4. LMI formulations for \mathcal{H}_{2} and \mathcal{H}_{∞} optimal control

Yang Zheng

Postdoc, Harvard University

April 30, 2020

Outline

1. Recap: optimal control and its convex formulations
2. Hardy spaces: \mathcal{H}_{2} and \mathcal{H}_{∞}, and their LMI computations
3. LMI formulation for \mathcal{H}_{2} and \mathcal{H}_{∞} control: state-feedback
4. Distributed control and Quadratic Invariance

Outline

1. Recap: optimal control and its convex formulations
2. Hardy spaces: \mathcal{H}_{2} and \mathcal{H}_{∞}, and their LMI computations
3. LMI formulation for \mathcal{H}_{2} and \mathcal{H}_{∞} control: state-feedback
4. Distributed control and Quadratic Invariance

Recap: optimal control and its convex formulations

Linear time-invariant systems

- State-space model

$$
\begin{aligned}
& \dot{x}=A x+B_{1} w+B_{2} u, \\
& z=C_{1} x+D_{11} w+D_{12} u, \\
& y=C_{2} x+D_{21} w+D_{22} u,
\end{aligned}
$$

where $x \in \mathbb{R}^{n}, u \in \mathbb{R}^{m}, w \in \mathbb{R}^{d}, y \in \mathbb{R}^{p}, z \in \mathbb{R}^{q}$ are the state vector, control action, external disturbance, measurement, and regulated output, respectively.

- Dynamic controller

$$
\begin{aligned}
\dot{\xi} & =A_{k} \xi+B_{k} y, \\
u & =C_{k} \xi+D_{k} y,
\end{aligned}
$$

where $\xi \in \mathbb{R}^{n_{k}}$ is the internal state of the controller.

Frequency domain

- Plant model

$$
\mathbf{P}=\left[\begin{array}{c|cc}
A & B_{1} & B_{2} \\
\hline C_{1} & D_{11} & D_{12} \\
C_{2} & D_{21} & D_{22}
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{P}_{11} & \mathbf{P}_{12} \\
\mathbf{P}_{21} & \mathbf{P}_{22}
\end{array}\right]
$$

where $\mathbf{P}_{i j}=C_{i}(s I-A)^{-1} B_{j}+D_{i j}$. We refer to \mathbf{P} as the open-loop plant model.

- Controller $\mathbf{u}=\mathbf{K y}$, where $\mathbf{K}=C_{k}(s I-A)^{-1} B_{k}+D_{k}$.

Figure: Interconnection of the plant \mathbf{P} and controller \mathbf{K}

Optimal control

- General optimal control formulation

$$
\begin{array}{rl}
\min _{\mathbf{K}} & f(\mathbf{P}, \mathbf{K}) \\
\text { subject to } & \mathbf{K} \text { internally stabilizes } \mathbf{P} .
\end{array}
$$

where $f(\mathbf{P}, \mathbf{K})$ defines a certain performance index.

- Specifically

Frequency-domain formulation

$$
\begin{aligned}
& \begin{array}{l}
\text { Frequency-domain formulation } \\
\quad \min _{\mathbf{K}}\left\|\mathbf{T}_{z w}\right\| \\
\quad \text { Subject to } \\
\quad \mathbf{K} \in \mathcal{C}_{\text {stab }},
\end{array} \\
& \text { where } \\
& \mathbf{T}_{z w}=\mathbf{P}_{11}+\mathbf{P}_{12} \mathbf{K}\left(I-\mathbf{P}_{22} \mathbf{K}\right)^{-1} \mathbf{P}_{21} \text {. }
\end{aligned} \text { min } \left.\|\left[\begin{array}{cc|c}
A+B_{2} D_{k} C_{2} & B_{2} C_{k} & B_{1}+B_{2} D_{k} D_{21} \\
B_{k} C_{2} & A_{k} & B_{k} D_{21} \\
\hline C_{1}+D_{12} D_{k} C_{2} & D_{12} C_{k} & D_{11}+D_{12} D_{k} D_{21}
\end{array}\right] \right\rvert\,
$$

Input-output parameterization

Consider the closed-loop responses from $\left(\delta_{y}, \boldsymbol{\delta}_{u}\right)$ to $(\boldsymbol{y}, \boldsymbol{u})$:

$$
\begin{align*}
& {\left[\begin{array}{ll}
I & -\mathbf{P}_{22}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{Y} & \mathbf{W} \\
\mathbf{U} & \mathbf{Z}
\end{array}\right]=\left[\begin{array}{ll}
I & 0
\end{array}\right],} \tag{1a}\\
& {\left[\begin{array}{cc}
\mathbf{Y} & \mathbf{W} \\
\mathbf{U} & \mathbf{Z}
\end{array}\right]\left[\begin{array}{c}
-\mathbf{P}_{22} \\
I
\end{array}\right]=\left[\begin{array}{l}
0 \\
I
\end{array}\right],} \tag{1b}\\
& \mathbf{Y}, \mathbf{U}, \mathbf{W}, \mathbf{Z} \in \mathcal{R} \mathcal{H}_{\infty} . \tag{1c}
\end{align*}
$$

Theorem (Input-output parameterization)

The set of all internally stabilizing controllers can be represented as

$$
\mathcal{C}_{\text {stab }}=\left\{\mathbf{K}=\mathbf{U} \mathbf{Y}^{-1} \mid \mathbf{Y}, \mathbf{U}, \mathbf{W}, \mathbf{Z} \text { are in the affine subspace (1a)-(1c) }\right\} .
$$

$$
\min _{\mathbf{K}}\left\|\mathbf{P}_{11}+\mathbf{P}_{12} \mathbf{K}\left(I-\mathbf{P}_{22} \mathbf{K}\right)^{-1} \mathbf{P}_{21}\right\|
$$

subject to $\mathbf{K} \in \mathcal{C}_{\text {stab }}$,
$\min _{\mathbf{Y}, \mathbf{U}, \mathbf{W}, \mathbf{Z}}\left\|\mathbf{P}_{11}+\mathbf{P}_{12} \mathbf{U} \mathbf{P}_{21}\right\|$
subject to (1a) $-(1 \mathrm{c})$.

