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Linear time-invariant systems

» State-space model
z = Ax + Biw + Bau,

z=C1x+ D1w+ Disu,
y = Cox + D21w + Daau,

where z € R",u € R™,w € R%, y € R, z € R? are the state vector,
control action, external disturbance, measurement, and regulated output,
respectively.

» Dynamic controller )
¢ = Axé + Byy,
u = Cr& + Dry,

where £ € R"* is the internal state of the controller.

Recap: optimal control and its convex formulations



Frequency domain

» Plant model
P12
Pao|’

where P;; = C;(sI — A)"'B;j + D;;. We refer to P as the open-loop
plant model.
» Controller u = Ky, where K = Cy(sI — A)"' By, + Dy.

z w
| P11 P
Par Pa2|
y u
> K

Figure: Interconnection of the plant P and controller K

Recap: optimal control and its convex formulations



Optimal control

» General optimal control formulation

min  f(P,K)

subject to K internally stabilizes P.

where f(P,K) defines a certain performance index.

» Specifically

Frequency-domain formulation State-space formulation

min [Tzl
K

By + B2Dy D21

A+ ByDyCo
subject to K € Cgtap, min B, Cy
C1 4+ D12DCo
where
st A+ BaDypCa BaCy
Tow = P11+P12K(I—P22K)_1P21, o B, Co A

Recap: optimal control and its convex formulations

D12Cx | D11+ D12Dp D2



Input-output parameterization

Consider the closed-loop responses from (J,,4.) to (y,u):

[ —Pa] E VZV] =1 0], (1a)
o 2|7l )
Y, UW,Z € RHoo. (1c)

Theorem (Input-output parameterization)

The set of all internally stabilizing controllers can be represented as

Cotab = {K = Uy ! | Y, U, W, Z are in the affine subspace (1a)-(1c)}.

mlén P11 4 P1oK (I — PorK) ' Poy || Y,%l,iv%,z P11+ P12UPa ||
subject to K € Cstab, subject to  (1a) — (1c).

Recap: optimal control and its convex formulations 7



System-level parameterization

Consider the closed-loop responses from (d.,d,) to (x,u):

sI—A —B)] Lﬁ ﬂ _ 1 o, (22)
BUPE
R,M,N € RHoo, L€ RHoo. (2¢)

Theorem (System-level parameterization)

For strictly proper plants, the set of all internally stabilizing controllers can be
represented as

Cotap = {K =L - MR 'N | R, M, N, L are in the affine subspace (2a)-(2c)}

System-level synthesis

min C1 D12
R,M,N,L

subject to  (2a) — (2¢).

R N] |:Bl

M L Dﬂ] + D11

Recap: optimal control and its convex formulations



Recap:

Youla parameterization

Classical Optimal control
min P11 + P12K(I — GK) Py |
subject to K internally stabilizes G.
We have the following equivalence
Cotab = {K = (V. = M, Q)(U, — N, Q)" | Q € RHoo},

where Q is denoted as the Youla parameter.

Convex reformulation in Youla

inn ITir + T12QToy||
subject to Q € RH o,

where T11 = P11 + P12V, M;P21, T12 = —P12M,, and T2 = M;Po;1.

optimal control and its convex formulations



Explicit equivalence among Youla, SLS, and IOP

— any convex SLS can be equivalently reformulated into a convex problem in
Youla or IOP; vice versa

(] ),
& 32
Q™ 7.

3 %
affine
.

» Y. Zheng, L. Furieri, A. Papachristodoulou, N. Li, and M. Kamgarpour. Onthe equivalence
of youla, system-level and input-output parameterizations. |EEE Transactions on Automatic
Control, 2020.
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Hardy spaces: H, and H.

> L2(jR) Space: this space consists of all complex matrix functions F

/jo Trace [F* (jw)F(jw)] dw < 00.  Fi(s) = 5%1’5(3) = - il

The inner product is defined as

(F,G) = % /Oo Trace [F* (jw) G (jw)] dow,

—o0

for F,G € L2, and the induced norm is given by || F||2 := \/(F, F).

