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1. Recap: optimal control and its convex formulations

Recap: optimal control and its convex formulations



Optimal control

» General optimal control formulation

min  f(P,K)

subject to K internally stabilizes P.

where f(P,K) defines a certain performance index.

» Specifically

Frequency-domain formulation State-space formulation

min [Tzl
K

By + B2Dy D21

A+ ByDyCo
subject to K € Cgtap, min B, Cy
C1 4+ D12DCo
where
st A+ BaDypCa BaCy
Tow = P11+P12K(I—P22K)_1P21, o B, Co A

Recap: optimal control and its convex formulations

D12Cx | D11+ D12Dp D2



Input-output parameterization

Consider the closed-loop responses from (J,,4.) to (y,u):

[ —Pa] E VZV] =1 0], (1a)
o 2|7l )
Y, UW,Z € RHoo. (1c)

Theorem (Input-output parameterization)

The set of all internally stabilizing controllers can be represented as

Cotab = {K = Uy ! | Y, U, W, Z are in the affine subspace (1a)-(1c)}.

mlén P11 4 P1oK (I — PorK) ' Poy || Y,%l,iv%,z P11+ P12UPa ||
subject to K € Cstab, subject to  (1a) — (1c).

Recap: optimal control and its convex formulations 5



System-level parameterization

Consider the closed-loop responses from (d.,d,) to (x,u):

sI—A —B)] Lﬁ ﬂ _ 1 o, (22)
BUPE
R,M,N € RHoo, L€ RHoo. (2¢)

Theorem (System-level parameterization)

For strictly proper plants, the set of all internally stabilizing controllers can be
represented as

Cotap = {K =L - MR 'N | R, M, N, L are in the affine subspace (2a)-(2c)}

System-level synthesis

min C1 D12
R,M,N,L

subject to  (2a) — (2¢).

R N] |:Bl

M L Dﬂ] + D11

Recap: optimal control and its convex formulations



Recap:

Youla parameterization

Classical Optimal control
min P11 + P12K(I — GK) Py |
subject to K internally stabilizes G.
We have the following equivalence
Cotab = {K = (V. = M, Q)(U, — N, Q)" | Q € RHoo},

where Q is denoted as the Youla parameter.

Convex reformulation in Youla

inn [Tir + T12QTo||
subject to Q € RH o,

where T11 = P11 + P12V, M;P21, T12 = —P12M,, and T2 = M;Po;.

optimal control and its convex formulations



Optimal state-feedback control

Consider the state-space formulation:

min

B Co Ap By D21
Ci1+ D12DyC2  D12Cy | D11 + D12Dy D2y

A+ BaD.Co ByCy | .
s.t. [ Bi.Cy A ] is stable.

A+ B2DpCo B3Cy ‘ By + B2Dy D21 . A+ ByDy, ‘ B,
min
Dy, C1+ D12Dy, \ Di1

s.t. A+ BgDy is stable.

» H, cost function

min  trace(Z)
P,X.,Z

st. (AP + B2X)+ (AP + B2X)" + BB} <0,

A Ci1P+ Do X .0
(C1P + D12 X)7 P ’

where the optimal H optimal state feedback gain is recovered by
Dy = xXpt

» LMI formulations are available for the output feedback case.

Recap: optimal control and its convex formulations



Classical distributed control

» Canonical distributed control formulation
mén f(P,K)
subject to K internally stabilizes P

Kes.

where f(P,K) defines a certain performance index and S denotes a
subspace constraint.

» Two typical formulations in the literature

min IT.w]| - H{ A+ ByDy ‘ B, }H
subject to K € Cstab N S, Dy, C1 + D12Dy, ‘ D1
where s.t. A+ BoDy is stable

1 Dy €8S.
T.o = P11 + P1oK( — P2oK) ™ Poy.

Recap: optimal control and its convex formulations
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2. Quadratic Invariance (Ql), and its special cases

Quadratic Invariance (QI), and its special cases
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Classical distributed control formulation

» A canonical problem is to minimize a norm of the closed-loop map subject
to a subspace constraint

min P11 4+ P12K(7 - P2K) Py

subject to K € Cstab, ()
Kes,
where S is a subspace demoting sparsity or delay constraints on the
controller.