System-level parameterization

Consider the closed-loop responses from $\left(\delta_{x}, \boldsymbol{\delta}_{y}\right)$ to $(\boldsymbol{x}, \boldsymbol{u})$:

$$
\begin{gather*}
{\left[\begin{array}{cc}
s I-A & -B_{2}
\end{array}\right]\left[\begin{array}{ll}
\mathbf{R} & \mathbf{N} \\
\mathbf{M} & \mathbf{L}
\end{array}\right]=\left[\begin{array}{ll}
I & 0
\end{array}\right],} \tag{2a}\\
{\left[\begin{array}{cc}
\mathbf{R} & \mathbf{N} \\
\mathbf{M} & \mathbf{L}
\end{array}\right]\left[\begin{array}{c}
s I-A \\
-C_{2}
\end{array}\right]=\left[\begin{array}{l}
I \\
0
\end{array}\right],} \tag{2b}\\
\mathbf{R}, \mathbf{M}, \mathbf{N} \in \mathcal{R} \mathcal{H}_{\infty}, \quad \mathbf{L} \tag{2c}
\end{gather*}=\mathcal{R} \mathcal{H}_{\infty} . . ~ \$
$$

Theorem (System-level parameterization)

For strictly proper plants, the set of all internally stabilizing controllers can be represented as
$\mathcal{C}_{\text {stab }}=\left\{\mathbf{K}=\mathbf{L}-\mathbf{M} \mathbf{R}^{-1} \mathbf{N} \mid \mathbf{R}, \mathbf{M}, \mathbf{N}, \mathbf{L}\right.$ are in the affine subspace (2a)-(2c) $\}$.
System-level synthesis

$$
\begin{aligned}
\min _{\mathbf{R}, \mathbf{M}, \mathbf{N}, \mathbf{L}} & \left\|\left[\begin{array}{ll}
C_{1} & D_{12}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{R} & \mathbf{N} \\
\mathbf{M} & \mathbf{L}
\end{array}\right]\left[\begin{array}{c}
B_{1} \\
D_{21}
\end{array}\right]+D_{11}\right\| \\
\text { subject to } & (2 \mathrm{a})-(2 \mathrm{c}) .
\end{aligned}
$$

Youla parameterization

- Classical Optimal control

$$
\begin{aligned}
\min _{\mathbf{K}} & \left\|\mathbf{P}_{11}+\mathbf{P}_{12} \mathbf{K}(I-\mathbf{G K})^{-1} \mathbf{P}_{21}\right\| \\
\text { subject to } & \mathbf{K} \text { internally stabilizes } \mathbf{G} .
\end{aligned}
$$

- We have the following equivalence

$$
\mathcal{C}_{\text {stab }}=\left\{\mathbf{K}=\left(\mathbf{V}_{r}-\mathbf{M}_{r} \mathbf{Q}\right)\left(\mathbf{U}_{r}-\mathbf{N}_{r} \mathbf{Q}\right)^{-1} \mid \mathbf{Q} \in \mathcal{R} \mathcal{H}_{\infty}\right\}
$$

where \mathbf{Q} is denoted as the Youla parameter.

- Convex reformulation in Youla

$$
\begin{aligned}
\min _{\mathbf{Q}} & \left\|\mathbf{T}_{11}+\mathbf{T}_{12} \mathbf{Q} \mathbf{T}_{21}\right\| \\
\text { subject to } & \mathbf{Q} \in \mathcal{R} \mathcal{H}_{\infty},
\end{aligned}
$$

where $\mathbf{T}_{11}=\mathbf{P}_{11}+\mathbf{P}_{12} \mathbf{V}_{r} \mathbf{M}_{l} \mathbf{P}_{21}, \mathbf{T}_{12}=-\mathbf{P}_{12} \mathbf{M}_{r}$, and $\mathbf{T}_{21}=\mathbf{M}_{l} \mathbf{P}_{21}$.

Explicit equivalence among Youla, SLS, and IOP

- any convex SLS can be equivalently reformulated into a convex problem in Youla or IOP; vice versa

- Y. Zheng, L. Furieri, A. Papachristodoulou, N. Li, and M. Kamgarpour. Onthe equivalence of youla, system-level and input-output parameterizations. IEEE Transactions on Automatic Control, 2020.

Outline

1. Recap: optimal control and its convex formulations
2. Hardy spaces: \mathcal{H}_{2} and \mathcal{H}_{∞}, and their LMI computations
3. LMI formulation for \mathcal{H}_{2} and \mathcal{H}_{∞} control: state-feedback
4. Distributed control and Quadratic Invariance

Hardy spaces: \mathcal{H}_{2} and \mathcal{H}_{∞}

- $\mathcal{L}_{2}(j \mathbb{R})$ Space: this space consists of all complex matrix functions F

$$
\int_{-\infty}^{\infty} \operatorname{Trace}\left[F^{*}(j \omega) F(j \omega)\right] d \omega<\infty . \quad F_{1}(s)=\frac{1}{s-1}, F_{2}(s)=\frac{1}{s+1}
$$

The inner product is defined as

$$
\langle F, G\rangle=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \operatorname{Trace}\left[F^{*}(j \omega) G(j \omega)\right] d \omega
$$

for $F, G \in \mathcal{L}_{2}$, and the induced norm is given by $\|F\|_{2}:=\sqrt{\langle F, F\rangle}$.

- \mathcal{H}_{2} Space: a subspace of \mathcal{L}_{2} with matrix functions $F(s)$ analytic in $\operatorname{Re}(s)>0$. The corresponding norm is defined as

$$
\begin{aligned}
\|F\|_{2}^{2} & :=\sup _{\sigma>0}\left\{\frac{1}{2 \pi} \int_{-\infty}^{\infty} \operatorname{Trace}\left[F^{*}(\sigma+j \omega) F(\sigma+j \omega)\right] d \omega\right\} \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \operatorname{Trace}\left[F^{*}(j \omega) F(j \omega)\right] d \omega
\end{aligned}
$$

- $\mathcal{R H}_{2}$ Space: The real rational subspace of \mathcal{H}_{2}, consisting of all strictly proper and real rational stable transfer matrices.

