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Optimal control

I General optimal control formulation

min
K

f(P,K)

subject to K internally stabilizes P.

where f(P,K) defines a certain performance index.

I Specifically

Frequency-domain formulation State-space formulation

min
K

‖Tzw‖

subject to K ∈ Cstab,

where

Tzw = P11+P12K(I−P22K)−1P21.

min

∥∥∥∥∥∥
 A + B2DkC2 B2Ck B1 + B2DkD21

BkC2 Ak BkD21

C1 + D12DkC2 D12Ck D11 + D12DkD21

∥∥∥∥∥∥
s.t.

[
A + B2DkC2 B2Ck

BkC2 Ak

]
is stable.
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Input-output parameterization

Consider the closed-loop responses from (δy, δu) to (y,u):

[
I −P22

] [Y W
U Z

]
=
[
I 0

]
, (1a)[

Y W
U Z

] [
−P22

I

]
=

[
0
I

]
, (1b)

Y,U,W,Z ∈ RH∞. (1c)

Theorem (Input-output parameterization)

The set of all internally stabilizing controllers can be represented as

Cstab = {K = UY−1 | Y,U,W,Z are in the affine subspace (1a)-(1c)}.

min
K

‖P11 + P12K(I −P22K)−1P21‖

subject to K ∈ Cstab,

min
Y,U,W,Z

‖P11 + P12UP21‖

subject to (1a)− (1c).
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System-level parameterization

Consider the closed-loop responses from (δx, δy) to (x,u):[
sI −A −B2

] [R N
M L

]
=
[
I 0

]
, (2a)[

R N
M L

] [
sI −A
−C2

]
=

[
I
0

]
, (2b)

R,M,N ∈ RH∞, L ∈ RH∞. (2c)

Theorem (System-level parameterization)

For strictly proper plants, the set of all internally stabilizing controllers can be
represented as

Cstab = {K = L−MR−1N | R, M, N, L are in the affine subspace (2a)-(2c)}.

System-level synthesis

min
R,M,N,L

∥∥∥∥[C1 D12

] [R N
M L

] [
B1

D21

]
+D11

∥∥∥∥
subject to (2a)− (2c).
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Youla parameterization

I Classical Optimal control

min
K

‖P11 + P12K(I − GK)−1P21‖

subject to K internally stabilizes G.

I We have the following equivalence

Cstab = {K = (Vr −MrQ)(Ur −NrQ)−1 | Q ∈ RH∞},

where Q is denoted as the Youla parameter.

I Convex reformulation in Youla

min
Q

‖T11 + T12QT21‖

subject to Q ∈ RH∞,

where T11 = P11 + P12VrMlP21,T12 = −P12Mr, and T21 = MlP21.

Recap: optimal control and its convex formulations 7



Optimal state-feedback control

Consider the state-space formulation:

min

∥∥∥∥∥∥
 A + B2DkC2 B2Ck B1 + B2DkD21

BkC2 Ak BkD21

C1 + D12DkC2 D12Ck D11 + D12DkD21

∥∥∥∥∥∥
s.t.

[
A + B2DkC2 B2Ck

BkC2 Ak

]
is stable.

min
Dk

∥∥∥∥[ A+B2Dk B1

C1 +D12Dk D11

]∥∥∥∥
s.t. A+B2Dk is stable.

I H2 cost function

min
P,X,Z

trace(Z)

s.t. (AP +B2X) + (AP +B2X)T +B1B
T
1 ≺ 0,[

Z C1P +D12X

(C1P +D12X)T P

]
� 0,

where the optimal H2 optimal state feedback gain is recovered by
Dk = XP−1.

I LMI formulations are available for the output feedback case.
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Classical distributed control

I Canonical distributed control formulation

min
K

f(P,K)

subject to K internally stabilizes P

K ∈ S.

where f(P,K) defines a certain performance index and S denotes a
subspace constraint.