» After applying the change of variables in Youla, input-output, or
system-level parameterizations, we need to introduce the following
non-convex constraint on the decision variables

(V. =M, Q)(U, -N, Q)" €5,
Uy ‘'es,
L-MR 'Nes.

Quadratic Invariance (Ql), and its special cases 11



Quadratic Invariance

Definition (Quadratic Invariance (Ql))

Given a plant P22 and a subspace S. The subspace S is called quadratically
invariant under P, if

KPxK € S, VK € S.

Cayley—Hamilton theorem: for any n x n matrix A, we have the following
identity:
p(A)=co+caA+...+c, A" =0.

Theorem
Define U = K(I — P2oK)™'. If S is quadratically invariant under Pas, then

KeS<«< Ucs.

= Observe that
(I-PuK) '=a+ar1(I —PuK)+...4+a, 1(I — PypK)"*
< Observe that U = K(I — P2;K) ™! leads to K = U(I + P53, U) L.

Quadratic Invariance (QI), and its special cases 12



QI with the IOP

Theorem (QI with the IOP)

If S is QI under P2, then
1. We have

CaarNS = {K=UY " | Y,U,W,Z are in (1a)-(1c), U € S}.

2. Problem (3) can be equivalently formulated as a convex problem

min P11 + P12 UP2 ||
Y, U,W,Z
subject to  (1a) — (1c),

Uecs.

Proof: From the affine constraint, we have
Y -PxU=] = Y=1+P2U.
Then, we have
K=U(I+PxU)"' & U=K({-PxK) "

Quadratic Invariance (Ql), and its special cases
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QI with the SLP

Corollary (QI with the SLP)

If S is QI under Pos, then
1. We have

CaabNS={K=L—-MR 'N|R, M, N, L are in (2a)-(2c),L € S}.

2. Problem (3) can be equivalently formulated as a convex problem

. R N| | B:
R,%}g,L H L D12 [M L:| |:D21:| + Dll
subject to (2a) — (2¢),

Les.

Quadratic Invariance (Ql), and its special cases
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QI with the Youla

Corollary (QI with Youla)

If S is QI under P2, then
1. We have

CaapNS ={K=(V, — M,Q)(U,—N,Q) "' | Q € RHwo

(V. —M,Q)M, €S, }.

2. Problem (3) can be equivalently formulated as a convex problem
Hgn |T11 + T12QT 21 ||

subject to (V, —M,Q)M, € §
Q € RHoo.

Quadratic Invariance (Ql), and its special cases
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Summary: Quadratic invariance (QI)

min || T11 + T12QTa1]|
Q (V. — M, QM, € S
Youla subject to Q € RH o,

(V'r - M’V‘Q)(U’l‘ - N’I‘Q)71 6 S

minz P11 + P12UP2 |

Y,U,W, Ues
IOP subject to  (1a) — (1¢).
ur'es
) R N| | B:
Rmin H D] {M L} {DQJ D2
SLS subject to  (2a) — (2¢)

L-MR 'N€eS.

Quadratic Invariance (Ql), and its special cases 16



Typical QI cases: delay patterns

n =
!
&
2 EETE

|

» Transmission delay t > 0, propagation delay p > 0, and computational
delay ¢ > 0. We define: K € S if and only if

D.Hi DiycHiz coo Dm—1ytqcHin
Dt+cH21 DCHQQ N D(n—2)t+cH2n
K= . . ) :
D(nfl)tJrcHnl D(n72)t+cHn2 ce D.Hpn

Quadratic Invariance (Ql), and its special cases
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Typical QI cases: delay patterns

» The plant dynamics are

Aqr DPA]_z - D(n—l)pAln
DpAZI A22 cee D(n72)pA2n
G = . . . .
D(nfl)pAnl D(n72)pAn2 cee Ann

Theorem
Suppose that G and S are defined as above, then S is QI with respect to G if
and only if

tSp—!—L.
n—1

A nice physical interpretation: The constraint is QI if the controllers can
communicate faster than the dynamics propagate, i.e., t < p.

