab}$  if and only if  $\left(\delta_x \to \begin{bmatrix} \mathbf{x} \\ \mathbf{u} \end{bmatrix}\right) := \begin{bmatrix} \mathbf{R} \\ \mathbf{M} \end{bmatrix} \in \mathcal{RH}_{\infty}.$ 

External transfer matrix characterization of internal stability

# Outline

- 1. Recap & LQR as as special case
- 2. External transfer matrix characterization of internal stability
- 3. Closed-loop parameterization of stabilizing controllers: SLP and IOP
- 4. Robust stability and it connections with learning-based control
- 5. Summary

## **Closed-loop parameterization: IOP**

Input-output parameterization

$$\begin{bmatrix} \mathbf{y} \\ \mathbf{u} \end{bmatrix} = \begin{bmatrix} \mathbf{Y} & \mathbf{W} \\ \mathbf{U} & \mathbf{Z} \end{bmatrix} \begin{bmatrix} \delta_y \\ \delta_u \end{bmatrix},$$

## Corollary

If the LTI system is open-loop stable, then we have

$$\mathcal{C}_{\textit{stab}} = \left\{ \mathbf{K} = \mathbf{U}\mathbf{Y}^{-1} \left| \begin{bmatrix} I & -\mathbf{P}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{Y} \\ \mathbf{U} \end{bmatrix} = I, \ \mathbf{U} \in \mathcal{RH}_{\infty} \right\}.$$

 $\Rightarrow$  With  $\mathbf{K}\in\mathcal{C}_{\text{stab}},$  it is not difficult to derive

$$\begin{bmatrix} \mathbf{y} \\ \mathbf{u} \end{bmatrix} = \begin{bmatrix} (I - \mathbf{P}_{22}\mathbf{K})^{-1} \\ \mathbf{K}(I - \mathbf{P}_{22}\mathbf{K})^{-1} \end{bmatrix} \delta_y.$$

Let us define  $\mathbf{Y} = (I - \mathbf{P}_{22}\mathbf{K})^{-1}$  and  $\mathbf{U} = \mathbf{K}(I - \mathbf{P}_{22}\mathbf{K})^{-1}$ . Since  $\mathbf{K} \in \mathcal{C}_{stab}$ , we know that  $\mathbf{U} \in \mathcal{RH}_{\infty}$ . Also, by definition,  $\mathbf{K} = \mathbf{U}\mathbf{Y}^{-1}$ . Finally, it is very easy to verify that

$$\mathbf{Y} - \mathbf{P}_{22}\mathbf{U} = (I - \mathbf{P}_{22}\mathbf{K})^{-1} - \mathbf{P}_{22}\mathbf{K}(I - \mathbf{P}_{22}\mathbf{K})^{-1} = I.$$

## **Closed-loop parameterization: IOP**

Input-output parameterization

$$\begin{bmatrix} \mathbf{y} \\ \mathbf{u} \end{bmatrix} = \begin{bmatrix} \mathbf{Y} & \mathbf{W} \\ \mathbf{U} & \mathbf{Z} \end{bmatrix} \begin{bmatrix} \delta_y \\ \delta_u \end{bmatrix},$$

## Corollary

If the LTI system is open-loop stable, then we have

$$\mathcal{C}_{\textit{stab}} = \left\{ \mathbf{K} = \mathbf{U}\mathbf{Y}^{-1} \left| \begin{bmatrix} I & -\mathbf{P}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{Y} \\ \mathbf{U} \end{bmatrix} = I, \ \mathbf{U} \in \mathcal{RH}_{\infty} \right\}.$$

 $\leftarrow$ . Given **Y** and **U** satisfying the condition, we show that  $\mathbf{K} = \mathbf{U}\mathbf{Y}^{-1} \in \mathcal{C}_{stab}$ . We only need to show the response from  $\delta_y$  to **u** is Stable. In particular, we have

$$\begin{aligned} \mathbf{u} &= \mathbf{K} (I - \mathbf{P}_{22} \mathbf{K})^{-1} \delta_y \\ &= \mathbf{U} \mathbf{Y}^{-1} (I - \mathbf{P}_{22} \mathbf{U} \mathbf{Y}^{-1})^{-1} \delta_y \\ &= \mathbf{U} \delta_y, \end{aligned}$$

where the last equality used the affine relationship  $\mathbf{Y} - \mathbf{P}_{22}\mathbf{U} = I$ . Closed-loop parameterization of stabilizing controllers: SLP and IOP

## **Closed-loop parameterization: SLP**

System-level parameterization

$$\begin{bmatrix} \mathbf{x} \\ \mathbf{u} \end{bmatrix} = \begin{bmatrix} \mathbf{R} & \mathbf{N} \\ \mathbf{M} & \mathbf{L} \end{bmatrix} \begin{bmatrix} \delta_x \\ \delta_y \end{bmatrix},$$