I Two typical formulations in the literature

min
K

‖Tzw‖

subject to K ∈ Cstab ∩ S,
where

Tzw = P11 + P12K(I −P22K)−1P21.

min
Dk

∥∥∥∥[ A+B2Dk B1

C1 +D12Dk D11

]∥∥∥∥
s.t. A+B2Dk is stable

Dk ∈ S.

Recap: optimal control and its convex formulations 9
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Classical distributed control formulation

I A canonical problem is to minimize a norm of the closed-loop map subject
to a subspace constraint

min
K

‖P11 + P12K(I −P22K)−1P21‖

subject to K ∈ Cstab,

K ∈ S,

(3)

where S is a subspace demoting sparsity or delay constraints on the
controller.

I After applying the change of variables in Youla, input-output, or
system-level parameterizations, we need to introduce the following
non-convex constraint on the decision variables

(Vr −MrQ)(Ur −NrQ)−1 ∈ S,

UY−1 ∈ S,

L−MR−1N ∈ S.

Quadratic Invariance (QI), and its special cases 11



Quadratic Invariance

Definition (Quadratic Invariance (QI))

Given a plant P22 and a subspace S. The subspace S is called quadratically
invariant under P22 if

KP22K ∈ S, ∀K ∈ S.

Cayley–Hamilton theorem: for any n× n matrix A, we have the following
identity:

p(A) = c0 + c1A+ . . .+ cnA
n = 0.

Theorem

Define U = K(I −P22K)−1. If S is quadratically invariant under P22, then

K ∈ S ⇐⇒ U ∈ S.

⇒ Observe that

(I −P22K)−1 = α0 + α1(I −P22K) + . . .+ αp−1(I −P22K)p−1

⇐ Observe that U = K(I −P22K)−1 leads to K = U(I + P22U)−1.
Quadratic Invariance (QI), and its special cases 12



QI with the IOP

Theorem (QI with the IOP)

If S is QI under P22, then

1. We have

Cstab ∩ S = {K =UY−1 | Y,U,W,Z are in (1a)-(1c),U ∈ S}.

2. Problem (3) can be equivalently formulated as a convex problem

min
Y,U,W,Z

‖P11 + P12UP21‖

subject to (1a)− (1c),

U ∈ S.

Proof: From the affine constraint, we have

Y −P22U = I ⇒ Y = I + P22U.

Then, we have

K = U(I + P22U)−1 ⇔ U = K(I −P22K)−1.

Quadratic Invariance (QI), and its special cases 13



QI with the SLP

Corollary (QI with the SLP)

If S is QI under P22, then

1. We have

Cstab ∩ S = {K = L−MR−1N | R, M, N, L are in (2a)-(2c),L ∈ S}.

2. Problem (3) can be equivalently formulated as a convex problem

min
R,M,N,L

∥∥∥∥[C1 D12

] [R N
M L

] [
B1

D21

]
+D11

∥∥∥∥
subject to (2a)− (2c),

L ∈ S.
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QI with the Youla

Corollary (QI with Youla)

If S is QI under P22, then

1. We have

Cstab ∩ S = {K = (Vr −MrQ)(Ur−NrQ)−1 | Q ∈ RH∞
(Vr −MrQ)Ml ∈ S, }.

2. Problem (3) can be equivalently formulated as a convex problem

min
Q

‖T11 + T12QT21‖

subject to (Vr −MrQ)Ml ∈ S
Q ∈ RH∞.

Quadratic Invariance (QI), and its special cases 15



Summary: Quadratic invariance (QI)

Youla

min
Q

‖T11 + T12QT21‖

subject to Q ∈ RH∞,

(Vr −MrQ)(Ur −NrQ)−1 ∈ S

(Vr −MrQ)Ml ∈ S

IOP

min
Y,U,W,Z

‖P11 + P12UP21‖

subject to (1a)− (1c).