Hardy spaces: \mathcal{H}_{2} and \mathcal{H}_{∞}

- $\mathcal{L}_{\infty}(j \mathbb{R})$ Space: consisting of matrix-valued complex functions that are bounded on $j \mathbb{R}$, with norm defined as

$$
\|F\|_{\infty}:=\sup _{\omega \in \mathbb{R}} \sigma_{\max }[F(j \omega)] . \quad F_{1}(s)=\frac{1}{s-1}, F_{2}(s)=\frac{1}{s+1}
$$

- \mathcal{H}_{∞} Space: \mathcal{H}_{∞} is a subspace of \mathcal{L}_{∞} with functions that are analytic and bounded in the open right-half plane. The \mathcal{H}_{∞} norm is defined as

$$
\|F\|_{\infty}:=\sup _{\operatorname{Re}(s)>0} \sigma_{\max }(F(s))=\sup _{\omega \in \mathbb{R}} \sigma_{\max }(F(j \omega)) .
$$

The second equality can be regarded as a generalization of the maximum modulus theorem for matrix functions.
$-\mathcal{R} \mathcal{H}_{\infty}$ Space: The real rational subspace of \mathcal{H}_{∞}, consisting of all proper and real rational stable transfer matrices.

$$
\mathbf{T}(s)=C(s I-A)^{-1} B+D
$$

with A stable.

Computations of \mathcal{H}_{2} and \mathcal{H}_{∞} norms

Lemma

Consider a transfer matrix $\mathbf{T}(s)=\left[\begin{array}{l|l}A & B \\ \hline C & 0\end{array}\right]$ with A stable. Then, we have

$$
\begin{array}{ll}
\|\mathbf{T}\|_{\mathcal{H}_{2}}^{2}=\operatorname{Trace}\left(B^{\top} Q B\right), & \text { where } A^{\top} Q+Q A+C^{\top} C=0, \\
\|\mathbf{T}\|_{\mathcal{H}_{2}}^{2}=\operatorname{Trace}\left(C P C^{\top}\right), & \text { where } A P+P A^{\top}+B B^{\top}=0 .
\end{array}
$$

where Q and P are observability and controllability Gramians.

- Deterministic interpretation: Squared \mathcal{H}_{2} norm is energy sum of transients of output responses:

$$
\sum_{k=1}^{m} \int_{0}^{\infty} z_{k}(t)^{\top} z_{k}(t) d t=\int_{0}^{\infty} \operatorname{Trace}\left(\left(C e^{A t} B\right)^{\top}\left(C e^{A t} B\right)\right) d t=\|\mathbf{T}\|_{\mathcal{H}_{2}}^{2} .
$$

- Stochastic interpretation: If w is white noise and $\dot{x}=A x+B w, z=C x$

$$
\lim _{t \rightarrow \infty} \mathbb{E}\left(z(t)^{\top} z(t)\right)=\|\mathbf{T}\|_{\mathcal{H}_{2}}^{2}
$$

The squared \mathcal{H}_{2}-norm equals the asymptotic variance of output.

Computations of \mathcal{H}_{2} and \mathcal{H}_{∞} norms

Lemma

Consider a transfer matrix $\mathbf{T}(s)=\left[\begin{array}{c|c}A & B \\ \hline C & 0\end{array}\right]$ with A stable. Then, we have $\|\mathbf{T}(s)\|_{2}<\gamma$ if and only if there exists $P \succ 0$ such that

$$
\operatorname{trace}\left(C P C^{\top}\right)<\gamma^{2}, \quad \text { and } \quad A P+P A^{\top}+B B^{\top} \prec 0,
$$

and there exists $Q \succ 0$ such that

$$
\operatorname{trace}\left(B^{\top} Q B\right)<\gamma^{2}, \quad \text { and } \quad A^{\top} Q+Q A+C^{\top} C \prec 0 .
$$

\Rightarrow : if $\|\mathbf{T}(s)\|_{2}<\gamma$, then we have

$$
\operatorname{Trace}\left(C P_{0} C^{\top}\right)<\gamma^{2}, \quad \text { where } \quad A P_{0}+P_{0} A^{\top}+B B^{\top}=0
$$

Now we consider $A P_{\epsilon}+P_{\epsilon} A^{\top}+B B^{\top}+\epsilon I=0$. Note that $\lim _{\epsilon \rightarrow 0} P_{\epsilon}=P_{0}$. Since $\operatorname{Trace}\left(C P_{0} C^{\boldsymbol{\top}}\right)<\gamma^{2}$, there exists a $\epsilon>0$ such that $\operatorname{Trace}\left(C P_{\epsilon} C^{\boldsymbol{\top}}\right)<\gamma^{2}$ and

$$
A P_{\epsilon}+P_{\epsilon} A^{\top}+B B^{\top}=-\epsilon I \prec 0 .
$$

Computations of \mathcal{H}_{2} and \mathcal{H}_{∞} norms

Lemma

Consider a transfer matrix $\mathbf{T}(s)=\left[\begin{array}{c|c}A & B \\ \hline C & 0\end{array}\right]$ with A stable. Then, we have $\|\mathbf{T}(s)\|_{2}<\gamma$ if and only if there exists $P \succ 0$ such that

$$
\operatorname{trace}\left(C P C^{\top}\right)<\gamma^{2}, \quad \text { and } \quad A P+P A^{\top}+B B^{\top} \prec 0,
$$

and there exists $Q \succ 0$ such that

$$
\operatorname{trace}\left(B^{\top} Q B\right)<\gamma^{2}, \quad \text { and } \quad A^{\top} Q+Q A+C^{\top} C \prec 0 .
$$