» 7, Space: a subspace of L2 with matrix functions F'(s) analytic in
Re(s) > 0. The corresponding norm is defined as

I1F|3 = sup {QL / Trace [F* (0 + jw)F(o + jw)] dw} :
o>0 ™

— 00
1 oo

=5 N

Trace [F* (jw) F (jw)] dw.

» RHo: Space: The real rational subspace of Hs, consisting of all strictly
proper and real rational stable transfer matrices.

Hardy spaces: H2 and Hoo, and their LMI computations



Hardy spaces: H, and H

> Lo (jR) Space: consisting of matrix-valued complex functions that are
bounded on jR, with norm defined as

. 1 1
1Flle = supoma(FG)]:  Fi() = 27 Fol) = 5

» Hoo Space: H is a subspace of Lo, with functions that are analytic and
bounded in the open right-half plane. The Hoo norm is defined as

[Flloo := sup omax(F(s)) = sup omax(F(jw)).
Re(s)>0 weR

The second equality can be regarded as a generalization of the maximum
modulus theorem for matrix functions.
» RHoo Space: The real rational subspace of H, consisting of all proper
and real rational stable transfer matrices.
T(s)=C(sI — A)"'B+D

with A stable.
Hardy spaces: H2 and Hoo, and their LMI computations
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Computations of #, and #H., norms

Lemma
. . A|B .
Consider a transfer matrix T (s) = oo with A stable. Then, we have
| T3, = Trace(B'QB), where ATQ + QA+ C'C =
T3, = Trace(CPCT), where AP + PA" + BB = 0.
where QQ and P are observability and controllability Gramians.

»> Deterministic interpretation: Squared H2 norm is energy sum of
transients of output responses:

Z/ t)dt = / Trace ((C’eAtB)T(CeAtB)) dt = ||T|3, -
0
» Stochastic interpretation: If w is white noise and © = Ax + Bw,z = Cx
. T _ 2
Jim E (2(0)72(0)) = | T,

The squared Ha-norm equals the asymptotic variance of output.

Hardy spaces: H2 and Hoo, and their LMI computations 14



Computations of #H, and #H., norms

Lemma

Consider a transfer matrix T(s) = é, g ] with A stable. Then, we have
IT(s)||l2 < v if and only if there exists P = 0 such that

trace(CPC") < ~°, and AP+ PA" +BB' <0,
and there exists () >~ 0 such that

trace(B'QB) < +°, and ATQ+QA+C'C <0.

=:if |T(s)||2 < 7y, then we have
Trace(C’PoCT) < 72, where APy + Py AT + BB = 0.

Now we consider AP, + PEAT + BBT + eI = 0. Note that limeyo P. = Py.
Since Trace(CPoCT) < +2, there exists a € > 0 such that Trace(CP.C") < ~?
and

AP, + P.AT + BB" = —eI < 0.

Hardy spaces: H2 and Hoo, and their LMI computations
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Computations of #, and #., norms

Lemma
Consider a transfer matrix T (s) = [%‘%] with A stable. Then, we have
IT(s)||l2 < v if and only if there exists P = 0 such that
trace(CPC") < ~?, and AP+ PA" +BB' <0,
and there exists () > 0 such that

trace(B'QB) <%, and A'Q+QA+C'C <0.

<« We first have
AP+ PA" + BB — (AP, + PbA" + BB") = A(P — Py) + (P — Py)A" < 0.
This indicates that P — Py > 0 (since A is stable). Then

trace(CP,CT) < trace(CPCT) < ~°.