UY−1 ∈ S

U ∈ S

SLS

min
R,M,N,L

∥∥∥∥[C1 D12

] [R N
M L

] [
B1

D21

]
+D22

∥∥∥∥
subject to (2a)− (2c)

L−MR−1N ∈ S.

L ∈ S

Quadratic Invariance (QI), and its special cases 16



Typical QI cases: delay patterns

I Transmission delay t ≥ 0, propagation delay p ≥ 0, and computational
delay c ≥ 0. We define: K ∈ S if and only if

K =


DcH11 Dt+cH12 . . . D(n−1)t+cH1n

Dt+cH21 DcH22 . . . D(n−2)t+cH2n

...
...

. . .
...

D(n−1)t+cHn1 D(n−2)t+cHn2 . . . DcHnn


Quadratic Invariance (QI), and its special cases 17



Typical QI cases: delay patterns

I The plant dynamics are

G =


A11 DpA12 . . . D(n−1)pA1n

DpA21 A22 . . . D(n−2)pA2n

...
...

. . .
...

D(n−1)pAn1 D(n−2)pAn2 . . . Ann



Theorem
Suppose that G and S are defined as above, then S is QI with respect to G if
and only if

t ≤ p+
c

n− 1
.

A nice physical interpretation: The constraint is QI if the controllers can
communicate faster than the dynamics propagate, i.e., t ≤ p.

Quadratic Invariance (QI), and its special cases 18



Typical QI cases: symmetric constraints

I When the plant is symmetric, the constraint of symmetric controllers is
naturally QI.

I In particular, we have the following result:

Theorem

Suppose Hn = {A ∈ Cn×n | A = A∗}, and

S = {K ∈ Rp | K(jω) ∈ Hn, ∀ω ∈ R}.

If G ∈ Rp with G(jω) ∈ Hn, then S is QI with respect to G.

I Rotkowitz, Michael, and Sanjay Lall. ”A characterization of convex problems in
decentralized control.” IEEE transactions on Automatic Control 50.12 (2005):
1984-1996.

I Lessard, Laurent, and Sanjay Lall. ”Convexity of decentralized controller
synthesis.” IEEE Transactions on Automatic Control 61.10 (2015): 3122-3127.

I Lessard, Laurent, and Sanjay Lall. ”Quadratic invariance is necessary and
sufficient for convexity.” Proceedings of the 2011 American Control Conference.
IEEE, 2011.

Quadratic Invariance (QI), and its special cases 19



Typical QI cases: sparsity constraints

I Suppose Abin ∈ {0, 1}m×n is a binary matrix. We define the subspace

Sparse(Abin) = {B ∈ Rp |Bij(ω) = 0, for all, i, j, such that Abin
ij = 0,

for almost all ω ∈ R}.

I Also, if B ∈ Rp, let Abin = Pattern(B) be the binary matrix given by

Abin
ij =

{
0, if Bij(jω) = 0 for almost all ω ∈ R,
1, otherwise.

Theorem

Suppose S = Sparse(Kbin), and let Gbin = Pattern(G). Then, the following
condition are equivalent:

1. S is QI with respect to G.

2. KGJ ∈ S,∀K,J ∈ S.

3. KbinGbinKbin ≤ Kbin.

Quadratic Invariance (QI), and its special cases 20



Typical QI cases: sparsity constraints

A negative result:

Perfectly decentralized control is never QI except for the trivial case where no
subsystem affects any other.

Corollary

Suppose there exists i, j with i 6= j such that Gij 6= 0. Suppose Kbin is
diagonal and S = Sparse(Kbin). Then, S is not QI under G.

Figure: Fully decentralized control

Quadratic Invariance (QI), and its special cases 21



Non-QI cases: perturb S

I Closest Superset: Solve the following binary optimization problem

min
Z

‖Z‖0

subject to ZGbinZ ≤ Z

Kbin ≤ Z,
It is proved that this problem admits a polynomial time solution as follow

Z0 = Kbin, Zm+1 = Zm + ZmG
binZm, m ≥ 0

which will converge within finite iterations.

