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Exploiting Sparsity of Coefficient Matching Conditions in

Sum-of-Squares Programming using ADMM

Yang Zheng1, Giovanni Fantuzzi2, Antonis Papachristodoulou1

Abstract— This paper introduces an efficient first-order
method based on the alternating direction method of mul-
tipliers (ADMM) to solve the semidefinite programs (SDPs)
arising from sum-of-squares (SOS) programming. We exploit
the sparsity of the coefficient matching conditions when SOS
programs are formulated in the usual monomial basis to reduce
the computational cost of the ADMM algorithm. Each iteration
of our algorithm consists of one projection onto the positive
semidefinite cone and the solution of multiple quadratic pro-
grams with closed-form solutions free of any matrix inversion.
Our techniques are implemented in the open-source MATLAB
solver SOSADMM. Numerical experiments on SOS problems
arising from unconstrained polynomial minimization and from
Lyapunov stability analysis for polynomial systems show speed-
ups compared to the interior-point solver SeDuMi, and the
first-order solver CDCS.

I. INTRODUCTION

Checking whether a given polynomial is nonnegative has

applications in many areas. For example, the unconstrained

polynomial optimization problem minx∈Rn p(x) is equiva-

lent to the maximization problem

max γ

subject to p(x)− γ ≥ 0.
(1)

Moreover, the stability of an equilibrium x∗ of a polyno-

mial dynamical system ˙x(t) = f(x(t)), x(t) ∈ Rn, in a

neighbourhood D of x∗—a fundamental problem in control

theory—can be established by constructing a polynomial

function V (x) (called Lyapunov function) satisfying the

polynomial inequalities
{

V (x) > 0, ∀x ∈ D\{0},

−V̇ (x) = −〈∇V (x), f(x)〉 ≥ 0, ∀x ∈ D.
(2)

Throughout this work, 〈·, ·〉 denotes the inner product in the

appropriate Hilbert space.

A powerful way to test polynomial inequalities is to

employ a sum-of-squares (SOS) relaxation (we refer the

reader to [1], [2] for details on SOS relaxations in polynomial

optimization, and to [3] for a tutorial on SOS techniques for

system analysis). In fact, while testing the non-negativity of

a polynomial is NP-hard in general, the existence of a SOS

decomposition can be checked in polynomial time by solving

a semidefinite program (SDP) [1]. Unfortunately, however,
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the size of the SDP for the SOS relaxation of a degree-

d polynomial in n variables is
(

n+d
d

)

. Consequently, SOS

relaxations are limited to small problem instances; with the

current technology, for example, Lyapunov-based analysis is

impractical for general systems with ten or more states.

In order to mitigate scalability issues, one can act at the

modeling level, i.e. one can try to replace the SDP obtained

from a SOS relaxation with an optimization problem that is

cheaper to solve using second-order interior-point methods

(IPMs), implemented in efficient solvers such as SeDuMi [4]

and SDPT3 [5]. One approach is to exploit structural prop-

erties of the polynomial whose positivity is being tested [6]–

[10]. For example, computing the Newton polytope [6]

or checking for diagonal inconsistency [7] can restrict the

monomial basis required in the SOS decomposition by elim-

inating redundant monomials. Further improvements are pos-

sible by group-theoretic symmetry reduction techniques [8]

and graph-theoretic correlative sparsity [9]. Facial reduction

has also been applied to select a reduced monomial basis

for SOS programs in [10]. A second approach is to approx-

imate the positive semidefinite (PSD) cone using diagonally

dominant or scaled diagonally dominant matrices [11], [12].

These relaxations can be solved with linear programs (LPs)

or second-order-cone programs (SOCPs), rather than SDPs,

and the conservativeness introduced by approximating the

PSD cone can be reduced with a recently proposed basis

pursuit algorithm [13].

Further improvements are available on the computational

level if IPMs are replaced by more scalable first-order

methods (FOMs) at the cost of reduced accuracy. The

design of efficient first-order algorithms for large-scale SDPs

has received particular attention in recent years. For in-

stance, Wen et al. proposed an alternating direction aug-

mented Lagrangian method for large-scale dual SDPs [14].

O’Donoghue et al. developed an operator-splitting method

to solve the homogeneous self-dual embedding of conic pro-

grams [15], which has recently been extended by the authors

to exploit aggregate sparsity via chordal decomposition [16],

[17]. In the context of SOS programming, Bertsimas et al.

proposed an accelerated FOM for unconstrained polynomial

optimization [18], while Henrion & Malick introduced a

projection-based method for general SOS relaxations [19].