We have proved that ||G(s)]]2 < 7.
Hardy spaces: H2 and Hoo, and their LMI computations
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Computations of #, and #H., norms

We have a special version of Kalman-Yakubovich-Popov (KYP) lemma:

Lemma

Consider a transfer matrix T(s) = [%‘%} with A stable. Then, the
following statements are equivalent:
> IT(s)llo <
> T*(jw)T(jw) < v*I,Vw € R.
» The following LMI is feasible.
ATX+XA XB CT

BTX —~I D'|<0X>0.
C D —I

» We have
TGl
p
o<lldlz<1  |ldll2

Hardy spaces: H2 and Hoo, and their LMI computations
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Other equivalent formulations

The Hoo LMI has multiple equivalent forms:
> (obtained by left- and right- multiplied by diag('yél,'yéf,w_%]))
ATX+XA XB CT
BTX —~*I D"| <0,X = 0.
C D —I
» and (by applying the Schur complement)

ATX +XA+C"C XB+C'D

B'X+Dp'c DD~ 3% X0

> and
ATX4+XA+CTC—(XB+C'D)(D'D—*1) " (B"X+D'C) <0, X >0,
which is a Riccati inequality.

Hardy spaces: H2 and Hoo, and their LMI computations 18
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State Feedback

» Optimal control

A+ ByDi,Co BoCl B1 + B2Dy D2y
min BirCs Ag By D21
C1 + D12DCy  D12Ch ‘ D11+ Di2Di D2y

; A+ BaDyCy  BaCl
' BCs Ag

] is stable.

» We consider static state feedback u = Dyx, and the controller synthesis
problem becomes

. H[ A+ ByDi | B ]H
min

Dy, Ci+ D12Dy. | Di (3)
subject to A + B2 Dy is stable.
LMI formulation for Hs and Hoo control: state-feedback
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LMI for 1, optimal control

Minimize the H2 norm of the closed-loop system T.,, and assume Di; =0
(otherwise T, is not strictly proper and ||T..||2 is not finite).

» Step 1: applying the LMI condition for Hz norm.

min vy
P,Dy v

subject to (A + BaDy)P + P(A+ BaDy)" + BiBf <0,

trace((Cl =+ D12Dk)P(Cl =+ D12Dk)T) <7,
P = 0.

» Step 2: Change of variable and introduce X = D, P

min 7y
P,Xy

subject to (AP + BoX) + (AP 4 B2X)" + BiB{ <0,
trace((C1P 4 D12 X)P ' (C1 P + D12X)") < 7,
P = 0.

LMI formulation for Hs and Hoo control: state-feedback
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LMI for H, optimal control

» Step 3: Apply the Schur complement, and note that
trace((C1 P 4+ D12 X)P ' (C1P+ D12X)') <, P»0
is equivalent to

|: 7 C1P 4+ D12 X

(CLP + D1 X)T P } =0, trace(Z) <.

> Step 4: get an LMI formulation

min trace(Z)

P,X,Z
subject to (AP + BaX) 4 (AP + B2 X)" + B1B{ <0,
Z CiP+DiX| g
(C1P + D12 X)T P ’

and the optimal H2 optimal state feedback gain is recovered by
Dy =XP "

LMI formulation for Hs and Hoo control: state-feedback 22



LMI formulation for ., optimal control

Minimize | T;w||oo in the optimal control formulation.
» Step 1: apply the LMI for Hoo norm

min vy
X, Dy

(A+ B2Dp)"X + X(A+ BaDy,)

XB; (Ci1+ DiaDy)"
subject to BTX —~I D, =<0,
C1 + D12Dy D1y -1

X > 0.

> Step 2: Left- and right-multiplied by diag(X ™", I, )
Py
P(A+ B2Dy)" 4+ (A+ B2Dy)P Bi P(Ci+ D12Dy)T
subject to B —~I Df, =<0,
(C1 4 Di2Dy)P D1y —~I
P >0,

LMI formulation for Hs and Hoo control: state-feedback
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LMI formulation for ., optimal control

Minimize | T.w||oo in the optimal control formulation.

» Step 3: Change of variables Y = D, P.

min 7y
P,Y,~v
(AP + BoY)T + (AP + BoY) By
subject to BT —~I
(C1 + D12Y) D1y
P> 0.

(C1+ Dp2Y)T
DI, <0,
—~I

The optimal H. state feedback gain can be recovered by D, = Y P!,

LMI formulation for Hs and Hoo control: state-feedback
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General H; and H., Output feedback

» Optimal control

min By Co Ag B Da1
C1+ D12DCy  D12Cy | D11 + D12Di Do

A+ BaDpCy  BsCh
BrCs Apg

A+ ByDiCo B2Cy, ‘ B1+ B2Dy D2y

s.t. ] is stable.

