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Linear time-invariant systems

I State-space model
ẋ = Ax+B1w +B2u,

z = C1x+D11w +D12u,

y = C2x+D21w +D22u,

where x ∈ Rn, u ∈ Rm, w ∈ Rd, y ∈ Rp, z ∈ Rq are the state vector,
control action, external disturbance, measurement, and regulated output,
respectively.

I Dynamic controller
ξ̇ = Akξ +Bky,

u = Ckξ +Dky,

where ξ ∈ Rnk is the internal state of the controller.
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Frequency domain

I Plant model

P =

 A B1 B2

C1 D11 D12

C2 D21 D22

 =

[
P11 P12

P21 P22

]
,

where Pij = Ci(sI −A)−1Bj +Dij . We refer to P as the open-loop
plant model.

I Controller u = Ky, where K = Ck(sI −A)−1Bk +Dk.

-
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Figure: Interconnection of the plant P and controller K
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Optimal control

I General optimal control formulation

min
K

f(P,K)

subject to K internally stabilizes P.

where f(P,K) defines a certain performance index.

I Specifically

Frequency-domain formulation State-space formulation

min
K

‖Tzw‖

subject to K ∈ Cstab,

where

Tzw = P11+P12K(I−P22K)−1P21.

min

∥∥∥∥∥∥
 A + B2DkC2 B2Ck B1 + B2DkD21

BkC2 Ak BkD21

C1 + D12DkC2 D12Ck D11 + D12DkD21

∥∥∥∥∥∥
s.t.

[
A + B2DkC2 B2Ck

BkC2 Ak

]
is stable.
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Input-output parameterization

Consider the closed-loop responses from (δy, δu) to (y,u):

[
I −P22

] [Y W
U Z

]
=
[
I 0

]
, (1a)[

Y W
U Z

] [
−P22

I

]
=

[
0
I

]
, (1b)

Y,U,W,Z ∈ RH∞. (1c)

Theorem (Input-output parameterization)

The set of all internally stabilizing controllers can be represented as

Cstab = {K = UY−1 | Y,U,W,Z are in the affine subspace (1a)-(1c)}.

min
K

‖P11 +P12K(I −P22K)−1P21‖

subject to K ∈ Cstab,

min
Y,U,W,Z

‖P11 +P12UP21‖

subject to (1a)− (1c).
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System-level parameterization

Consider the closed-loop responses from (δx, δy) to (x,u):[
sI −A −B2

] [R N
M L

]
=
[
I 0

]
, (2a)[

R N
M L

] [
sI −A
−C2

]
=

[
I
0

]
, (2b)

R,M,N ∈ RH∞, L ∈ RH∞. (2c)

Theorem (System-level parameterization)

For strictly proper plants, the set of all internally stabilizing controllers can be
represented as

Cstab = {K = L−MR−1N | R, M, N, L are in the affine subspace (2a)-(2c)}.

System-level synthesis

min
R,M,N,L

∥∥∥∥[C1 D12

] [R N
M L

] [
B1

D21

]
+D11

∥∥∥∥
subject to (2a)− (2c).
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Youla parameterization

I Classical Optimal control

min
K

‖P11 + P12K(I − GK)−1P21‖

subject to K internally stabilizes G.

I We have the following equivalence

Cstab = {K = (Vr −MrQ)(Ur −NrQ)−1 | Q ∈ RH∞},

where Q is denoted as the Youla parameter.

I Convex reformulation in Youla

min
Q

‖T11 + T12QT21‖

subject to Q ∈ RH∞,

where T11 = P11 +P12VrMlP21,T12 = −P12Mr, and T21 = MlP21.
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Explicit equivalence among Youla, SLS, and IOP

— any convex SLS can be equivalently reformulated into a convex problem in

Youla or IOP; vice versa

Youla

SLS IOP

affi
ne
affi

ne

affine

I Y. Zheng, L. Furieri, A. Papachristodoulou, N. Li, and M. Kamgarpour. Onthe equivalence
of youla, system-level and input-output parameterizations. IEEE Transactions on Automatic
Control, 2020.
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Hardy spaces: H2 and H∞
I L2(jR) Space: this space consists of all complex matrix functions F∫ ∞

−∞
Trace [F ∗(jω)F (jω)] dω <∞. F1(s) =

1

s− 1
, F2(s) =

1

s+ 1

The inner product is defined as

〈F,G〉 = 1

2π

∫ ∞
−∞

Trace [F ∗(jω)G(jω)] dω,

for F,G ∈ L2, and the induced norm is given by ‖F‖2 :=
√
〈F, F 〉.