In this paper, we propose a first-order algorithm based on

the alternating direction method of multipliers (ADMM) to

solve the SDPs arising from SOS optimization. The main

idea is that while the aggregate sparsity pattern of these

SDPs is dense, so that the methods of [16], [17] are not

very advantageous, when a SOS program is formulated in

http://arxiv.org/abs/1703.01969v1


the usual monomial basis each equality constraint in the

SDP only involves a small subset of decision variables. This

sparsity can be exploited to formulate an efficient ADMM

algorithm, the iterations of which consist of conic projections

and optimization problems with closed-form solutions that—

crucially—are free of any matrix inversion. We implement

our techniques in SOSADMM, an open-source MATLAB

solver. The efficiency of our methods compared to the IPM

solver SeDuMi [4] and the first-order solver CDCS [20] are

demonstrated on SOS problems arising from unconstrained

polynomial optimization and from Lyapunov stability analy-

sis of polynomial systems.

The rest of this paper is organized as follows. Section II

briefly reviews SOS polynomials and the ADMM algorithm.

Constraint sparsity for SDPs arising in SOS programs is

discussed in Section III, and we show how to to exploit it to

build an efficient ADMM algorithm in Section IV. Numerical

experiments are reported in Section V. Section VI concludes

the paper.

II. PRELIMINARIES

A. SOS polynomials and SDPs

Let x ∈ Rn, α ∈ Nn, and let xα = xα1

1 xα2

2 · · ·xαn

n denote

a monomial in x of degree |α| =
∑n

i=1
αi. Given an integer

d ∈ N, we denote N
n
d = {α ∈ N

n : |α| ≤ d}, and the vector

of all monomials of degree no greater than d is denoted by

vd(x) = {xα | α ∈ N
n
d}

= [1, x1, x2, . . . , xn, x
2
1, x1x2, . . . , x

d
n]

T .
(3)

The length of vd(x) is |Nn
d | =

(

n+d
d

)

. A real polynomial

p(x) is a finite, real linear combination of monomials of x

p(x) =
∑

α∈Nn

pαx
α, pα ∈ R.

The degree of p(x) is the maximum of the degrees of all

monomials with nonzero coefficients. We denote the set of

real polynomials in x by R[x].
Definition 1: A polynomial p(x) ∈ R[x] of degree 2d is

a sum-of-squares (SOS) if there exist polynomials fi(x) ∈
R[x], i = 1, . . . ,m of degree no greater than d such that

p(x) =

m
∑

i=1

[fi(x)]
2
.

Clearly, the existence of an SOS representation guarantees

that p(x) ≥ 0. The following theorem gives an equivalent

characterization of SOS polynomials.

Proposition 1 ( [1]): A polynomial p(x) ∈ R[x] of de-

gree 2d is an SOS polynomial if and only if there exists a
(

n+d
d

)

×
(

n+d
d

)

symmetric PSD matrix X � 0 such that

p(x) = vd(x)
TXvd(x). (4)

Condition (4) gives a set of affine equalities on the

elements of X to match the coefficients of p(x). Together

with X � 0, this makes the problem of finding a SOS rep-

resentation for p(x) an SDP. The formulation of such SDPs

can be assisted by software packages, such as SOSTOOLS

[21] and GloptiPoly [22].

Remark 1: The size of the PSD matrix X in (4) is
(

n+d
d

)

×
(

n+d
d

)

because we have used the full set of

monomials of degree no greater than d in our representation.

This number can usually be reduced by inspecting the

structural properties of p(x) to identify and eliminate re-

dundant monomials in vd(x); well-known techniques include

Newton polytope [6], diagonal inconsistency [7], symmetry

property [8], and facial reduction [10].