» You can apply the Ha or Hoo LMI and use a series of changes of variables
to derive LMI formulations.

1. Pascal Gahinet and Pierre Apkarian. A linear matrix inequality approach to H o control.
Inter-national journal of robust and nonlinear control, 4(4):421-448, 1994.

2. Carsten Scherer, Pascal Gahinet, and Mahmoud Chilali. Multiobjective output-feedback
controlvia Imi optimization.|IEEE Transactions on automatic control, 42(7):896-911, 1997

LMI formulation for Hs and Hoo control: state-feedback 25
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Classical distributed control formulation

» A canonical problem is to minimize a norm of the closed-loop map subject
to a subspace constraint

min P11 4+ P12K(7 - P2K) Py

subject to K € Cstab, (4)
Kes,
where S is a subspace demoting sparsity or delay constraints on the
controller.

» After applying the change of variables in Youla, input-output, or
system-level parameterization, we need to introduce the following
non-convex constraint on the decision variables

(V. =M, Q)(U, -N, Q)" €5,
Uy ‘'es,
L-MR 'Nes.

Distributed control and Quadratic Invariance 27



Quadratic Invariance

Definition (Quadratic Invariance (Ql))

Given a plant P33 and a subspace S. The subspace S is called quadratically
invariant under Py if

KPxK € S, VK € S.

Cayley—Hamilton theorem

p(A)=co+ciA+...+cn A" =0.

Theorem
Define U = K(I — P2oK)™'. If S is quadratically invariant under Pas, then

KeS< Ucs.

= Observe that
(I — PQQK)_l = =+ 0[1([ — PQQK) —|— e + Oém_l(l — PQQK)m_l
< Observe that U = K(I — P22K) ™! leads to K = U(I + P2, U) ™,

Distributed control and Quadratic Invariance 28



QI with the IOP

Theorem (QI with the IOP)

If S is QI under P2, then
1. We have

CaarNS = {K=UY " | Y,U,W,Z are in (1a)-(1c), U € S}.

2. Problem (4) can be equivalently formulated as a convex problem

min P11 + P12 UP2 ||
Y, U,W,Z
subject to  (1a) — (1c),

Uecs.

Proof: From the affine constraint, we have
Y -PxU=] = Y=1+P2U.
Then, we have
K=U(I+PxU)"' & U=K({-PxK) "

Distributed control and Quadratic Invariance
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QI with the SLP

Corollary (QI with the SLP)

If S is QI under Pos, then
1. We have

CaabNS={K=L—-MR 'N|R, M, N, L are in (2a)-(2c),L € S}.

2. Problem (4) can be equivalently formulated as a convex problem

. R N| | B:
R,%}g,L H L D12 [M L:| |:D21:| + Dll
subject to (2a) — (2¢),

Les.

Distributed control and Quadratic Invariance
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QI with the Youla

Corollary (QI with Youla)

If S is QI under P2, then
1. We have

CaapNS ={K=(V, — M,Q)(U,—N,Q) "' | Q € RHwo

(V. —M,Q)M, €S, }.

2. Problem (4) can be equivalently formulated as a convex problem
Hgn |T11 + T12QT 21 ||

subject to (V, —M,Q)M, € §
Q € RHoo.

Distributed control and Quadratic Invariance
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Summary: Quadratic invariance (QI)

min || T11 + T12QTa1]|
Q (V. — M, QM, € S
Youla subject to Q € RH o,

(V'r - M’V‘Q)(U’l‘ - N’I‘Q)71 6 S

minz P11 + P12UP2 |

Y,U,W, Ues
IOP subject to  (1a) — (1¢).
ur'es
) R N| | B:
Rmin H D] {M L} {DQJ D2
SLS subject to  (2a) — (2¢)

L-MR 'N€eS.

Distributed control and Quadratic Invariance 32



Other topics

» QI does not necessarily promise efficient numerical computation;
Many later works aim to provide state-space solutions.