\Leftarrow We first have

$$
A P+P A^{\top}+B B^{\top}-\left(A P_{0}+P_{0} A^{\top}+B B^{\top}\right)=A\left(P-P_{0}\right)+\left(P-P_{0}\right) A^{\top} \prec 0
$$

This indicates that $P-P_{0} \succ 0$ (since A is stable). Then

$$
\operatorname{trace}\left(C P_{0} C^{\mathrm{T}}\right)<\operatorname{trace}\left(C P C^{\mathrm{T}}\right)<\gamma^{2}
$$

We have proved that $\|G(s)\|_{2}<\gamma$.
Hardy spaces: \mathcal{H}_{2} and \mathcal{H}_{∞}, and their LMI computations

Computations of \mathcal{H}_{2} and \mathcal{H}_{∞} norms

We have a special version of Kalman-Yakubovich-Popov (KYP) lemma:

Lemma

Consider a transfer matrix $\mathbf{T}(s)=\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$ with A stable. Then, the following statements are equivalent:

- $\|\mathbf{T}(s)\|_{\infty}<\gamma$;
- $\mathbf{T}^{*}(j \omega) \mathbf{T}(j \omega) \prec \gamma^{2} I, \forall \omega \in \mathbb{R}$.
- The following LMI is feasible.

$$
\left[\begin{array}{ccc}
A^{\top} X+X A & X B & C^{\top} \\
B^{\top} X & -\gamma I & D^{\top} \\
C & D & -\gamma I
\end{array}\right] \prec 0, X \succ 0
$$

- We have

$$
\sup _{0<\|d\|_{2}<1} \frac{\|\mathbf{T}(s) d\|_{2}}{\|d\|_{2}}<\gamma
$$

Other equivalent formulations

The $\mathcal{H}_{\infty} \mathrm{LMI}$ has multiple equivalent forms:

- (obtained by left- and right- multiplied by $\operatorname{diag}\left(\gamma^{\frac{1}{2}} I, \gamma^{\frac{1}{2}} I, \gamma^{-\frac{1}{2}} I\right)$)

$$
\left[\begin{array}{ccc}
A^{\top} X+X A & X B & C^{\top} \\
B^{\top} X & -\gamma^{2} I & D^{\top} \\
C & D & -I
\end{array}\right] \prec 0, X \succ 0
$$

- and (by applying the Schur complement)

$$
\left[\begin{array}{cc}
A^{\top} X+X A+C^{\top} C & X B+C^{\top} D \\
B^{\top} X+D^{\top} C & D^{\top} D-\gamma^{2} I
\end{array}\right] \prec 0, \quad X \succ 0
$$

- and

$$
A^{\top} X+X A+C^{\top} C-\left(X B+C^{\top} D\right)\left(D^{\top} D-\gamma^{2} I\right)^{-1}\left(B^{\top} X+D^{\top} C\right) \prec 0, \quad X \succ 0,
$$

which is a Riccati inequality.

Outline

1. Recap: optimal control and its convex formulations
2. Hardy spaces: \mathcal{H}_{2} and \mathcal{H}_{∞}, and their LMI computations
3. LMI formulation for \mathcal{H}_{2} and \mathcal{H}_{∞} control: state-feedback
4. Distributed control and Quadratic Invariance

State Feedback

- Optimal control

$$
\begin{aligned}
& \min \left\|\left[\begin{array}{cc|c}
A+B_{2} D_{k} C_{2} & B_{2} C_{k} & B_{1}+B_{2} D_{k} D_{21} \\
B_{k} C_{2} & A_{k} & B_{k} D_{21} \\
\hline C_{1}+D_{12} D_{k} C_{2} & D_{12} C_{k} & D_{11}+D_{12} D_{k} D_{21}
\end{array}\right]\right\| \\
& \text { s.t. }\left[\begin{array}{cc}
A+B_{2} D_{k} C_{2} & B_{2} C_{k} \\
B_{k} C_{2} & A_{k}
\end{array}\right] \text { is stable. }
\end{aligned}
$$

- We consider static state feedback $u=D_{k} x$, and the controller synthesis problem becomes

$$
\begin{align*}
\min _{D_{k}} & \left\|\left[\begin{array}{c|c}
A+B_{2} D_{k} & B_{1} \\
\hline C_{1}+D_{12} D_{k} & D_{11}
\end{array}\right]\right\| \tag{3}\\
\text { subject to } & A+B_{2} D_{k} \text { is stable. }
\end{align*}
$$

LMI for \mathcal{H}_{2} optimal control

Minimize the \mathcal{H}_{2} norm of the closed-loop system $\mathbf{T}_{z w}$ and assume $D_{11}=0$ (otherwise $\mathbf{T}_{z w}$ is not strictly proper and $\left\|\mathbf{T}_{z w}\right\|_{2}$ is not finite).

- Step 1: applying the LMI condition for \mathcal{H}_{2} norm.

$$
\begin{aligned}
\min _{P, D_{k}, \gamma} & \gamma \\
\text { subject to } & \left(A+B_{2} D_{k}\right) P+P\left(A+B_{2} D_{k}\right)^{\top}+B_{1} B_{1}^{\top} \prec 0, \\
& \operatorname{trace}\left(\left(C_{1}+D_{12} D_{k}\right) P\left(C_{1}+D_{12} D_{k}\right)^{\top}\right)<\gamma, \\
& P \succ 0 .
\end{aligned}
$$

- Step 2: Change of variable and introduce $X=D_{k} P$

$$
\begin{aligned}
\min _{P, X, \gamma} & \gamma \\
\text { subject to } & \left(A P+B_{2} X\right)+\left(A P+B_{2} X\right)^{\top}+B_{1} B_{1}^{\top} \prec 0, \\
& \operatorname{trace}\left(\left(C_{1} P+D_{12} X\right) P^{-1}\left(C_{1} P+D_{12} X\right)^{\top}\right)<\gamma, \\
& P \succ 0 .
\end{aligned}
$$

