
3. Youla Parameterization and Disturbance
Feedback Implementation

Yang Zheng

Postdoc, Harvard University

April 23, 2020



Outline

1. Youla for open-loop stable plants

2. Youla in finite-time horizon and disturbance feedback

3. Doubly co-prime factorization and Youla for general plants

4. Equivalence with SLP and IOP



Outline

1. Youla for open-loop stable plants

2. Youla in finite-time horizon and disturbance feedback

3. Doubly co-prime factorization and Youla for general plants

4. Equivalence with SLP and IOP

Youla for open-loop stable plants 3



Internally stabilizing controllers

I Consider a linear time-invariant system

ẋ = Ax+B2u+ δx,

y = C2x+ δy,

I A dynamic output feedback controller u = Ky, where K has a
state-space realization

ξ̇ = Akξ +Bky,

u = Ckξ +Dky,

with ξ ∈ Rnk being the internal state of controller K.

I Define the set of internally stabilizing controllers as

Cstab := {K | K internally stabilizes P},

I A state-space characterization is

Cstab =

{
K | Â :=

[
A+B2DkC2 B2Ck

BkC2 Ak

]
is stable

}
,

where K = Ck(zI −Ak)−1Bk +Dk.
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Youla for open-loop stable plants

Theorem
Suppose the plant is open-loop stable, i.e. A is stable. Then, the set of all
stabilizing controllers can be represented as

Cstab = {K = Q(I + GQ)−1 | Q ∈ RH∞},

where G = C2(sI −A)−1B2.

⇒: Suppose K0 ∈ Cstab. Then, we have Q0 := K0(I −GK0)−1 ∈ RH∞. It
can be verified that K0 can be expressed as follows

Q0(I + GQ0)−1 = K0(I −GK0)−1(I + GK0(I −GK0)−1)−1 = K0.

⇐: Suppose Q ∈ RH∞, and define K = Q(I + GQ)−1. Since the plant is
open-loop stable, we only need to check the closed-loop response from δy to u
is stable.

u = K(I −GK)−1δy

= Q(I + GQ)−1(I −GQ(I + GQ)−1)−1δy

= Qδy.
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Disturbance feedback implementation

The controller K = Q(I + GQ)−1 can be implemented in a disturbance-based
form:

β = y −Gu,

u = Qβ.

Figure: Internal model principle, where P22 := G.
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Disturbance feedback implementation

The controller K = Q(I + GQ)−1 can be implemented in a disturbance-based
form:

β = y −Gu,

u = Qβ.

Truncation in Finite Impulse Response form: Consider the following forms

G =

p∑
k=1

Gk
1

zk
, Q =

q∑
k=0

Qk
1

zk
,

then the controller can be implemented as

βt = yt −
p∑

k=1

Gkut−k,

ut =

q∑
k=0

Qkβt−k.
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Internal Model Principle

Figure: Internal model principle, where P22 := G.

I Known as the internal model principle [1], applied in Youla.

I The following paragraph is quoted from [2]:

“The concept of internal models plays a crucial role in regulator problems.
The internal model principle can intuitively be expressed as: ’Any good
regulator must create a model of the dynamic structure of the
environment in the closed loop system’ ”.

1. Bruce A Francis and Walter Murray Wonham. The internal model principle of control
theory.Automatica, 12(5):457–465, 1976

2. Gunnar Bengtsson. Output regulation and internal models—a frequency domain
approach.Automatica, 13(4):333–345, 1977.
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Discrete-time LTI systems

I Consider a discrete-time system

xt+1 = Axt +But + wt,

where xt ∈ Rn is the system state, ut ∈ Rm is the control input, and
w ∈ Rn is the disturbance.

I Mixed constraints on the state and input:

Z := {(x, u) ∈ Rn × Rm | Cx+Du ≤ b},

where the matrices C ∈ Rs×n, D ∈ Rs×m and the vector b ∈ Rs. It is
assumed that Z is bounded and contains the origin in its interior.

I A target/terminal constraint set Xf is given by

Xf := {x ∈ Rn | Y x ≤ z}, (1)

where the matrix Y ∈ Rr×n and the vector z ∈ Rr. It is assumed that Xf

is bounded and contains the origin in its interior.

Goal: Find a control sequence ut that satisfies the above requirements.
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Plan for a finite horizon

I Predictions of the system’s evolution over a finite control/planning
horizon:

x :=
[
xT
0 , . . . , x

T
N

]T ∈ Rn(N+1),

u :=
[
uT
0 , . . . , u

T
N−1

]T ∈ RmN ,

w :=
[
wT

0 , . . . , w
T
N−1

]T ∈ RnN ,

where x0 = x denotes the current measured value of the state.

I Let the set W := W × . . .×W , so that w ∈ W.

I The system can be compactly written as

x = Ax + Bu + Ew,

where

A =


I 0 0 . . . 0
A 0 0 . . . 0
0 A 0 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 A 0

 , B =


0 0 . . . 0
B 0 . . . 0
0 B . . . 0
...

. . .
. . .