» Sparsity Invariance: Beyond QI for sparsity constraints;

UeT,YER = Uy les

» Youla for distributed control: Gradient dominance and its
connections with learning applications.

Distributed control and Quadratic Invariance
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Hardy spaces: H, and H.

» Complex function: Given S C C, define f(s) as a complex valued
function on S:

f(s): S —C.

> Analytical complex function: f(s) is said to be analytic at a point 2o in
S if it is differentiable at zo and also at each point in some neighborhood

of 20.
f £05) = fz0).
s—z0 S — 20

A function f(s) analytic at zo has a power series representation at zo, i.e.,
oo
f5) = o+ 3 enls — 20)",
n=1

converges for some neighborhood of z.

» Analytic complex function matrix: A matrix valued function is analytic
in S if every element of the matrix is analytic in S.

Equivalence with SLP and IOP
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Appendix

Explicit equivalence among Youla, SLS, and IOP

— any convex SLS can be equivalently reformulated into a convex problem in
Youla or IOP; vice versa




Youla < I0P

Let U,,V,,U;,V;,M,., M;,N,.,N; be any doubly-coprime factorization of G.
We have

1. For any Q € RH o, the following transfer matrices

Y = (U, — N,.QM,,
U=(V, - M, QM,,
W = (U, — N,Q)N,,
Z=1+(V,—MQN,

belong to the IOP constraint and are such that
Uy ' =(V, —M,Q)(U, — N,Q) "
2. For any (Y,U,W,Z) in the IOP constraint, the transfer matrix
Q =V,YU,. - U,UU, — VIWV, + U2V, — V,U,,

is such that Q € RHoo and (V. — M, Q)(U, — N, Q)" = UY .

Equivalence with SLP and IOP
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IOP < SLS

For any R, M, N, L satisfying the SLP constraint, the transfer matrices

Y=CoN+1I,
u=1L,

W = C2RBo,
Z=MB;+1,

belong to the IOP constraint and are such that

L-MR !N=UY "

» The affine relationship can written into
Y W| [C; R N B; n I 0
u z| I/ |M L||I 0 I|°
» This affine transformation is in general not invertible, but considering the

achievability conditions, an explicit converse transformation can be found
as well.

Equivalence with SLP and IOP 37



IOP < SLS

For any Y, U, W, Z satisfying the IOP constraint, the transfer matrices
R= (s —A) "+ (sI — A) "' BoUCy(sI — A)~"
M = UC,(sI — A)~ ",
N = (sI — A) 'B.U,
L=U,

belong to the SLP constraint and are such that

Uy '=L- MR !N.

Equivalence with SLP and IOP
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Youla < SLS

Let U,,V,,U;,V;,M,., M;,N,., N; be any doubly-coprime factorization of G.
We have

1. For any Q € RH o, the following transfer matrices
R=(sI — A"+ (s — A) ' Bs(V, — M, Q)M;Ca(s] — A)~"
M = (V, — M, Q)M;Ca (s — A)~ ",
N = (s — A) " 'By(V, — M,.Q)M;,
L= (Vr - MTQ)Mly

belong to the SLP constraint and are such that
L-MR 'N= (V. -M,Q)U, —N,Q "
2. For any (R,M,N,L) in the SLP constraint, the transfer matrix

Q = V,;C2NU, — U;LU,. — V;C3RB2V, + U MB:V, + UV,

is such that Q € RHoo and (V. — M, Q)(U, — N, Q)" =L — MR™'N.

Equivalence with SLP and IOP
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Youla < SLS < IOP

Convex system-level synthesis: (Wang et al., 2019)

in g(R,M,N, L)

subject to SLP constraint,
{R N

R Moo

» This is clearly equivalent to a convex problem in Youla,
min  91(Q)

f1(Q) f3(0)}

2@ H@] <

» which is also equivalent to a convex problem in input-output
parameterization

subject to [

ynin g1(U)

subject to 10OP constraint

[fl(U) faw)} cs.

f2(U) fa(u)

Equivalence with SLP and IOP 40
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