LMI for \mathcal{H}_{2} optimal control

- Step 3: Apply the Schur complement, and note that

$$
\operatorname{trace}\left(\left(C_{1} P+D_{12} X\right) P^{-1}\left(C_{1} P+D_{12} X\right)^{\top}\right)<\gamma, \quad P \succ 0
$$

is equivalent to

$$
\left[\begin{array}{cc}
Z & C_{1} P+D_{12} X \\
\left(C_{1} P+D_{12} X\right)^{\top} & P
\end{array}\right] \succ 0, \quad \operatorname{trace}(Z)<\gamma
$$

- Step 4: get an LMI formulation

$$
\begin{aligned}
\min _{P, X, Z} & \operatorname{trace}(Z) \\
\text { subject to } & \left(A P+B_{2} X\right)+\left(A P+B_{2} X\right)^{\top}+B_{1} B_{1}^{\top} \prec 0, \\
& {\left[\begin{array}{cc}
Z & C_{1} P+D_{12} X \\
\left(C_{1} P+D_{12} X\right)^{\top} & P
\end{array}\right] \succ 0, }
\end{aligned}
$$

and the optimal \mathcal{H}_{2} optimal state feedback gain is recovered by $D_{k}=X P^{-1}$.

LMI formulation for \mathcal{H}_{∞} optimal control

Minimize $\left\|\mathbf{T}_{z w}\right\|_{\infty}$ in the optimal control formulation.

- Step 1: apply the LMI for \mathcal{H}_{∞} norm

$$
\begin{aligned}
& \min _{X, D_{k}, \gamma} \gamma \\
& \text { subject to }\left[\begin{array}{ccc}
\left(A+B_{2} D_{k}\right)^{\top} X+X\left(A+B_{2} D_{k}\right) & X B_{1} & \left(C_{1}+D_{12} D_{k}\right)^{\top} \\
B_{1}^{\top} X & -\gamma I & D_{11}^{\top} \\
C_{1}+D_{12} D_{k} & D_{11} & -\gamma I
\end{array}\right] \prec 0, \\
& X \succ 0 .
\end{aligned}
$$

- Step 2: Left- and right-multiplied by $\operatorname{diag}\left(X^{-1}, I, I\right)$.

$$
\begin{aligned}
\min _{P, D_{k}, \gamma} & \gamma \\
\text { subject to } & {\left[\begin{array}{ccc}
P\left(A+B_{2} D_{k}\right)^{\top}+\left(A+B_{2} D_{k}\right) P & B_{1} & P\left(C_{1}+D_{12} D_{k}\right)^{\top} \\
B_{1}^{\top} & -\gamma I & D_{11}^{\top} \\
\left(C_{1}+D_{12} D_{k}\right) P & D_{11} & -\gamma I
\end{array}\right] \prec 0, }
\end{aligned}
$$

LMI formulation for \mathcal{H}_{∞} optimal control

Minimize $\left\|\mathbf{T}_{z w}\right\|_{\infty}$ in the optimal control formulation.

- Step 3: Change of variables $Y=D_{k} P$.

$$
\begin{aligned}
& \quad \min _{P, Y, \gamma} \gamma \\
& \text { subject to }\left[\begin{array}{ccc}
\left(A P+B_{2} Y\right)^{\top}+\left(A P+B_{2} Y\right) & B_{1} & \left(C_{1}+D_{12} Y\right)^{\top} \\
B_{1}^{\top} & -\gamma I & D_{11}^{\top} \\
\left(C_{1}+D_{12} Y\right) & D_{11} & -\gamma I
\end{array}\right] \prec 0, \\
& P \succ 0 .
\end{aligned}
$$

The optimal \mathcal{H}_{∞} state feedback gain can be recovered by $D_{k}=Y P^{-1}$.

General \mathcal{H}_{2} and \mathcal{H}_{∞} Output feedback

- Optimal control

$$
\begin{aligned}
& \min \left\|\left[\begin{array}{cc|c}
A+B_{2} D_{k} C_{2} & B_{2} C_{k} & B_{1}+B_{2} D_{k} D_{21} \\
B_{k} C_{2} & A_{k} & B_{k} D_{21} \\
\hline C_{1}+D_{12} D_{k} C_{2} & D_{12} C_{k} & D_{11}+D_{12} D_{k} D_{21}
\end{array}\right]\right\| \\
& \text { s.t. }\left[\begin{array}{cc}
A+B_{2} D_{k} C_{2} & B_{2} C_{k} \\
B_{k} C_{2} & A_{k}
\end{array}\right] \text { is stable. }
\end{aligned}
$$

- You can apply the \mathcal{H}_{2} or $\mathcal{H}_{\infty} \mathrm{LMI}$ and use a series of changes of variables to derive LMI formulations.

1. Pascal Gahinet and Pierre Apkarian. A linear matrix inequality approach to \mathcal{H}_{∞} control. Inter-national journal of robust and nonlinear control, 4(4):421-448, 1994.
2. Carsten Scherer, Pascal Gahinet, and Mahmoud Chilali. Multiobjective output-feedback controlvia Imi optimization.IEEE Transactions on automatic control, 42(7):896-911, 1997

Outline

1. Recap: optimal control and its convex formulations
2. Hardy spaces: \mathcal{H}_{2} and \mathcal{H}_{∞}, and their LMI computations
3. LMI formulation for \mathcal{H}_{2} and \mathcal{H}_{∞} control: state-feedback
4. Distributed control and Quadratic Invariance

Classical distributed control formulation

- A canonical problem is to minimize a norm of the closed-loop map subject to a subspace constraint

$$
\begin{align*}
\min _{\mathbf{K}} & \left\|\mathbf{P}_{11}+\mathbf{P}_{12} \mathbf{K}\left(I-\mathbf{P}_{22} \mathbf{K}\right)^{-1} \mathbf{P}_{21}\right\| \\
\text { subject to } & \mathbf{K} \in \mathcal{C}_{\text {stab }} \tag{4}\\
& \mathbf{K} \in \mathcal{S}
\end{align*}
$$

where \mathcal{S} is a subspace demoting sparsity or delay constraints on the controller.