Quadratic Invariance (Ql), and its special cases 18



Typical QI cases: symmetric constraints

» When the plant is symmetric, the constraint of symmetric controllers is
naturally QI.
» In particular, we have the following result:

Theorem
Suppose H" = {A € C"*" | A= A"}, and
S={KeR,|K(jw) e H",Vw € R}.

If G € R, with G(jw) € H", then S is QI with respect to G.

» Rotkowitz, Michael, and Sanjay Lall. " A characterization of convex problems in
decentralized control.” IEEE transactions on Automatic Control 50.12 (2005):
1984-1996.

» Lessard, Laurent, and Sanjay Lall. " Convexity of decentralized controller
synthesis.” |IEEE Transactions on Automatic Control 61.10 (2015): 3122-3127.

» Lessard, Laurent, and Sanjay Lall. " Quadratic invariance is necessary and
sufficient for convexity.” Proceedings of the 2011 American Control Conference.
IEEE, 2011.

Quadratic Invariance (Ql), and its special cases
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Typical QI cases: sparsity constraints

» Suppose A°™ € {0,1}™*™ is a binary matrix. We define the subspace

Sparse(A”™) = {B € R, |By;(w) = 0, for all, i, j,such that A% =0,
for almost all w € R}.

> Also, if B € R, let A" = Pattern(B) be the binary matrix given by

b
AP = _
1, otherwise.

{O, if Bij(jw) = 0 for almost all w € R,
Theorem

Suppose S = Sparse(K"™), and let G*™ = Pattern(G). Then, the following
condition are equivalent:

1. S is QI with respect to G.
2. KGJ € §,VK,J € S.
3_ KbinGbinKbin S Kbi”_

Quadratic Invariance (Ql), and its special cases
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Typical QI cases: sparsity constraints
A negative result:

Perfectly decentralized control is never QI except for the trivial case where no
subsystem affects any other.

Corollary

Suppose there exists i, j with i # j such that G;; # 0. Suppose Kb s
diagonal and S = Sparse(Kb’”). Then, S is not QI under G.

‘Gu‘ Gy | Gal

I

Figure: Fully decentralized control

Quadratic Invariance (Ql), and its special cases
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Non-QI cases: perturb S

> Closest Superset: Solve the following binary optimization problem
min - {|Z]lo
subject to  ZG""Z < Z
Kb < 7,
It is proved that this problem admits a polynomial time solution as follow
Zo = K", Zmi1 = Zm + Zn G Zr, m >0

which will converge within finite iterations.

» Closest subset: Solve the following binary optimization problem
max [0
z
subject to  ZG™Z < Z
Z < K°"
There is no known efficient algorithms to solve the problem above.

P M. Rotkowitz and N. Martins. On the nearest quadratically invariant information
constraint.|IEEE Transactions on Automatic Control, 57(5):1314-1319, 2011.

Quadratic Invariance (Ql), and its special cases
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Non-QI cases: perturb Py

A dual approach

» Approximate the plant dynamics G, which can be combined with robust
control to provide a suboptimality guarantee.

min ||Go — G|
Go

subject to K" . Pattern(Gy) - K" < K",

» This problem is equivalent to

max  [[Gollo
Go

subject to G < Pattern(G)
KbinGOKbin < Kbin
» Unlike the nearest QI subset approach, the constraint above is linear in

the decision version Gig. The Problem above admits a globally optimal
solution.

Quadratic Invariance (QI), and its special cases 23
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Sparsity invariance

Given a binary matrix .S, the pair of binary matrices T, R satisfies a property of
sparsity invariance (SI) with respect to S if

Y € Sparse(T) and X € Sparse(R)
4 (4)
YX ! € Sparse(S).

Applications in distributed control

. min trace(Z)
min HP11 + P12UP21H P,X,Z

vonE t. (AP + B2X)+ (AP + B2X)' +BiB{ <0
S.T.
subject to  (1a) — (1c). 2 ? e ’
Z C1P 4 D12 X

U € Sparse(T), (C1P + D1 X)" P
YeS R
parse(R) X € Sparse(T), P € Sparse(R).

>0,

The notion of QI is irrelevant of static controller design!