B. ADMM algorithm

The ADMM algorithm solves the optimization problem

min
y,z

f(y) + g(z)

subject to Ay +Bz = c,
(5)

where y ∈ Rn and z ∈ Rm are the decision variables, f :
Rn → R and g : Rm → R are convex functions, and A ∈
Rl×n, B ∈ Rl×m and c ∈ Rl are the constraint data. Given

a penalty parameter ρ > 0 and a multiplier λ ∈ Rl (known

as the dual variable), the ADMM algorithm solves (5) by

finding a saddle point of the augmented Lagrangian

Lρ(y, z, λ) = f(y) + g(z) +
ρ

2

∥

∥

∥

∥

Ay +Bz − c+
1

ρ
λ

∥

∥

∥

∥

2

with the following steps:

yk+1 = argmin
y

Lρ(y, z
k, λk), (6a)

zk+1 = argmin
z

Lρ(y
k+1, z, λk), (6b)

λk+1 = λk + ρ(Ayk+1 +Bzk+1 − c). (6c)

In these equations, the superscript k denotes the value of a

variable at the k-th iteration of the algorithm. The ADMM is

particularly suitable when the minimization with respect to

each of the variables y and z in (6a) and (6b) can be carried

out efficiently through closed-form expressions. More details

can be found in [23].

III. ROW SPARSITY IN SDPS FROM SOS PROGRAMS

A. SDP formulations of SOS relaxations

Let Aα be the indicator matrix for the monomials xα in the

rank-one matrix vd(x)vd(x)
T ; in other words, the entry of

Aα with row index β and column index γ (where the natural

ordering for multi-indices β, γ ∈ N
n
d is used) satisfies

(Aα)β,γ =

{

1 if β + γ = α

0 otherwise.
(7)

The SOS constraint (4) can then be

reformulated as

p(x) = 〈vd(x)vd(x)
T , X〉 =

∑

α∈Nn

d

〈Aα, X〉xα. (8)

Matching the coefficients of the left- and right-hand sides

gives the equality constraints

〈Aα, X〉 = pα ∀ α ∈ N
n
2d. (9)



TABLE I

DENSITY OF NONZERO ELEMENTS IN THE EQUALITY CONSTRAINTS OF SDP (10)

n 4 6 8 10 12 14 16

2d = 4 1.42× 10−2 4.76× 10−3 2.02× 10−3 9.99× 10−4 5.49× 10−4 3.27 × 10−4 2.06× 10−4

2d = 6 4.76× 10−3 1.08× 10−3 3.33× 10−4 1.25× 10−4 5.39× 10−5 2.58 × 10−5 1.34× 10−5

2d = 8 2.02× 10−3 3.33× 10−4 7.77× 10−5 2.29× 10−5 7.94× 10−6 3.13 × 10−6 1.36× 10−6

We refer to these equalities as coefficient matching condi-

tions. The existence of a SOS decomposition for p(x) (or

lack thereof) can then be checked with the feasibility SDP

find X

subject to 〈Aα, X〉 = pα, α ∈ N
n
2d,

X � 0.

(10)

When the full monomial basis is used, as in this case, the

dimension of X and the number of constraints in (10) are,

respectively,

N = |Nn
d | =

(

n+ d

d

)

, m = |Nn
2d| =

(

n+ 2d
2d

)

. (11)

B. Properties of the coefficient matching conditions

In this section, for simplicity, we re-index the constraint

matching conditions (9) using integer indices i = 1, . . . ,m
instead of the multi-indices α.

The conditions (9) inherit two important properties from

the data matrices Ai, i = 1, . . . ,m. The first one follows

from the fact that the matrices Ai are orthogonal. In particu-

lar, if ni denotes the number of nonzero entries (with value

1) in Ai we have

〈Ai, Aj〉 =

{

ni if i = j,

0 otherwise.
(12)

After letting vec : SN → R
N2

be the usual operator mapping

a matrix to the stack of its columns, and defining

A =
[

vec(A1) · · · vec(Am)
]T

, (13)

the equality constraints in (10) can be rewritten as

A · vec(X) = b,

where b ∈ Rm is a vector collecting the coefficient pi,

i = 1, . . . ,m. Property (12) directly implies the following

lemma, which formed the basis of the FOMs of [18], [19].

Lemma 1 (Orthogonality of constraints): The matrix and

AAT is an m×m diagonal matrix with (AAT )ii = ni.

The second property of the coefficient matching conditions

is that they are sparse, in the sense that each equality

constraint in (10) only involves a small subset of entries

of X . In fact, only a small subset of entries of the product

vd(x)vd(x)
T are equal to a given monomial xα. This implies

that the vectorized matrix A is row sparse, meaning that each

row is a sparse vector. In particular, we have

Lemma 2 (Sparsity of constraints): Let A be the vector-

ized matrix for (10), and let N and m be as in (11). The

number of nonzero elements in A is N2, and the density of

nonzero elements in A is equal to m−1 = O(n−2d).