I Closest subset: Solve the following binary optimization problem

max
Z

‖Z‖0

subject to ZGbinZ ≤ Z

Z ≤ Kbin.

There is no known efficient algorithms to solve the problem above.

I M. Rotkowitz and N. Martins. On the nearest quadratically invariant information

constraint.IEEE Transactions on Automatic Control, 57(5):1314–1319, 2011.

Quadratic Invariance (QI), and its special cases 22



Non-QI cases: perturb P22

A dual approach

I Approximate the plant dynamics G, which can be combined with robust
control to provide a suboptimality guarantee.

min
G0

‖G0 −G‖∞

subject to Kbin · Pattern(G0) ·Kbin ≤ Kbin.

I This problem is equivalent to

max
G0

‖G0‖0

subject to G0 ≤ Pattern(G)

KbinG0K
bin ≤ Kbin.

I Unlike the nearest QI subset approach, the constraint above is linear in
the decision version G0. The Problem above admits a globally optimal
solution.

Quadratic Invariance (QI), and its special cases 23
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Sparsity invariance

Given a binary matrix S, the pair of binary matrices T,R satisfies a property of
sparsity invariance (SI) with respect to S if

Y ∈ Sparse(T ) and X ∈ Sparse(R)

⇓ (4)

YX−1 ∈ Sparse(S).

Applications in distributed control

min
Y,U,W,Z

‖P11 + P12UP21‖

subject to (1a)− (1c).

U ∈ Sparse(T ),

Y ∈ Sparse(R)

min
P,X,Z

trace(Z)

s.t. (AP +B2X) + (AP +B2X)T +B1B
T
1 ≺ 0,[

Z C1P +D12X

(C1P +D12X)T P

]
� 0,

X ∈ Sparse(T ), P ∈ Sparse(R).

The notion of QI is irrelevant of static controller design!

Beyond QI: Sparsity Invariance 25



Sparsity invariance

Main result: all characterizations of sparsity invariance

Given a binary matrix S ⊆ {0, 1}m×n, the following are equivalent

I S is SI under (T,R),

I T ≤ S, and TRn−1 ≤ S,

where we use a binary matrix to represent a sparse space, i.e., T ∈ {0, 1}m×n.

Proof sketch: Cayley-Hamilton theorem

X−1 = λ0I + λ1X + λ2X
2 + . . .+ λn−1X

n−1,

Two facts

I ∀X ∈ Sparse(R) and any integer r ∈ R, we have Xr ∈ Sparse(Rr),

I ∀X ∈ Sparse(R) and Y ∈ Sparse(T ), we have Y X ∈ Sparse(TR),

Combining the facts and the Cayley Hamilton theorem:
∀Y ∈ Sparse(T ), X ∈ Sparse(R), we have

Y X−1 = λ0Y + λ1Y X + λ2Y X
2 + . . .+ λn−1Y X

n−1

∈ Sparse(T ) + Sparse(TR) . . .+ Sparse(TRn−1).

Beyond QI: Sparsity Invariance 26



Sparsity invariance

Computation: maximizing the number of nonzeros in R

I Given a binary matrix T ⊆ S ∈ {0, 1}m×n, consider

max
R∈{0,1}n×n

‖R‖0

subject to TRn−1 ≤ S

I Consider another binary optimization problem

max
R∈{0,1}n×n

‖R‖0

subject to TRn−1 ≤ T

I The problem above admits an analytical solution R∗ (Algorithm 1)

R∗jk =

{
0 if ∃i = 1, . . . ,m, such that Tik = 0, Tij = 1

1 otherwise

Proof: we have TRn−1 ≤ T ⇔ TR ≤ T .