Beyond QI: Sparsity Invariance 25



Sparsity invariance

Main result: all characterizations of sparsity invariance

Given a binary matrix S C {0,1}™*", the following are equivalent
» Sis Sl under (7, R),
> T<S,and TR" ' <5,

where we use a binary matrix to represent a sparse space, i.e., T € {0,1}™*".

Proof sketch: Cayley-Hamilton theorem
X =Dl + X + X2+ F A XM
Two facts
> VX € Sparse(R) and any integer r € R, we have X" € Sparse(R"),
» VX € Sparse(R) and Y € Sparse(T’), we have Y X € Sparse(TR),

Combining the facts and the Cayley Hamilton theorem:
VY € Sparse(T'), X € Sparse(R), we have

YX 1= MY + MY X + Y X2+ 4+ A Y X!

€ Sparse(T') + Sparse(T'R) ... + Sparse(TR"™").
Beyond QI: Sparsity Invariance
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Sparsity invariance

Computation: maximizing the number of nonzeros in R

> Given a binary matrix T C S € {0,1}™*™, consider

max || R|lo
RG{O,l}’!LX’!L

subject to TR™'< S

» Consider another binary optimization problem

max _ [|Rllo
Re{0,1}nxn

subjectto TR"™'<T

» The problem above admits an analytical solution R* (Algorithm 1)

R}, =

7

{0 if3 =1,...,m,such that Tj, = 0,T}; = 1

1 otherwise

Proof: we have TR" ' < T < TR<T.

Beyond QI: Sparsity Invariance 27



Connection with QI

Theorem

Let A = Pattern(G) and let RS be the binary matrix generated by Our
algorithm with T = S. The following statements are equivalent.

i) Sparse(S) is QI with respect to G.
i) R* > I, + AS, where R* is generated by our algorithm with T = S.

Beyond QI for sparsity constraints
1. Sl is guaranteed to return a globally optimal solution when QI holds,
2. Sl may still recover globally optimal solutions when QI does not hold,

3. Sl can be guaranteed to return a solution at least as good as the closest
QI subset approach.

Beyond QI: Sparsity Invariance

28
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Distributed control in finite horizon

» We consider time-varying linear systems in discrete-time

Te41 = Arxe + Brue + wy

yt = Cyxy + v,
» Consider a planning problem for the next N steps:
A = blkdg(Ao, ..., Ay), B = [b'kdg(%i;';]’vBN—l)] . C = blkdg(Co, ..., Cn)
x=[a] .. o}, I 1 T S LI % S I A
we ] wl k)T vl ol
and the block-down shift matrix Z = {OIXN 0 } ® In.
In  Onx1

» we can write the system dynamics compactly as
X =ZAx + ZBu + w, y=Cx+v,

leading to
X =P11w + Piau, y=Cx+v
where Py = (I —ZA)™ ' and P1o = (I — ZA) 'ZB.

QI in finite horizon and Gradient Dominance 30



Distributed control in finite horizon

» We consider linear output-feedback policies
Ut = Kt,OyO + Kt,lyh + e 7Kt,tyt7 t = 07 1, e ,N — 1

» Compactly, we write
u=Ky, KekK,

where K is a subspace in R™N*P(N+1) encoding a certain sparsity for
distributed control.

Distributed control in finite horizon

N—-1

min J(K):ZEW,V[Z(yz—Mtyt+UIRtUt)+Z/LMN3/N:|7 5)

t=0
subject to KeK

QI in finite horizon and Gradient Dominance
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QI and gradient dominance

Let d € N be the dimension of K, and the columns of P € R™PNWN+1)xd e o
basis of the subspace {vec(K)| VK € K}. Define the function f : R* — R as
f(2) := J(vec™'(Pz)). Then, (5) is equivalent to the unconstrained problem

min f(z).

z€R4

Quadratic Invariance

KCP2Ke K, VKek.

Theorem (Gradient Dominance)

Let IC be QI with respect to CP12. For any § > 0 define the sublevel set
Gs = {z € R?| f(2) — J* < &}. Then, the following statements hold.

1. Gs is compact, and f(z) has a unique stationary point.

2. f(z) admits a local gradient dominance constant us > 0 over Gs

ps(f(z) = J°) < |IVF(2)|5, Yz € Gs.