I H2 Space: a subspace of L2 with matrix functions F (s) analytic in
Re(s) > 0. The corresponding norm is defined as

‖F‖22 := sup
σ>0

{
1

2π

∫ ∞
−∞

Trace [F ∗(σ + jω)F (σ + jω)] dω

}
.

=
1

2π

∫ ∞
−∞

Trace [F ∗(jω)F (jω)] dω.

I RH2 Space: The real rational subspace of H2, consisting of all strictly
proper and real rational stable transfer matrices.
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Hardy spaces: H2 and H∞

I L∞(jR) Space: consisting of matrix-valued complex functions that are
bounded on jR, with norm defined as

‖F‖∞ := sup
ω∈R

σmax[F (jω)]. F1(s) =
1

s− 1
, F2(s) =

1

s+ 1

I H∞ Space: H∞ is a subspace of L∞ with functions that are analytic and
bounded in the open right-half plane. The H∞ norm is defined as

‖F‖∞ := sup
Re(s)>0

σmax(F (s)) = sup
ω∈R

σmax(F (jω)).

The second equality can be regarded as a generalization of the maximum
modulus theorem for matrix functions.

I RH∞ Space: The real rational subspace of H∞, consisting of all proper
and real rational stable transfer matrices.

T(s) = C(sI −A)−1B +D

with A stable.
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Computations of H2 and H∞ norms

Lemma

Consider a transfer matrix T(s) =

[
A B

C 0

]
with A stable. Then, we have

‖T‖2H2
= Trace(BTQB), where ATQ+QA+ CTC = 0,

‖T‖2H2
= Trace(CPCT), where AP + PAT +BBT = 0.

where Q and P are observability and controllability Gramians.

I Deterministic interpretation: Squared H2 norm is energy sum of
transients of output responses:
m∑
k=1

∫ ∞
0

zk(t)
Tzk(t)dt =

∫ ∞
0

Trace
(
(CeAtB)T(CeAtB)

)
dt = ‖T‖2H2

.

I Stochastic interpretation: If w is white noise and ẋ = Ax+Bw, z = Cx

lim
t→∞

E
(
z(t)Tz(t)

)
= ‖T‖2H2

The squared H2-norm equals the asymptotic variance of output.
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Computations of H2 and H∞ norms

Lemma

Consider a transfer matrix T(s) =

[
A B

C 0

]
with A stable. Then, we have

‖T(s)‖2 < γ if and only if there exists P � 0 such that

trace(CPCT) < γ2, and AP + PAT +BBT ≺ 0,

and there exists Q � 0 such that

trace(BTQB) < γ2, and ATQ+QA+ CTC ≺ 0.

⇒: if ‖T(s)‖2 < γ, then we have

Trace(CP0C
T) < γ2, where AP0 + P0A

T +BBT = 0.

Now we consider APε + PεA
T +BBT + εI = 0. Note that limε→0 Pε = P0.

Since Trace(CP0C
T) < γ2, there exists a ε > 0 such that Trace(CPεC

T) < γ2

and
APε + PεA

T +BBT = −εI ≺ 0.
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Computations of H2 and H∞ norms

Lemma

Consider a transfer matrix T(s) =

[
A B

C 0

]
with A stable. Then, we have

‖T(s)‖2 < γ if and only if there exists P � 0 such that

trace(CPCT) < γ2, and AP + PAT +BBT ≺ 0,

and there exists Q � 0 such that

trace(BTQB) < γ2, and ATQ+QA+ CTC ≺ 0.

⇐ We first have

AP + PAT +BBT − (AP0 + P0A
T +BBT) = A(P − P0) + (P − P0)A

T ≺ 0.

This indicates that P − P0 � 0 (since A is stable). Then

trace(CP0C
T) < trace(CPCT) < γ2.

We have proved that ‖G(s)‖2 < γ.
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Computations of H2 and H∞ norms

We have a special version of Kalman-Yakubovich-Popov (KYP) lemma:

Lemma

Consider a transfer matrix T(s) =

[
A B

C D

]
with A stable. Then, the

following statements are equivalent:

I ‖T(s)‖∞ < γ;

I T∗(jω)T(jω) ≺ γ2I, ∀ω ∈ R.

I The following LMI is feasible.ATX +XA XB CT

BTX −γI DT

C D −γI

 ≺ 0, X � 0.