Fig. 1. Sparsity pattern of AAT for the example (14)

Proof: Since the matrix vd(x)vd(x)
T contains all

monomials xα, α ∈ Nn
2d, all entries of the PSD matrix

X enter at least one of the equality constraints in (10).

Moreover, (12) implies that each entry of X enters at

most one constraint. Therefore, A must contain N2 nonzero

elements. Its density is then given by

N2

N2 ×m
=

1

m
=

[(

n+ 2d
2d

)]−1

= O(n−2d).

Remark 2: While the constraint matrix A is sparse (see

typical values in Table I), the aggregate sparsity pattern of the

SDP (10) is dense because all entries of the matrix variable

X appear in the equality constraints. This implies that X

is generally a dense variable, so the first-order algorithms

of [16], [17] are not particularly suitable.

Remark 3: The property of orthogonality in Lemma 1

holds for standard SOS feasibility problems. However, this

property fails for the following example:

find a, b

subject to ax4 + bx2 + x+ 1 is SOS,

bx4 + ax2 + x+ 1 is SOS.

(14)

Fig. 1 shows the sparsity pattern of AAT for (14) obtained

using SOSTOOLS, demonstrating that the constraints are

not orthogonal. The reason is that (14) involves the free

parameters a, b as well as the PSD matrices for the SOS

representation, and this destroys the orthogonality of the

equality constraints in the SDP. This issue is common in

control applications; see, e.g., the condition (2) when finding

Lyapunov functions. Consequently, the first-order algorithms

in [18], [19] cannot be applied to many problems with SOS

constraints because they rely on constraint orthogonality.

IV. EXPLOITING ROW SPARSITY IN SDPS

As we have seen, the algorithms in [16]–[19] are not

useful for generic SOS optimization problems because their

aggregate sparsity pattern is dense, and the orthogonality



property only holds for simple SOS feasibility problems.

However, the data matrix A is always row-sparse due to

the coefficient matching conditions and this property can be

exploited to construct an efficient ADMM algorithm that is

particularly suited to SOS optimization. In the following, we

consider a generic SDP in the vectorized form

min
x

cTx

subject to Ax = b,

x ∈ K,

(15)

where x is the optimization variable, A, b and c are the

problem data, and K is a product of cones, at least one of

which is the PSD cone.

A. Reformulation considering individual row sparsity

Let us represent A = [a1, a2, . . . , am]T , so each vector ai
is a row of A, and let Hi, i = 1, . . . ,m be “entry-selector”

matrices of 1’s and 0’s selecting the nonzero elements of ai.

Note that the rows of Hi are orthonormal, since each selects

a different entry of ai. Then,

Ax = b ⇔

{

(Hiai)
T zi = bi, i = 1, . . . ,m,

zi = Hix, i = 1, . . . ,m.
(16)

In (16), zi is a copy of the elements of x which enter

the i-th affine constraint, its dimension being equal to the

number of nonzero elements of ai. It is also convenient

to introduce an additional slack variable z = x, so the

affine constraints in (16) and conic constraint in (15) are

decoupled when applying the ADMM algorithm. We can

then reformulate (15) as

min
zi,z,x

cTx

subject to (Hiai)
T zi = bi i = 1, . . . ,m,

zi = Hix, i = 1, . . . ,m,

z = x,

z ∈ K.

(17)

B. ADMM steps

To apply ADMM, we move the affine constraints

(Hiai)
T zi = bi and the conic constraint z ∈ K in (17) to

the objective using the indicator functions δ0(·) and δK(·),
respectively:

min
zi,z,x

cTx+ δK(z) +

m
∑

i=1

δ0
(

(Hiai)
T zi − bi

)

subject to zi = Hix, i = 1, . . . ,m,

z = x.

(18)

The augmented Lagrangian of (18) is

L = cTx+ δK(z) +
m
∑

i=1

δ0
(

(Hiai)
T zi − bi

)

+
ρ

2

m
∑

k=1

∥

∥

∥

∥

zi −Hix+
µi

ρ

∥

∥

∥

∥

2

+
ρ

2

∥

∥

∥

∥

z − x+
ξ

ρ

∥

∥

∥

∥

2

, (19)

and we group the variables as

Y = {x}, Z = {z, z1, . . . , zm}, D = {µ1, . . . , µm, ξ}.

According to (6a)–(6c), the ADMM iterations for (18) con-

sist of the following subproblems.