...
0 . . . 0 B

 , E =


0 0 . . . 0
I 0 . . . 0
0 I . . . 0
...

. . .
. . .

...
0 . . . 0 I

 .
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State feedback policies

I Search over the set of time-varying affine state feedback control policies
with knowledge of prior states:

ut =

t∑
i=0

Lt,ixi + gt, t = 0, . . . , N − 1,

where each Lt,i ∈ Rm×n and gt ∈ Rm.

I Define the block lower triangular matrix L ∈ RmN×n(N+1) and stacked
vector g ∈ RmN as

L =

 L0,0 0 . . . 0
...

. . .
. . .

...
LN1,0 . . . LN1,N−1 0

 ,g =


g0
g1
...

gN−1

 . (2)

Then, the input sequence can be written as

u = Lx + g.
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Feasibility and convexity of state-feedback policies

The set of admissible (L,g) is defined as

Πsf
N (x) :=


(L,g)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(L,g) satisfy (2), x0 = x,

xt+1 = Axt +But + wt

ut =
t∑

i=0

Lt,ixi + gt

(xt, ut) ∈ Z, xN ∈ Xf

t = 0, . . . , N − 1,∀w ∈ W


.

Proposition

The set of admissible affine state feedback parameters Πsf
N (x) is non-convex.
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Disturbance feedback policies

I Parameterize the control policy as an affine function of the sequence of
past disturbances, so that

ut =

t−1∑
i=0

Mt,iwt + vt, t = 0, . . . , N − 1

where each Mt,i ∈ Rm×n and vt ∈ Rm.

I The past disturbance sequence is easily calculated as

wt−1 = xt −Axt−1 −But−1.

I We define the vector v ∈ RmN and the strictly block lower triangular
matrix M ∈ RmN×nN such that

M =


0 . . . . . . 0

M1,0 0 . . . 0
...

. . .
. . .

...
MN−1,0 . . . MN−1,N−2 0

 ,v =


v0
v1
...

vN−1

 . (3)

I Then, the input sequence can be written as

u = Mw + v.
Youla in finite-time horizon and disturbance feedback 14



Feasibility and convexity of disturbance-feedback

policies

The set of admissible (M,v) is defined as

Πdf
N (x) :=


(M,v)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(M,v) satisfy (3), x0 = x,

xt+1 = Axt +But + wt

ut =

t−1∑
i=0

Mt,iwi + vt

(xt, ut) ∈ Z, xN ∈ Xf

t = 0, . . . , N − 1,∀w ∈ W


.

Proposition

The set of admissible affine state feedback parameters Πdf
N (x) is convex.
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Feasibility and convexity of disturbance feedback

policies

I The state and input sequences can be written as

x = (I −A)−1(BM + E)w + (I −A)−1Bv,

u = Mw + v.

I We have

Πdf
N (x) :=

(M,v)

∣∣∣∣∣∣∣
(M,v) satisfy (3)

Fv + (FM +G)w ≤ c+Hx,

∀w ∈ W

 .

with some matrices F,G,H, c.
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Equivalence

Theorem
For any admissible (L,g), an admissible (M,v) can be found that yields the
same state and input sequence for all allowable disturbance sequences, and
vice-versa.

⇒ Given (L,g), we find (M,v) that yields the same state and input sequence.
First, we have

x = Ax + B(Lx + g) + Ew

⇒x = (I −A−BL)−1Ew + (I −A−BL)−1Bg

⇒u = L(I −A−BL)−1Ew + L(I −A−BL)−1Bg + g

Let us define

M = L(I −A−BL)−1E, v = L(I −A−BL)−1Bg + g,

then, the closed-loop system with (M,v) yields the same state and input
sequence.
It is routinely to show that (M,v) has the same structure in (3).
⇐: Almost similar; see [Goulart et al., 2006, Automatica] for details.
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A summary

I State-feedback policies

ut =

t∑
i=0

Lt,ixi + gt, t = 0, . . . , N − 1,

where each Lt,i ∈ Rm×n and gt ∈ Rm.

I Disturbance feedback polices

ut =

t−1∑
i=0

Mt,iwt + vt, t = 0, . . . , N − 1

where each Mt,i ∈ Rm×n and vt ∈ Rm.

They are equivalent to each other.
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Doubly co-prime factorization

A collection of stable transfer functions, Ul,Vl,Nl,Ml,Ur,Vr,Nr,Mr is called
a doubly co-prime factorization of G if

G = NrM−1
r = M−1

l Nl

and [
Ul −Vl

−Nl Ml

] [
Mr Vr

Nr Ur

]
= I.

I We have the following equivalence

Cstab = {K = (Vr −MrQ)(Ur −NrQ)−1 | Q ∈ RH∞},

where Q is denoted as the Youla parameter.

I For open-loop stable system G, we can choose

Ul = I,Vl = 0,Nl = G,Ml = I,

Ur = I,Vr = 0,Nr = G,Mr = I.
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Optimal controller synthesis

Classical Optimal control

min
K

‖P11 + P12K(I − GK)−1P21‖

subject to K internally stabilizes G.