I We have

sup
0<‖d‖2<1

‖T(s)d‖2
‖d‖2

< γ

Hardy spaces: H2 and H∞, and their LMI computations 17



Other equivalent formulations

The H∞ LMI has multiple equivalent forms:

I (obtained by left- and right- multiplied by diag(γ
1
2 I, γ

1
2 I, γ−

1
2 I))ATX +XA XB CT

BTX −γ2I DT

C D −I

 ≺ 0, X � 0.

I and (by applying the Schur complement)[
ATX +XA+ CTC XB + CTD

BTX +DTC DTD − γ2I

]
≺ 0, X � 0,

I and

ATX+XA+CTC−(XB+CTD)(DTD−γ2I)−1(BTX+DTC) ≺ 0, X � 0,

which is a Riccati inequality.

Hardy spaces: H2 and H∞, and their LMI computations 18
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State Feedback

I Optimal control

min

∥∥∥∥∥∥
 A+B2DkC2 B2Ck B1 +B2DkD21

BkC2 Ak BkD21

C1 +D12DkC2 D12Ck D11 +D12DkD21

∥∥∥∥∥∥
s.t.

[
A+B2DkC2 B2Ck

BkC2 Ak

]
is stable.

I We consider static state feedback u = Dkx, and the controller synthesis
problem becomes

min
Dk

∥∥∥∥[ A+B2Dk B1

C1 +D12Dk D11

]∥∥∥∥
subject to A+B2Dk is stable.

(3)

LMI formulation for H2 and H∞ control: state-feedback 20



LMI for H2 optimal control

Minimize the H2 norm of the closed-loop system Tzw and assume D11 = 0
(otherwise Tzw is not strictly proper and ‖Tzw‖2 is not finite).

I Step 1: applying the LMI condition for H2 norm.

min
P,Dk,γ

γ

subject to (A+B2Dk)P + P (A+B2Dk)
T +B1B

T
1 ≺ 0,

trace((C1 +D12Dk)P (C1 +D12Dk)
T) < γ,

P � 0.

I Step 2: Change of variable and introduce X = DkP

min
P,X,γ

γ

subject to (AP +B2X) + (AP +B2X)T +B1B
T
1 ≺ 0,

trace((C1P +D12X)P−1(C1P +D12X)T) < γ,

P � 0.

LMI formulation for H2 and H∞ control: state-feedback 21



LMI for H2 optimal control

I Step 3: Apply the Schur complement, and note that

trace((C1P +D12X)P−1(C1P +D12X)T) < γ, P � 0

is equivalent to[
Z C1P +D12X

(C1P +D12X)T P

]
� 0, trace(Z) < γ.

I Step 4: get an LMI formulation

min
P,X,Z

trace(Z)

subject to (AP +B2X) + (AP +B2X)T +B1B
T
1 ≺ 0,[

Z C1P +D12X

(C1P +D12X)T P

]
� 0,

and the optimal H2 optimal state feedback gain is recovered by
Dk = XP−1.
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LMI formulation for H∞ optimal control

Minimize ‖Tzw‖∞ in the optimal control formulation.

I Step 1: apply the LMI for H∞ norm

min
X,Dk,γ

γ

subject to

(A+B2Dk)
TX +X(A+B2Dk) XB1 (C1 +D12Dk)

T

BT
1X −γI DT

11

C1 +D12Dk D11 −γI

 ≺ 0,

X � 0.

I Step 2: Left- and right-multiplied by diag(X−1, I, I).

min
P,Dk,γ

γ

subject to

P (A+B2Dk)
T + (A+B2Dk)P B1 P (C1 +D12Dk)

T

BT
1 −γI DT

11

(C1 +D12Dk)P D11 −γI

 ≺ 0,

P � 0,

LMI formulation for H2 and H∞ control: state-feedback 23



LMI formulation for H∞ optimal control

Minimize ‖Tzw‖∞ in the optimal control formulation.

I Step 3: Change of variables Y = DkP .

min
P,Y,γ

γ

subject to

(AP +B2Y )T + (AP +B2Y ) B1 (C1 +D12Y )T

BT
1 −γI DT

11

(C1 +D12Y ) D11 −γI

 ≺ 0,

P � 0.

The optimal H∞ state feedback gain can be recovered by Dk = Y P−1.

LMI formulation for H2 and H∞ control: state-feedback 24



General H2 and H∞ Output feedback

I Optimal control

min

∥∥∥∥∥∥
 A+B2DkC2 B2Ck B1 +B2DkD21

BkC2 Ak BkD21

C1 +D12DkC2 D12Ck D11 +D12DkD21

∥∥∥∥∥∥
s.t.