Beyond QI: Sparsity Invariance 27



Connection with QI

Theorem
Let ∆ = Pattern(G) and let R?S be the binary matrix generated by Our
algorithm with T = S. The following statements are equivalent.

i) Sparse(S) is QI with respect to G.

ii) R? ≥ Ip + ∆S, where R? is generated by our algorithm with T = S.

Beyond QI for sparsity constraints

1. SI is guaranteed to return a globally optimal solution when QI holds,

2. SI may still recover globally optimal solutions when QI does not hold,

3. SI can be guaranteed to return a solution at least as good as the closest
QI subset approach.

Beyond QI: Sparsity Invariance 28
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Distributed control in finite horizon

I We consider time-varying linear systems in discrete-time

xt+1 = Atxt +Btut + wt ,

yt = Ctxt + vt ,

I Consider a planning problem for the next N steps:

A = blkdg(A0, . . . , AN ), B =

[
blkdg(B0, . . . , BN−1)

0n×mN

]
, C = blkdg(C0, . . . , CN ) ,

x =
[
xT
0 . . . xT

N

]T
, y =

[
yT
0 . . . yT

N

]T
, u =

[
uT
0 . . . uT

N−1

]T
,

w =
[
xT
0 wT

0 . . . wT
N−1

]T
, v =

[
vT
0 . . . vT

N

]T
,

and the block-down shift matrix Z =

[
01×N 0
IN 0N×1

]
⊗ In.

I we can write the system dynamics compactly as

x = ZAx + ZBu + w, y = Cx + v,

leading to
x = P11w + P12u , y = Cx + v

where P11 = (I − ZA)−1 and P12 = (I − ZA)−1ZB.

QI in finite horizon and Gradient Dominance 30



Distributed control in finite horizon

I We consider linear output-feedback policies

ut = Kt,0y0 +Kt,1y1,+ . . . ,Kt,tyt, t = 0, 1, . . . , N − 1.

I Compactly, we write
u = Ky, K ∈ K ,

where K is a subspace in RmN×p(N+1) encoding a certain sparsity for
distributed control.

Distributed control in finite horizon

min J(K):=Ew,v

[
N−1∑
t=0

(
yT
tMtyt+u

T
tRtut

)
+ yT

NMNyN

]
,

subject to K ∈ K

(5)

QI in finite horizon and Gradient Dominance 31



QI and gradient dominance

Let d ∈ N be the dimension of K, and the columns of P ∈ RmpN(N+1)×d be a
basis of the subspace {vec(K)| ∀K ∈ K}. Define the function f : Rd → R as
f(z) := J(vec−1(Pz)). Then, (5) is equivalent to the unconstrained problem

min
z∈Rd

f(z) .

Quadratic Invariance

KCP12K ∈ K, ∀K ∈ K .

Theorem (Gradient Dominance)

Let K be QI with respect to CP12. For any δ > 0 define the sublevel set
Gδ = {z ∈ Rd | f(z)− J? ≤ δ}. Then, the following statements hold.

1. Gδ is compact, and f(z) has a unique stationary point.

2. f(z) admits a local gradient dominance constant µδ > 0 over Gδ

µδ(f(z)− J?) ≤ ‖∇f(z)‖22 , ∀z ∈ Gδ .

QI in finite horizon and Gradient Dominance 32



QI and gradient dominance: proof

I Closed-loop systems:[
y
u

]
=

[
C(I −P12KC)−1P11 (I −CP12K)−1

KC(I −P12KC)−1P11 K(I −CP12K)−1

] [
w
v

]
.