1) Minimization over Y: The minimization of (19) over

the variables in Y is an unconstrained quadratic program,

min
x

cTx+
ρ

2

m
∑

i=1

∥

∥

∥

∥

zki −Hix+
µk
i

ρ

∥

∥

∥

∥

2

+
ρ

2

∥

∥

∥

∥

zk−x+
ξk

ρ

∥

∥

∥

∥

2

. (20)

The updated variable xk+1 at iteration k + 1 is then simply

given by

x=D−1

[

m
∑

i=1

HT
i

(

zki +
µk
i

ρ

)

+

(

zk +
ξk

ρ

)

−
1

ρ
c

]

, (21)

where the matrix D = I +
∑m

i=1
HT

i Hi is diagonal because

the rows of each matrix Hi are orthonormal. This means

that (21) is cheap to calculate. Note that (21) can be viewed

as an averaging/consensus step that takes all of the equality

constraints into account.

2) Minimization over Z: Minimizing (19) over the vari-

ables in Z amounts to a conic projection,

min
z

∥

∥

∥

∥

z − xk+1 +
ξk

ρ

∥

∥

∥

∥

2

subject to z ∈ K,

(22)

plus m independent quadratic programs

min
zi

∥

∥

∥

∥

zi −Hix
k+1 +

µk
i

ρ

∥

∥

∥

∥

2

subject to (Hiai)
T zi = bi.

(23)

The projection (22) is easy to compute when K is a product

of Rn, the non-negative orthant, second-order cones, and

PSD cones; for example, a projection onto the PSD cone

only requires the eigen-decomposition. As for problem (23),

its KKT conditions are

zi −Hix
k+1 +

µk
i

ρ
+ (Hiai)ωi = 0, (24a)

(Hiai)
T zi = bi, (24b)

where ωi is the Lagrangian multiplier for the equality con-

straint in (23). Simple algebra shows that

ωi =
1

‖Hiai‖2

(

−bi + (Hiai)
THix

k+1 − (Hiai)
T µk

i

ρ

)

,

so the solution zk+1

i to (23) can be calculated easily

with (24a). Note that the minimization over the block Z
is free of any matrix inversion, and all subproblems can be

solved in parallel.

3) Update multipliers D: The final step in the (k+1)-th
ADMM iteration is to update the multipliers in D with the

usual gradient ascent rule:

µk+1

i = µk
i + ρ(zk+1

i −Hix
k+1), i = 1, . . . ,m;

ξk+1 = ξk + ρ(zk+1 − xk+1).
(25)

This step is inexpensive and can be computed in parallel.



C. Summary of the computations in the ADMM algorithm

In the proposed ADMM algorithm, subproblems (6a)

and (6b) have explicit closed-form solutions. Each iteration

requires solving

1) one unconstrained quadratic program, given by (20);

2) one conic projection, given by (22);

3) m independent quadratic programs, given by (23).

Note that only the nonzero elements of ai appear in (23).

Since we have assumed that ai is sparse, only operations

between vectors of small size are required. Besides, our

algorithm is free of matrix inversion (with the exception of

the diagonal matrix D), which results from introducing the

local variables zi so each affine constraint can be considered

individually. In contrast, the FOMs in [16]–[19] require

the solution of an m × m linear system of equations with

sparsity pattern equal to that of the product AAT . In SDPs

arising from generic SOS relaxations, the number m of affine

constraints is usually large (m = 18564 if n = 12 and

2d = 6 in (10)), making this step computationally demanding

if AAT is not diagonal (and as we have already noticed, this

is often the case).

V. NUMERICAL EXPERIMENTS

We implemented our techniques in SOSADMM, an open-

source first-order MATLAB solver for conic programs

with row sparsity. Currently, SOSADMM supports carte-

sian products of the following cones: Rn, non-negative

orthant, second-order cone, and the positive definite cone.

SOSADMM is available from

https://github.com/zhengy09/SOSADMM

We tested SOSADMM on random unconstrained polyno-

mial optimization problems and Lyapunov stability analysis

of polynomial systems. To assess the suboptimality of the

solution returned by SOSADMM, we compared it to the

accurate one computed with the interior-point solver Se-

DuMi [4]. CPU times were compared to the first-order solver

CDCS [20], which exploits aggregate sparsity in SDPs; in

particular, the primal method in CDCS was used [16]. In

our experiments, the termination tolerance for SOSADMM

and CDCS was set to 10−4, and the maximum number of

iterations was set to 2000. All tests were run on a PC with

a 2.8 GHz Intel R© Core
TM

i7 CPU and 8GB of RAM.