- After applying the change of variables in Youla, input-output, or system-level parameterization, we need to introduce the following non-convex constraint on the decision variables

$$
\begin{aligned}
\left(\mathbf{V}_{r}-\mathbf{M}_{r} \mathbf{Q}\right)\left(\mathbf{U}_{r}-\mathbf{N}_{r} \mathbf{Q}\right)^{-1} & \in \mathcal{S}, \\
\mathbf{U Y} \mathbf{Y}^{-1} & \in \mathcal{S} \\
\mathbf{L}-\mathbf{M R}^{-1} \mathbf{N} & \in \mathcal{S} .
\end{aligned}
$$

Quadratic Invariance

Definition (Quadratic Invariance (QI))

Given a plant \mathbf{P}_{22} and a subspace \mathcal{S}. The subspace \mathcal{S} is called quadratically invariant under \mathbf{P}_{22} if

$$
\mathbf{K} \mathbf{P}_{22} \mathbf{K} \in \mathcal{S}, \quad \forall \mathbf{K} \in \mathcal{S}
$$

Cayley-Hamilton theorem

$$
p(A)=c_{0}+c_{1} A+\ldots+c_{n} A^{n}=0
$$

Theorem

Define $\mathbf{U}=\mathbf{K}\left(I-\mathbf{P}_{22} \mathbf{K}\right)^{-1}$. If \mathcal{S} is quadratically invariant under \mathbf{P}_{22}, then

$$
\mathbf{K} \in \mathcal{S} \Longleftrightarrow \mathbf{U} \in \mathcal{S}
$$

\Rightarrow Observe that

$$
\left(I-\mathbf{P}_{22} \mathbf{K}\right)^{-1}=\alpha_{0}+\alpha_{1}\left(I-\mathbf{P}_{22} \mathbf{K}\right)+\ldots+\alpha_{m-1}\left(I-\mathbf{P}_{22} \mathbf{K}\right)^{m-1}
$$

\Leftarrow Observe that $\mathbf{U}=\mathbf{K}\left(I-\mathbf{P}_{22} \mathbf{K}\right)^{-1}$ leads to $\mathbf{K}=\mathbf{U}\left(I+\mathbf{P}_{22} \mathbf{U}\right)^{-1}$.
Distributed control and Quadratic Invariance

QI with the IOP

Theorem (QI with the IOP)

If \mathcal{S} is $Q 1$ under \mathbf{P}_{22}, then

1. We have

$$
\mathcal{C}_{s t a b} \cap \mathcal{S}=\left\{\mathbf{K}=\mathbf{U} \mathbf{Y}^{-1} \mid \mathbf{Y}, \mathbf{U}, \mathbf{W}, \mathbf{Z} \text { are in (1a)-(1c), } \mathbf{U} \in \mathcal{S}\right\}
$$

2. Problem (4) can be equivalently formulated as a convex problem

$$
\begin{aligned}
\min _{\mathbf{Y}, \mathbf{U}, \mathbf{W}, \mathbf{Z}} & \left\|\mathbf{P}_{11}+\mathbf{P}_{12} \mathbf{U} \mathbf{P}_{21}\right\| \\
\text { subject to } & (1 \mathrm{a})-(1 \mathrm{c}) \\
& \mathbf{U} \in \mathcal{S} .
\end{aligned}
$$

Proof: From the affine constraint, we have

$$
\mathbf{Y}-\mathbf{P}_{22} \mathbf{U}=I \quad \Rightarrow \quad \mathbf{Y}=I+\mathbf{P}_{22} \mathbf{U}
$$

Then, we have

$$
\mathbf{K}=\mathbf{U}\left(I+\mathbf{P}_{22} \mathbf{U}\right)^{-1} \quad \Leftrightarrow \quad \mathbf{U}=\mathbf{K}\left(I-\mathbf{P}_{22} \mathbf{K}\right)^{-1}
$$

Distributed control and Quadratic Invariance

QI with the SLP

Corollary (QI with the SLP)

If \mathcal{S} is Q I under \mathbf{P}_{22}, then

1. We have

$$
\mathcal{C}_{\text {stab }} \cap \mathcal{S}=\left\{\mathbf{K}=\mathbf{L}-\mathbf{M} \mathbf{R}^{-1} \mathbf{N} \mid \mathbf{R}, \mathbf{M}, \mathbf{N}, \mathbf{L} \text { are in (2a)-(2c), } \mathbf{L} \in \mathcal{S}\right\} .
$$

2. Problem (4) can be equivalently formulated as a convex problem

$$
\begin{aligned}
\min _{\mathbf{R}, \mathbf{M}, \mathbf{N}, \mathbf{L}} & \left\|\left[\begin{array}{ll}
C_{1} & D_{12}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{R} & \mathbf{N} \\
\mathbf{M} & \mathbf{L}
\end{array}\right]\left[\begin{array}{c}
B_{1} \\
D_{21}
\end{array}\right]+D_{11}\right\| \\
\text { subject to } & (2 \mathrm{a})-(2 \mathrm{c}) \\
& \mathbf{L} \in \mathcal{S} .
\end{aligned}
$$

QI with the Youla

Corollary (QI with Youla)

If \mathcal{S} is Q I under \mathbf{P}_{22}, then

1. We have

$$
\begin{aligned}
& \mathcal{C}_{\text {stab }} \cap \mathcal{S}=\left\{\mathbf{K}=\left(\mathbf{V}_{r}-\mathbf{M}_{r} \mathbf{Q}\right)\left(\mathbf{U}_{r}-\right.\right.\left.\mathbf{N}_{r} \mathbf{Q}\right)^{-1} \mid \mathbf{Q} \in \mathcal{R} \mathcal{H}_{\infty} \\
&\left.\left(\mathbf{V}_{r}-\mathbf{M}_{r} \mathbf{Q}\right) \mathbf{M}_{l} \in \mathcal{S},\right\}
\end{aligned}
$$