I Youla parameterization in finite horizon

Q = K(I −CP12K)−1, Q ∈ S ⇔ K ∈ S QI

I A change of variables leads to a strongly convex problem in Q.

f(z)
q=h(z)⇐⇒ g(q)

I Apply the chain rule of differentiation ∇f (z) = Jh · ∇g(h(z))

f(z)− f∗ = g(h(z))− g∗ ≤ µg‖∇g (h(z)) ‖22 ,

= µg‖J−1
h · ∇f (z)‖22

≤ µg‖J−1
h ‖

2
F ‖∇f(z)‖22 , ∀z ∈ Rd .

QI in finite horizon and Gradient Dominance 33
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Summary

-

�

� �

y u

wz

K

P11 P12

P21 P22

Figure: Interconnection of the plant P and controller K

I Lecture 1: Problem formulation in both frequency domain and
time-domain, well-posedness, internal stability

Frequency-domain formulation State-space formulation

min
K

‖Tzw‖

subject to K ∈ Cstab,

where

Tzw = P11+P12K(I−P22K)−1P21.

min

∥∥∥∥∥∥
 A + B2DkC2 B2Ck B1 + B2DkD21

BkC2 Ak BkD21

C1 + D12DkC2 D12Ck D11 + D12DkD21

∥∥∥∥∥∥
s.t.

[
A + B2DkC2 B2Ck

BkC2 Ak

]
is stable.

Summary and future work 35



Summary

Lecture 2: Convex reformulation in frequency domain

I External transfer matrix characterization of internal stability

Two useful facts:

– The set of stable matrices {A ∈ Rn×n | A is stable} is non-convex,
but finite-dimensional;

– The set of stable transfer matrices {T(s) | T(s) ∈ RH∞} is convex,
but infinite-dimensional;

I System-level parameterization and input-output parameterization

I Some applications in learning-based control: robust stability

(A,B)→ (Â, B̂), G→ Ĝ

Summary and future work 36



Summary

Lecture 3: Youla parameterization and disturbance-based implementation

I Youla for open-loop stable plants, and internal model principle:

The controller K = Q(I + GQ)−1 can be implemented in a
disturbance-based form:

β = y −Gu,

u = Qβ.

Figure: Internal model principle, where P22 := G.

I Disturbance-based feedback (in both infinite-horizon and finite horizon)
→ convexity

I Doubly co-prime factorization, its computation, and its feedback
interpretation

Summary and future work 37



Summary

Lecture 4: Convex formulation in state-space domain

I Hardy space H2 and H∞, and their LMI characterizations

I Change of variables K = Y X−1 and optimal control in state feedback.

I We consider static state feedback u = Dkx, and the controller synthesis
problem becomes

min
Dk

∥∥∥∥[ A+B2Dk B1

C1 +D12Dk D11

]∥∥∥∥
subject to A+B2Dk is stable.

I LMI for the H2 case

min
P,X,Z

trace(Z)

subject to (AP +B2X) + (AP +B2X)T +B1B
T
1 ≺ 0,[

Z C1P +D12X

(C1P +D12X)T P

]
� 0,

Summary and future work 38



Summary

Lecture 5: Distributed control, Quadratic Invariance, and Sparsity Invariance

I Classical formulation

min
K

‖P11 + P12K(I −P22K)−1P21‖

subject to K ∈ Cstab,

K ∈ S,
I Quadratic Invariance allows for equivalent convex reformulation in

frequency domain
KP22K ∈ S, ∀K ∈ S

I QI is independent of controller parameterizations, and works for Youla,
SLP, and IOP.

I Non-QI cases: 1) perturb the constraints (QI subset or QI superset); 2)
perturb the dynamics (Robust control)

I Beyond QI for sparsity constraints: Sparsity Invariance

Y ∈ Sparse(T ) and X ∈ Sparse(R)

⇓

YX−1 ∈ Sparse(S).
Summary and future work 39



Possible research topics

I Other closed-loop parameterization, and mismatches in equality
constraints.

(zI −A2)R−B2M = I + ∆1, Y −GU = I + ∆2.

I Robust control, sub-optimality, sample complexity analysis for learning
LQG controller (an output feedback version of the Corse-ID procedure);

G = G0 + ∆, ‖∆‖∞ < γ

I Online learning of distributed controller with/without QI constraints:
gradient descent over the structured Youla parameter?

I Safe learning and robust control with stability guarantees

Summary and future work 40
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