Corollary

If  $C_2 = I$ , then we have

$$\mathcal{C}_{stab} = \left\{ \mathbf{K} = \mathbf{M}\mathbf{R}^{-1} \middle| \begin{bmatrix} zI - A & -B_2 \end{bmatrix} \begin{bmatrix} \mathbf{R} \\ \mathbf{M} \end{bmatrix} = I, \ \mathbf{M}, \mathbf{R} \in \mathcal{RH}_{\infty} \right\}.$$

 $\Leftarrow$  Consider  $\mathbf{M}, \mathbf{R}$  satisfying the condition. We define  $\mathbf{K} = \mathbf{M}\mathbf{R}^{-1}$ , and show this controller  $\mathbf{K} \in \mathcal{C}_{stab}$ . It is sufficient to show

$$\mathbf{x} = (sI - A - B_2 \mathbf{K})^{-1} \delta_x = (sI - A - B_2 \mathbf{M} \mathbf{R}^{-1})^{-1} \delta_x = \mathbf{R} \delta_x$$
$$\mathbf{u} = \mathbf{K} (sI - A - B_2 \mathbf{K})^{-1} \delta_x = \mathbf{M} \delta_x$$

### General case: Input-output parameterization

$$\begin{bmatrix} I & -\mathbf{P}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{Y} & \mathbf{W} \\ \mathbf{U} & \mathbf{Z} \end{bmatrix} = \begin{bmatrix} I & 0 \end{bmatrix}, \quad (4a)$$
$$\begin{bmatrix} \mathbf{Y} & \mathbf{W} \\ \mathbf{U} & \mathbf{Z} \end{bmatrix} \begin{bmatrix} -\mathbf{P}_{22} \\ I \end{bmatrix} = \begin{bmatrix} 0 \\ I \end{bmatrix}, \quad (4b)$$
$$\mathbf{Y}, \mathbf{U}, \mathbf{W}, \mathbf{Z} \in \mathcal{RH}_{\infty}. \quad (4c)$$

### Theorem (Input-output parameterization)

The set of all internally stabilizing controllers can be represented as

 $\mathcal{C}_{stab} = \{ \mathbf{K} = \mathbf{U}\mathbf{Y}^{-1} \mid \mathbf{Y}, \mathbf{U}, \mathbf{W}, \mathbf{Z} \text{ are in the affine subspace (4a)-(4c)} \}.$ 

$$\begin{array}{ll} \min_{\mathbf{K}} & \|\mathbf{P}_{11} + \mathbf{P}_{12}\mathbf{K}(I - \mathbf{P}_{22}\mathbf{K})^{-1}\mathbf{P}_{21}\| & \min_{\mathbf{Y}, \mathbf{U}, \mathbf{W}, \mathbf{Z}} & \|\mathbf{P}_{11} + \mathbf{P}_{12}\mathbf{U}\mathbf{P}_{21}\| \\ \text{subject to} & \mathbf{K} \in \mathcal{C}_{\text{stab}}, & \text{subject to} & (4a) - (4c). \end{array}$$

### General case: System-level synthesis

$$\begin{bmatrix} sI - A & -B_2 \end{bmatrix} \begin{bmatrix} \mathbf{R} & \mathbf{N} \\ \mathbf{M} & \mathbf{L} \end{bmatrix} = \begin{bmatrix} I & 0 \end{bmatrix},$$
 (5a)

$$\begin{bmatrix} \mathbf{R} & \mathbf{N} \\ \mathbf{M} & \mathbf{L} \end{bmatrix} \begin{bmatrix} sI - A \\ -C_2 \end{bmatrix} = \begin{bmatrix} I \\ 0 \end{bmatrix},$$
(5b)

$$\mathbf{R}, \mathbf{M}, \mathbf{N} \in \mathcal{RH}_{\infty}, \quad \mathbf{L} \in \mathcal{RH}_{\infty}. \tag{5c}$$

### Theorem (System-level parameterization)

For strictly proper plants, the set of all internally stabilizing controllers can be represented as

 $\mathcal{C}_{stab} = \{ \mathbf{K} = \mathbf{L} - \mathbf{M}\mathbf{R}^{-1}\mathbf{N} \mid \mathbf{R}, \mathbf{M}, \mathbf{N}, \mathbf{L} \text{ are in the affine subspace (5a)-(5c)} \}.$ 

#### System-level synthesis

$$\min_{\mathbf{R},\mathbf{M},\mathbf{N},\mathbf{L}} \quad \left\| \begin{bmatrix} C_1 & D_{12} \end{bmatrix} \begin{bmatrix} \mathbf{R} & \mathbf{N} \\ \mathbf{M} & \mathbf{L} \end{bmatrix} \begin{bmatrix} B_1 \\ D_{21} \end{bmatrix} + D_{11} \right\|$$
 subject to (5a) – (5c).