2. Problem (4) can be equivalently formulated as a convex problem

$$
\begin{aligned}
\min _{\mathbf{Q}} & \left\|\mathbf{T}_{11}+\mathbf{T}_{12} \mathbf{Q} \mathbf{T}_{21}\right\| \\
\text { subject to } & \left(\mathbf{V}_{r}-\mathbf{M}_{r} \mathbf{Q}\right) \mathbf{M}_{l} \in \mathcal{S} \\
& \mathbf{Q} \in \mathcal{R} \mathcal{H}_{\infty}
\end{aligned}
$$

Summary: Quadratic invariance (QI)

$$
\min _{\mathbf{Q}}\left\|\mathbf{T}_{11}+\mathbf{T}_{12} \mathbf{Q} \mathbf{T}_{21}\right\|
$$

Youla
subject to $\quad \mathbf{Q} \in \mathcal{R} \mathcal{H}_{\infty}$,

$$
\left(\mathbf{V}_{r}-\mathbf{M}_{r} \mathbf{Q}\right) \mathbf{M}_{l} \in \mathcal{S}
$$

$$
\left(\mathbf{V}_{r}-\mathbf{M}_{r} \mathbf{Q}\right)\left(\mathbf{U}_{r}-\mathbf{N}_{r} \mathbf{Q}\right)^{-1} \in \mathcal{S}
$$

Other topics

- QI does not necessarily promise efficient numerical computation; Many later works aim to provide state-space solutions.
- Sparsity Invariance: Beyond QI for sparsity constraints;

$$
\mathbf{U} \in \mathcal{T}, \mathbf{Y} \in \mathcal{R} \quad \Rightarrow \quad \mathbf{U Y} \mathbf{Y}^{-1} \in \mathcal{S}
$$

- Youla for distributed control: Gradient dominance and its connections with learning applications.

Hardy spaces: \mathcal{H}_{2} and \mathcal{H}_{∞}

- Complex function: Given $S \subset \mathbb{C}$, define $f(s)$ as a complex valued function on S :

$$
f(s): S \rightarrow \mathbb{C}
$$

- Analytical complex function: $f(s)$ is said to be analytic at a point z_{0} in S if it is differentiable at z_{0} and also at each point in some neighborhood of z_{0}.

$$
\lim _{s \rightarrow z_{0}} \frac{f(s)-f\left(z_{0}\right)}{s-z_{0}}
$$

A function $f(s)$ analytic at z_{0} has a power series representation at z_{0}, i.e.,

$$
f(s)=c_{0}+\sum_{n=1}^{\infty} c_{n}\left(s-z_{0}\right)^{n}
$$

converges for some neighborhood of z_{0}.

- Analytic complex function matrix: A matrix valued function is analytic in S if every element of the matrix is analytic in S.

Appendix

Explicit equivalence among Youla, SLS, and IOP

- any convex SLS can be equivalently reformulated into a convex problem in Youla or IOP; vice versa

Youla \Leftrightarrow IOP

Let $\mathbf{U}_{r}, \mathbf{V}_{r}, \mathbf{U}_{l}, \mathbf{V}_{l}, \mathbf{M}_{r}, \mathbf{M}_{l}, \mathbf{N}_{r}, \mathbf{N}_{l}$ be any doubly-coprime factorization of \mathbf{G}. We have

1. For any $\mathbf{Q} \in \mathcal{R} \mathcal{H}_{\infty}$, the following transfer matrices

$$
\begin{aligned}
& \mathbf{Y}=\left(\mathbf{U}_{r}-\mathbf{N}_{r} \mathbf{Q}\right) \mathbf{M}_{l}, \\
& \mathbf{U}=\left(\mathbf{V}_{r}-\mathbf{M}_{r} \mathbf{Q}\right) \mathbf{M}_{l}, \\
& \mathbf{W}=\left(\mathbf{U}_{r}-\mathbf{N}_{r} \mathbf{Q}\right) \mathbf{N}_{l}, \\
& \mathbf{Z}=I+\left(\mathbf{V}_{r}-\mathbf{M}_{r} \mathbf{Q}\right) \mathbf{N}_{l},
\end{aligned}
$$

belong to the IOP constraint and are such that

$$
\mathbf{U} \mathbf{Y}^{-1}=\left(\mathbf{V}_{r}-\mathbf{M}_{r} \mathbf{Q}\right)\left(\mathbf{U}_{r}-\mathbf{N}_{r} \mathbf{Q}\right)^{-1}
$$

2. For any $(\mathbf{Y}, \mathbf{U}, \mathbf{W}, \mathbf{Z})$ in the IOP constraint, the transfer matrix

$$
\mathbf{Q}=\mathbf{V}_{l} \mathbf{Y} \mathbf{U}_{r}-\mathbf{U}_{l} \mathbf{U} \mathbf{U}_{r}-\mathbf{V}_{l} \mathbf{W} \mathbf{V}_{r}+\mathbf{U}_{l} \mathbf{Z} \mathbf{V}_{r}-\mathbf{V}_{l} \mathbf{U}_{r},
$$

is such that $\mathbf{Q} \in \mathcal{R} \mathcal{H}_{\infty}$ and $\left(\mathbf{V}_{r}-\mathbf{M}_{r} \mathbf{Q}\right)\left(\mathbf{U}_{r}-\mathbf{N}_{r} \mathbf{Q}\right)^{-1}=\mathbf{U} \mathbf{Y}^{-1}$.

IOP \Leftrightarrow SLS

For any $\mathbf{R}, \mathbf{M}, \mathbf{N}, \mathbf{L}$ satisfying the SLP constraint, the transfer matrices

$$
\begin{aligned}
\mathbf{Y} & =C_{2} \mathbf{N}+I \\
\mathbf{U} & =\mathbf{L} \\
\mathbf{W} & =C_{2} \mathbf{R} B_{2} \\
\mathbf{Z} & =\mathbf{M} B_{2}+I
\end{aligned}
$$

belong to the IOP constraint and are such that

$$
\mathbf{L}-\mathbf{M} \mathbf{R}^{-1} \mathbf{N}=\mathbf{U} \mathbf{Y}^{-1}
$$

- The affine relationship can written into

$$
\left[\begin{array}{ll}
\mathbf{Y} & \mathbf{W} \\
\mathbf{U} & \mathbf{Z}
\end{array}\right]=\left[\begin{array}{ll}
C_{2} & \\
& I
\end{array}\right]\left[\begin{array}{cc}
\mathbf{R} & \mathbf{N} \\
\mathbf{M} & \mathbf{L}
\end{array}\right]\left[\begin{array}{ll}
& B_{2} \\
I &
\end{array}\right]+\left[\begin{array}{ll}
I & 0 \\
0 & I
\end{array}\right]
$$

- This affine transformation is in general not invertible, but considering the achievability conditions, an explicit converse transformation can be found as well.