Convex reformulation in Youla

min
Q

‖T11 + T12QT21‖

subject to Q ∈ RH∞,

where T11 = P11 +P12VrMlP21,T12 = −P12Mr, and T21 = MlP21.

I It is an equivalent change of variables

K = (Vr −MrQ)(Ur −NrQ)−1

that allows for convexification.
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Computation of doubly co-prime factorization

Theorem

Suppose G(s) is a proper real-rational matrix and

G =

[
A B
C D

]
,

is a stabilizable and detectable realization. Let F and L be such that
A+BF and A+ LC are both stable, and a doubly co-prime
factorization of G is as follows.[

Mr Vr

Nr Ur

]
=

 A+BF B L
F I 0

C +DF D I

 ,

[
Ul −Vl

−Nl Ml

]
=

 A+ LC −(B + LD) −L
F I 0
C −D I

 ,
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Feedback interpretation

I Consider the state-space model

ẋ = Ax+Bu,

y = Cx+Du.

I Next, introduce a state feedback and change the variable

v := u− Fx

where F is such that A+BF is stable.

I Then, we get
ẋ = (A+BF )x+Bv,

u = Fx+ v

y = (C +DF )x+Dv.

I From these equations, the transfer matrix from v to u and from v to y are

Mr(s) =

[
A+BF B

F I

]
, Nr(s) =

[
A+BF B

C +DF d

]
.

I Therefore, we have u = Mrv, y = Nrv, so that y = NrM
−1
r u, i.e.,

G = NrM
−1
r .
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Explicit equivalence among Youla, SLS, and IOP

— any convex SLS can be equivalently reformulated into a convex problem in

Youla or IOP; vice versa

Youla

SLS IOP

affi
ne

affi
ne

affine



Youla ⇔ IOP

Let Ur,Vr,Ul,Vl,Mr,Ml,Nr,Nl be any doubly-coprime factorization of G.
We have

1. For any Q ∈ RH∞, the following transfer matrices

Y = (Ur −NrQ)Ml ,

U = (Vr −MrQ)Ml ,

W = (Ur −NrQ)Nl ,

Z = I + (Vr −MrQ)Nl ,

belong to the IOP constraint and are such that

UY−1 = (Vr −MrQ)(Ur −NrQ)−1.

2. For any (Y,U,W,Z) in the IOP constraint, the transfer matrix

Q = VlYUr −UlUUr − VlWVr + UlZVr − VlUr ,

is such that Q ∈ RH∞ and (Vr −MrQ)(Ur −NrQ)−1 = UY−1.
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IOP ⇔ SLS

For any R,M,N,L satisfying the SLP constraint, the transfer matrices

Y = C2N + I,

U = L,

W = C2RB2,

Z = MB2 + I,

belong to the IOP constraint and are such that

L−MR−1N = UY−1.

I The affine relationship can written into[
Y W
U Z

]
=

[
C2

I

] [
R N
M L

] [
B2

I

]
+

[
I 0
0 I

]
.

I This affine transformation is in general not invertible, but considering the
achievability conditions, an explicit converse transformation can be found
as well.
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IOP ⇔ SLS

For any Y,U,W,Z satisfying the IOP constraint, the transfer matrices

R = (sI −A)−1 + (sI −A)−1B2UC2(sI −A)−1

M = UC2(sI −A)−1,

N = (sI −A)−1B2U,

L = U,

belong to the SLP constraint and are such that

UY−1 = L−MR−1N.
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Youla ⇔ SLS

Let Ur,Vr,Ul,Vl,Mr,Ml,Nr,Nl be any doubly-coprime factorization of G.
We have

1. For any Q ∈ RH∞, the following transfer matrices

R = (sI −A)−1 + (sI −A)−1B2(Vr −MrQ)MlC2(sI −A)−1

M = (Vr −MrQ)MlC2(sI −A)−1,

N = (sI −A)−1B2(Vr −MrQ)Ml,

L = (Vr −MrQ)Ml,

belong to the SLP constraint and are such that

L−MR−1N = (Vr −MrQ)(Ur −NrQ)−1.

2. For any (R,M,N,L) in the SLP constraint, the transfer matrix

Q = VlC2NUr −UlLUr − VlC2RB2Vr + UlMB2Vr + UlVr

is such that Q ∈ RH∞ and (Vr −MrQ)(Ur −NrQ)−1 = L−MR−1N.
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Youla ⇔ SLS ⇔ IOP

Convex system-level synthesis: (Wang et al., 2019)

min
R,M,N,L

g(R,M,N,L)

subject to SLP constraint,[
R N
M L

]
∈ S.

I This is clearly equivalent to a convex problem in Youla,

min
Q

g1(Q)

subject to

[
f1(Q) f3(Q)
f2(Q) f4(Q)

]
∈ S.

I which is also equivalent to a convex problem in input-output
parameterization

min
Y,U,W,Z

ĝ1(U)

subject to IOP constraint[
f̂1(U) f̂3(U)

f̂2(U) f̂4(U)

]
∈ S.
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