# Summary

Optimal controller synthesis problem

$$\begin{split} \min_{\mathbf{K}} & \|\mathbf{P}_{11} + \mathbf{P}_{12}\mathbf{K}(I - \mathbf{P}_{22}\mathbf{K})^{-1}\mathbf{P}_{21}\|\\ \text{subject to} & \mathbf{K} \in \mathcal{C}_{\mathsf{stab}}. \end{split}$$

#### Four equivalent statements

• **K** internally stabilizes the plant **P**; •  $\hat{A} := \begin{bmatrix} A + B_2 D_k C_2 & B_2 C_k \\ B_k C_2 & A_k \end{bmatrix}$  is stable • The following closed-loop responses are stable (IOP)  $\begin{bmatrix} \mathbf{y} \\ \mathbf{u} \end{bmatrix} = \begin{bmatrix} \mathbf{Y} & \mathbf{W} \\ \mathbf{U} & \mathbf{Z} \end{bmatrix} \begin{bmatrix} \delta_y \\ \delta_u \end{bmatrix}$ ,

► The following closed-loop responses are stable (SLP)  $\begin{bmatrix} \mathbf{x} \\ \mathbf{u} \end{bmatrix} = \begin{bmatrix} \mathbf{R} & \mathbf{N} \\ \mathbf{M} & \mathbf{L} \end{bmatrix} \begin{bmatrix} \delta_x \\ \delta_y \end{bmatrix},$ 

## Other issues

 Numerical computation: Finite impulse responses (only work for discrete-time systems)

$$\mathbf{H}(z) = \sum_{k=1}^{T} H_k \frac{1}{z^k}$$

See a Github repository here: https://github.com/zhengy09/h2\_clp.

• Distributed control  $\mathbf{K} \in \mathcal{S}$ :

$$\begin{split} \mathbf{K} &= \mathbf{U}\mathbf{Y}^{-1} \in \mathcal{S} \\ \mathbf{K} &= \mathbf{L} - \mathbf{M}\mathbf{R}^{-1}\mathbf{N} \in \mathcal{S} \end{split}$$

- State-space realization of these controllers
- Numerical robustness: the affine constraints can never be exactly satisfied in numerical computation ...

# Outline

- 1. Recap & LQR as as special case
- 2. External transfer matrix characterization of internal stability
- 3. Closed-loop parameterization of stabilizing controllers: SLP and IOP
- 4. Robust stability and it connections with learning-based control
- 5. Summary

Robust stability and it connections with learning-based control

## Robust stability: SLP in the state feedback case

- Suppose we only have estimation  $\hat{A}$  and  $\hat{B}_2$ , where  $||A \hat{A}|| \le \epsilon_A$  and  $||B \hat{B}_2|| \le \epsilon_B$ .
- ▶ How can we design a stabilizing controller for the true system  $(A, B_2)$  based on the information  $(\hat{A}, \hat{B}_2)$  and  $\epsilon_A, \epsilon_B$ ?
- $\blacktriangleright$  We find  $\hat{\mathbf{M}}, \hat{\mathbf{R}} \in \mathcal{RH}_\infty$  that satisfies

$$\begin{bmatrix} sI - \hat{A} & -\hat{B}_2 \end{bmatrix} \begin{bmatrix} \hat{\mathbf{R}} \\ \hat{\mathbf{M}} \end{bmatrix} = I.$$
(6)

▶ Then, the controller  $\mathbf{K} = \hat{\mathbf{M}}\hat{\mathbf{R}}^{-1}$  stabilizes  $(\hat{A}, \hat{B}_2)$ . What happens if we apply  $\mathbf{K} = \hat{\mathbf{M}}\hat{\mathbf{R}}^{-1}$  to the true system  $(A, B_2)$ ?

we have

$$\begin{bmatrix} sI - A & -B_2 \end{bmatrix} \begin{bmatrix} \hat{\mathbf{R}} \\ \hat{\mathbf{M}} \end{bmatrix} = I + \boldsymbol{\Delta},$$

where  $\mathbf{\Delta} = \Delta_A \hat{\mathbf{R}} + \Delta_B \hat{\mathbf{M}}$ . Then it is not difficult to show that if  $\|\Delta\|_{\infty} < 1$ , the controller  $\mathbf{K} = \hat{\mathbf{M}} \hat{\mathbf{R}}^{-1}$  stabilizes the true system  $(A, B_2)$  as well.