IOP \Leftrightarrow SLS

For any $\mathbf{Y}, \mathbf{U}, \mathbf{W}, \mathbf{Z}$ satisfying the IOP constraint, the transfer matrices

$$
\begin{aligned}
\mathbf{R} & =(s I-A)^{-1}+(s I-A)^{-1} B_{2} \mathbf{U} C_{2}(s I-A)^{-1} \\
\mathbf{M} & =\mathbf{U} C_{2}(s I-A)^{-1}, \\
\mathbf{N} & =(s I-A)^{-1} B_{2} \mathbf{U}, \\
\mathbf{L} & =\mathbf{U}
\end{aligned}
$$

belong to the SLP constraint and are such that

$$
\mathbf{U Y}^{-1}=\mathbf{L}-\mathbf{M R}^{-1} \mathbf{N} .
$$

Youla \Leftrightarrow SLS

Let $\mathbf{U}_{r}, \mathbf{V}_{r}, \mathbf{U}_{l}, \mathbf{V}_{l}, \mathbf{M}_{r}, \mathbf{M}_{l}, \mathbf{N}_{r}, \mathbf{N}_{l}$ be any doubly-coprime factorization of \mathbf{G}. We have

1. For any $\mathbf{Q} \in \mathcal{R} \mathcal{H}_{\infty}$, the following transfer matrices

$$
\begin{aligned}
\mathbf{R} & =(s I-A)^{-1}+(s I-A)^{-1} B_{2}\left(\mathbf{V}_{r}-\mathbf{M}_{r} \mathbf{Q}\right) \mathbf{M}_{l} C_{2}(s I-A)^{-1} \\
\mathbf{M} & =\left(\mathbf{V}_{r}-\mathbf{M}_{r} \mathbf{Q}\right) \mathbf{M}_{l} C_{2}(s I-A)^{-1} \\
\mathbf{N} & =(s I-A)^{-1} B_{2}\left(\mathbf{V}_{r}-\mathbf{M}_{r} \mathbf{Q}\right) \mathbf{M}_{l} \\
\mathbf{L} & =\left(\mathbf{V}_{r}-\mathbf{M}_{r} \mathbf{Q}\right) \mathbf{M}_{l}
\end{aligned}
$$

belong to the SLP constraint and are such that

$$
\mathbf{L}-\mathbf{M R}^{-1} \mathbf{N}=\left(\mathbf{V}_{r}-\mathbf{M}_{r} \mathbf{Q}\right)\left(\mathbf{U}_{r}-\mathbf{N}_{r} \mathbf{Q}\right)^{-1}
$$

2. For any $(\mathbf{R}, \mathbf{M}, \mathbf{N}, \mathbf{L})$ in the SLP constraint, the transfer matrix

$$
\mathbf{Q}=\mathbf{V}_{l} C_{2} \mathbf{N} \mathbf{U}_{r}-\mathbf{U}_{l} \mathbf{L} \mathbf{U}_{r}-\mathbf{V}_{l} C_{2} \mathbf{R} B_{2} \mathbf{V}_{r}+\mathbf{U}_{l} \mathbf{M} B_{2} \mathbf{V}_{r}+\mathbf{U}_{l} \mathbf{V}_{r}
$$

is such that $\mathbf{Q} \in \mathcal{R} \mathcal{H}_{\infty}$ and $\left(\mathbf{V}_{r}-\mathbf{M}_{r} \mathbf{Q}\right)\left(\mathbf{U}_{r}-\mathbf{N}_{r} \mathbf{Q}\right)^{-1}=\mathbf{L}-\mathbf{M R}^{-1} \mathbf{N}$.

Youla \Leftrightarrow SLS \Leftrightarrow IOP

Convex system-level synthesis: (Wang et al., 2019)

$$
\begin{array}{rl}
\min _{\mathbf{R}, \mathbf{M}, \mathbf{N}, \mathbf{L}} & g(\mathbf{R}, \mathbf{M}, \mathbf{N}, \mathbf{L}) \\
\text { subject to } & \text { SLP constraint, } \\
& {\left[\begin{array}{cc}
\mathbf{R} & \mathbf{N} \\
\mathbf{M} & \mathbf{L}
\end{array}\right] \in \mathcal{S}}
\end{array}
$$

- This is clearly equivalent to a convex problem in Youla,

$$
\begin{aligned}
\min _{\mathbf{Q}} & g_{1}(\mathbf{Q}) \\
\text { subject to } & {\left[\begin{array}{ll}
f_{1}(\mathbf{Q}) & f_{3}(\mathbf{Q}) \\
f_{2}(\mathbf{Q}) & f_{4}(\mathbf{Q})
\end{array}\right] \in \mathcal{S} . }
\end{aligned}
$$

- which is also equivalent to a convex problem in input-output parameterization

$$
\begin{aligned}
\min _{\mathbf{Y}, \mathbf{U}, \mathbf{W}, \mathbf{Z}} & \hat{g}_{1}(\mathbf{U}) \\
\text { subject to } & \text { IOP constraint }
\end{aligned}
$$

$$
\left[\begin{array}{ll}
\hat{f}_{1}(\mathbf{U}) & \hat{f}_{3}(\mathbf{U}) \\
\hat{f}_{2}(\mathbf{U}) & \hat{f}_{4}(\mathbf{U})
\end{array}\right] \in \mathcal{S}
$$