[
A+B2DkC2 B2Ck

BkC2 Ak

]
is stable.

I You can apply the H2 or H∞ LMI and use a series of changes of variables
to derive LMI formulations.

1. Pascal Gahinet and Pierre Apkarian. A linear matrix inequality approach to H∞ control.
Inter-national journal of robust and nonlinear control, 4(4):421–448, 1994.

2. Carsten Scherer, Pascal Gahinet, and Mahmoud Chilali. Multiobjective output-feedback
controlvia lmi optimization.IEEE Transactions on automatic control, 42(7):896–911, 1997
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Classical distributed control formulation

I A canonical problem is to minimize a norm of the closed-loop map subject
to a subspace constraint

min
K

‖P11 +P12K(I −P22K)−1P21‖

subject to K ∈ Cstab,

K ∈ S,

(4)

where S is a subspace demoting sparsity or delay constraints on the
controller.

I After applying the change of variables in Youla, input-output, or
system-level parameterization, we need to introduce the following
non-convex constraint on the decision variables

(Vr −MrQ)(Ur −NrQ)−1 ∈ S,

UY−1 ∈ S,

L−MR−1N ∈ S.

Distributed control and Quadratic Invariance 27



Quadratic Invariance

Definition (Quadratic Invariance (QI))

Given a plant P22 and a subspace S. The subspace S is called quadratically
invariant under P22 if

KP22K ∈ S, ∀K ∈ S.

Cayley–Hamilton theorem

p(A) = c0 + c1A+ . . .+ cnA
n = 0.

Theorem

Define U = K(I −P22K)−1. If S is quadratically invariant under P22, then

K ∈ S ⇐⇒ U ∈ S.

⇒ Observe that

(I −P22K)−1 = α0 + α1(I −P22K) + . . .+ αm−1(I −P22K)m−1

⇐ Observe that U = K(I −P22K)−1 leads to K = U(I +P22U)−1.

Distributed control and Quadratic Invariance 28



QI with the IOP

Theorem (QI with the IOP)

If S is QI under P22, then

1. We have

Cstab ∩ S = {K =UY−1 | Y,U,W,Z are in (1a)-(1c),U ∈ S}.

2. Problem (4) can be equivalently formulated as a convex problem

min
Y,U,W,Z

‖P11 +P12UP21‖

subject to (1a)− (1c),

U ∈ S.

Proof: From the affine constraint, we have

Y −P22U = I ⇒ Y = I +P22U.

Then, we have

K = U(I +P22U)−1 ⇔ U = K(I −P22K)−1.
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QI with the SLP

Corollary (QI with the SLP)

If S is QI under P22, then

1. We have

Cstab ∩ S = {K = L−MR−1N | R, M, N, L are in (2a)-(2c),L ∈ S}.

2. Problem (4) can be equivalently formulated as a convex problem

min
R,M,N,L

∥∥∥∥[C1 D12

] [R N
M L

] [
B1

D21

]
+D11

∥∥∥∥
subject to (2a)− (2c),

L ∈ S.
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QI with the Youla

Corollary (QI with Youla)

If S is QI under P22, then

1. We have

Cstab ∩ S = {K = (Vr −MrQ)(Ur−NrQ)−1 | Q ∈ RH∞
(Vr −MrQ)Ml ∈ S, }.

2. Problem (4) can be equivalently formulated as a convex problem

min
Q

‖T11 +T12QT21‖

subject to (Vr −MrQ)Ml ∈ S
Q ∈ RH∞.
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Summary: Quadratic invariance (QI)

Youla

min
Q

‖T11 + T12QT21‖

subject to Q ∈ RH∞,

(Vr −MrQ)(Ur −NrQ)−1 ∈ S

(Vr −MrQ)Ml ∈ S

IOP

min
Y,U,W,Z

‖P11 + P12UP21‖

subject to (1a)− (1c).

UY−1 ∈ S

U ∈ S

SLS

min
R,M,N,L

∥∥∥∥[C1 D12

] [R N
M L

] [
B1

D21

]
+D22

∥∥∥∥
subject to (2a)− (2c)

L−MR−1N ∈ S.

L ∈ S
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Other topics

I QI does not necessarily promise efficient numerical computation;
Many later works aim to provide state-space solutions.