Robust stability and it connections with learning-based control

### Robust stability: IOP for open-loop stable plants

- Suppose we have the transfer matrix estimation  $\hat{\mathbf{P}}_{22}$ , with  $\|\mathbf{P}_{22} \hat{\mathbf{P}}_{22}\|_{\infty} \leq \epsilon$ .
- $\blacktriangleright$  We find  $\hat{\mathbf{Y}},\hat{\mathbf{U}}\in\mathcal{RH}_{\infty}$  that satisfies

$$\begin{bmatrix} I & -\hat{\mathbf{P}}_{22} \end{bmatrix} \begin{bmatrix} \hat{\mathbf{Y}} \\ \hat{\mathbf{U}} \end{bmatrix} = I.$$

▶ Then, the controller  $\mathbf{K} = \hat{\mathbf{U}}\hat{\mathbf{Y}}^{-1}$  stabilizes the plant  $\hat{\mathbf{P}}_{22}$ .

For the true plant P<sub>22</sub>, we have

$$\begin{bmatrix} I & -\mathbf{P}_{22} \end{bmatrix} \begin{bmatrix} \hat{\mathbf{Y}} \\ \hat{\mathbf{U}} \end{bmatrix} = I + \mathbf{\Delta},$$

where  $\Delta = \Delta P_{22}$ .

▶ Then it is not difficult to show that if  $\|\Delta\|_{\infty} < 1$ , the controller  $\mathbf{K} = \hat{\mathbf{U}}\hat{\mathbf{Y}}^{-1}$  stabilizes the true system  $\mathbf{P}_{22}$  as well.

# Outline

- 1. Recap & LQR as as special case
- 2. External transfer matrix characterization of internal stability
- 3. Closed-loop parameterization of stabilizing controllers: SLP and IOP
- 4. Robust stability and it connections with learning-based control
- 5. Summary

#### Summary

## A summary

#### Four equivalent statements

K internally stabilizes the plant P;

$$\bullet \ \hat{A} := \begin{bmatrix} A + B_2 D_k C_2 & B_2 C_k \\ B_k C_2 & A_k \end{bmatrix} \text{ is stable}$$

 The following closed-loop responses are stable (input-output parameterization)

$$\begin{bmatrix} \mathbf{y} \\ \mathbf{u} \end{bmatrix} = \begin{bmatrix} \mathbf{Y} & \mathbf{W} \\ \mathbf{U} & \mathbf{Z} \end{bmatrix} \begin{bmatrix} \delta_y \\ \delta_u \end{bmatrix},$$

The following closed-loop responses are stable (system-level parameterization)

$$\begin{bmatrix} \mathbf{x} \\ \mathbf{u} \end{bmatrix} = \begin{bmatrix} \mathbf{R} & \mathbf{N} \\ \mathbf{M} & \mathbf{L} \end{bmatrix} \begin{bmatrix} \delta_x \\ \delta_y \end{bmatrix},$$

#### Summary

## Summary

Optimal controller systhesis

$$\begin{split} \min_{\mathbf{K}} & \|\mathbf{P}_{11} + \mathbf{P}_{12}\mathbf{K}(I - \mathbf{P}_{22}\mathbf{K})^{-1}\mathbf{P}_{21}\| \\ \text{subject to} & \mathbf{K} \in \mathcal{C}_{\mathsf{stab}}, \end{split}$$

Input-output parameterization

$$\begin{split} \min_{\substack{\mathbf{Y},\mathbf{U},\mathbf{W},\mathbf{Z}}} & \|\mathbf{P}_{11}+\mathbf{P}_{12}\mathbf{U}\mathbf{P}_{21}| \\ \text{subject to} & (\text{4a})-(\text{4c}). \end{split}$$

System-level parameterization

$$\min_{\mathbf{R}, \mathbf{M}, \mathbf{N}, \mathbf{L}} \quad \left\| \begin{bmatrix} C_1 & D_{12} \end{bmatrix} \begin{bmatrix} \mathbf{R} & \mathbf{N} \\ \mathbf{M} & \mathbf{L} \end{bmatrix} \begin{bmatrix} B_1 \\ D_{21} \end{bmatrix} + D_{11} \right\|$$
subject to (5a) - (5c).

## **Other topics**

State-space formulation

$$\min \left\| \begin{bmatrix} A + B_2 D_k C_2 & B_2 C_k & B_1 + B_2 D_k D_{21} \\ B_k C_2 & A_k & B_k D_{21} \\ \hline C_1 + D_{12} D_k C_2 & D_{12} C_k & D_{11} + D_{12} D_k D_{21} \end{bmatrix} \right\|$$
  
s.t. 
$$\begin{bmatrix} A + B_2 D_k C_2 & B_2 C_k \\ B_k C_2 & A_k \end{bmatrix}$$
is stable.

- How to derive convex reformulation in the state space? This needs to specify the norm of the cost function. We can have LMI formulations (the topic in the next week).
- How to deal with structural constraint  $\mathcal{K} \in \mathcal{S}$ ?

#### Summary