QI in finite horizon and Gradient Dominance

32



QI and gradient dominance: proof

» Closed-loop systems:

y| [ CI-P2KC)'Pi;y  (I-CPpK)™'][w
u B KC([—P12KC)_1P11 K(I—CPlzK)_l A%

» Youla parameterization in finite horizon

Q=K -CP;K)™", QeSeKeS Qi

» A change of variables leads to a strongly convex problem in Q.

fz2) "2 g9

» Apply the chain rule of differentiation Vf (z) = J5 - Vg(h(2))

f(2) = 7= g(h(2)) — g" < 1yl Vg ((2)) |13,
= gl TtV (2)]3
< gl IFIVE()5, VzeR?.

QI in finite horizon and Gradient Dominance 33
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Summary

| P11
P

>

K

Figure: Interconnection of the plant P and controller K

» Lecture 1: Problem formulation in both frequency domain and
time-domain, well-posedness, internal stability

|

Frequency-domain formulation
min || Tzwl|
K
subject to K € Cgtap, min
where

T.w = P11+P12K(I—P22K) 1 Py;.

Summary and future work

State-space formulation

B1 + B2Dyp D2y

C1 + D12DyCo
|:A + B2D,Co

D12Cy | D11+ D12Dy D2y

|



Summary

Lecture 2: Convex reformulation in frequency domain

» External transfer matrix characterization of internal stability

Two useful facts:

— The set of stable matrices {A € R"*"™ | A is stable} is non-convex,
but finite-dimensional;

— The set of stable transfer matrices {T(s) | T(s) € RH} is convex,
but infinite-dimensional;

» System-level parameterization and input-output parameterization

> Some applications in learning-based control: robust stability

(A, B) %(A,B), GG

Summary and future work 36



Summary

Lecture 3: Youla parameterization and disturbance-based implementation
» Youla for open-loop stable plants, and internal model principle:

The controller K = Q(7 + GQ) ™! can be implemented in a
disturbance-based form:

B:y_Gua
u=Qg.

Figure: Internal model principle, where P22 := G.

» Disturbance-based feedback (in both infinite-horizon and finite horizon)
— convexity

» Doubly co-prime factorization, its computation, and its feedback
interpretation

Summary and future work
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Summary

Lecture 4: Convex formulation in state-space domain
» Hardy space H2 and Hoo, and their LMI characterizations
» Change of variables K = Y X! and optimal control in state feedback.

» We consider static state feedback w = Dyx, and the controller synthesis
problem becomes

min
Dy,

A+ ByDy | By
Ci+ D12Dy. | Dua

subject to A + B2Dy is stable.

» LMI for the Ho case

min trace(Z)

P,X,Z
subject to (AP + BoX) 4 (AP + B2 X)" + BiB{ <0,
Z CiP+DX|
(C1P + D12 X)T P ’

Summary and future work 38



Summary

Lecture 5: Distributed control, Quadratic Invariance, and Sparsity Invariance
» Classical formulation

min |[P1 + PK(I - P2 K) ' Py

subject to K € Cstab,
KesS,

» Quadratic Invariance allows for equivalent convex reformulation in
frequency domain
KP2:K € S,VK €S

» QI is independent of controller parameterizations, and works for Youla,
SLP, and IOP.

» Non-QI cases: 1) perturb the constraints (Ql subset or QI superset); 2)
perturb the dynamics (Robust control)

> Beyond QI for sparsity constraints: Sparsity Invariance
Y € Sparse(T) and X € Sparse(R)
4
YX ! € Sparse(S).

Summary and future work
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Possible research topics

» Other closed-loop parameterization, and mismatches in equality
constraints.

(21 —A))R—B:M=1+A;, Y-GU=I+A,.

» Robust control, sub-optimality, sample complexity analysis for learning
LQG controller (an output feedback version of the Corse-ID procedure);

G = Go+A,||Allx < 7

» Online learning of distributed controller with/without QI constraints:
gradient descent over the structured Youla parameter?

» Safe learning and robust control with stability guarantees

Summary and future work

40
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