I Sparsity Invariance: Beyond QI for sparsity constraints;

U ∈ T ,Y ∈ R ⇒ UY−1 ∈ S

I Youla for distributed control: Gradient dominance and its
connections with learning applications.
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Hardy spaces: H2 and H∞

I Complex function: Given S ⊂ C, define f(s) as a complex valued
function on S:

f(s) : S → C.

I Analytical complex function: f(s) is said to be analytic at a point z0 in
S if it is differentiable at z0 and also at each point in some neighborhood
of z0.

lim
s→z0

f(s)− f(z0)
s− z0

.

A function f(s) analytic at z0 has a power series representation at z0, i.e.,

f(s) = c0 +

∞∑
n=1

cn(s− z0)n,

converges for some neighborhood of z0.

I Analytic complex function matrix: A matrix valued function is analytic
in S if every element of the matrix is analytic in S.

Equivalence with SLP and IOP 34



Appendix

Explicit equivalence among Youla, SLS, and IOP

— any convex SLS can be equivalently reformulated into a convex problem in

Youla or IOP; vice versa

Youla

SLS IOP

affi
ne

affi
ne

affine



Youla ⇔ IOP

Let Ur,Vr,Ul,Vl,Mr,Ml,Nr,Nl be any doubly-coprime factorization of G.
We have

1. For any Q ∈ RH∞, the following transfer matrices

Y = (Ur −NrQ)Ml ,

U = (Vr −MrQ)Ml ,

W = (Ur −NrQ)Nl ,

Z = I + (Vr −MrQ)Nl ,

belong to the IOP constraint and are such that

UY−1 = (Vr −MrQ)(Ur −NrQ)−1.

2. For any (Y,U,W,Z) in the IOP constraint, the transfer matrix

Q = VlYUr −UlUUr − VlWVr +UlZVr − VlUr ,

is such that Q ∈ RH∞ and (Vr −MrQ)(Ur −NrQ)−1 = UY−1.

Equivalence with SLP and IOP 36



IOP ⇔ SLS

For any R,M,N,L satisfying the SLP constraint, the transfer matrices

Y = C2N+ I,

U = L,

W = C2RB2,

Z = MB2 + I,

belong to the IOP constraint and are such that

L−MR−1N = UY−1.

I The affine relationship can written into[
Y W
U Z

]
=

[
C2

I

] [
R N
M L

] [
B2

I

]
+

[
I 0
0 I

]
.

I This affine transformation is in general not invertible, but considering the
achievability conditions, an explicit converse transformation can be found
as well.

Equivalence with SLP and IOP 37



IOP ⇔ SLS

For any Y,U,W,Z satisfying the IOP constraint, the transfer matrices

R = (sI −A)−1 + (sI −A)−1B2UC2(sI −A)−1

M = UC2(sI −A)−1,

N = (sI −A)−1B2U,

L = U,

belong to the SLP constraint and are such that

UY−1 = L−MR−1N.

Equivalence with SLP and IOP 38



Youla ⇔ SLS

Let Ur,Vr,Ul,Vl,Mr,Ml,Nr,Nl be any doubly-coprime factorization of G.
We have

1. For any Q ∈ RH∞, the following transfer matrices

R = (sI −A)−1 + (sI −A)−1B2(Vr −MrQ)MlC2(sI −A)−1

M = (Vr −MrQ)MlC2(sI −A)−1,

N = (sI −A)−1B2(Vr −MrQ)Ml,

L = (Vr −MrQ)Ml,

belong to the SLP constraint and are such that

L−MR−1N = (Vr −MrQ)(Ur −NrQ)−1.

2. For any (R,M,N,L) in the SLP constraint, the transfer matrix

Q = VlC2NUr −UlLUr − VlC2RB2Vr +UlMB2Vr +UlVr

is such that Q ∈ RH∞ and (Vr −MrQ)(Ur −NrQ)−1 = L−MR−1N.

Equivalence with SLP and IOP 39



Youla ⇔ SLS ⇔ IOP

Convex system-level synthesis: (Wang et al., 2019)

min
R,M,N,L

g(R,M,N,L)

subject to SLP constraint,[
R N
M L

]
∈ S.

I This is clearly equivalent to a convex problem in Youla,

min
Q

g1(Q)

subject to

[
f1(Q) f3(Q)
f2(Q) f4(Q)

]
∈ S.

I which is also equivalent to a convex problem in input-output
parameterization

min
Y,U,W,Z

ĝ1(U)

subject to IOP constraint[
f̂1(U) f̂3(U)

f̂2(U) f̂4(U)

]
∈ S.

Equivalence with SLP and IOP 40
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