A. Unconstrained polynomial optimization

Consider the global polynomial minimization problem

min
x∈Rn

p(x), (26)

where p(x) is a given polynomial. This problem is equivalent

to (1), and we can obtain an SDP relaxation by replacing the

non-negativity constraint with a SOS condition on p(x)− γ.

Motivated by [19], we generated p(x) according to

p(x) = p0(x) +

n
∑

i=1

x2d
i ,

where p0(x) is a random polynomial of degree strictly less

than 2d. We used GloptiPoly [22] to generate the examples.

TABLE II

CPU TIME (IN SECONDS) TO SOLVE THE SDP RELAXATIONS OF (26). N

IS THE SIZE OF THE PSD CONE, m IS THE NUMBER OF CONSTRAINTS.

Dimensions CPU time (s)

n N m SeDuMi
CDCS

(primal)
SOS-

ADMM

2 6 14 0.23 0.08 0.05

4 15 69 0.13 0.11 0.06

6 28 209 0.24 0.16 0.14

8 45 494 1.16 0.18 0.18

10 66 1000 3.17 0.25 0.39

12 91 1819 13.89 0.46 0.55

14 120 3059 54.63 0.79 0.84

16 153 4844 187.0 0.92 0.82

18 190 7314 610.2 2.91 1.92

20 231 10625 1739 4.93 2.32

TABLE III

LYAPUNOV FUNCTIONS FOR THE SYSTEM (27)

Solver Time (s) Lyapunov function V (x)

SeDuMi 0.054 6.659x2

1
+ 4.628x2

2
+ 2.073x2

3

CDCS-primal 0.21 7.008x2

1
+ 1.477x2

2
+ 2.172x2

3

SOSADMM 0.58 6.699x2

1
+ 1.803x2

2
+ 2.172x2

3

Table II compares the CPU time (in seconds) required

to solve the SOS relaxation as the number n of variables

was increased with d = 2. Both SOSADMM and CDCS-

primal are faster than SeDuMi on these examples (note that

SeDuMi’s runtime reduces if a weaker termination tolerance

is set, but not significantly). Also, the optimal value returned

by SOSADMM was within 0.05% of the high-accuracy value

returned by SeDuMi. For all examples in Table II, the cone

size N is moderate (less than 300), while the number of

constraints m is large. SeDuMi’s algorithm assembles and

solves an m × m linear system at each iteration, which is

computationally expensive even though for the SDPs arising

in (26) the constraints are orthogonal, i.e., AAT is diagonal.

CDCS, instead, is almost as fast as SOSADMM because the

linear system is only assembled and easily factorized once.

B. Finding Lyapunov functions

Next, we consider the problem of constructing Lyapunov

functions to check local stability of polynomial/rational

systems when (2) is replaced by SOS conditions. We used

SOSTOOLS [21] to generate the corresponding SDPs.

The first system we study is

ẋ1 = −x3
1 − x1x

2
3,

ẋ2 = −x2 − x2
1x2,

ẋ3 = −x3 −
3x3

x2
3 + 1

+ 3x2
1x3,

(27)

which is demo 2 in SOSTOOLS. The system has an equi-

librium at the origin, and we search for a homogeneous

quadratic polynomial Lyapunov function V (x) = ax2
1 +

bx2
2 + cx2

3 to prove its global stability. The results given

by SeDuMi, CDCS-primal and SOSADMM are listed in

Table III. For such a small system, SeDuMi was slightly

faster than CDCS-primal and SOSADMM, which is expected

https://github.com/zhengy09/SOSADMM


TABLE IV

CPU TIME (S) TO CONSTRUCT A QUADRATIC LYAPUNOV FUNCTION FOR

RANDOMLY GENERATED POLYNOMIAL SYSTEMS.

Statistics CPU time (s)

n Size of A
nonzero
density

SeDuMi
CDCS

(primal)
SOS-

ADMM

10 1100 × 2365 1.50× 10−3 3.3 7.5 5.3

12 1963 × 4407 8.76× 10−4 11.0 11.8 7.7

14 3255 × 7560 5.25× 10−4 49.9 21.0 11.2

16 5100 × 12172 3.13× 10−4 181.9 31.7 16.2

18 7638 × 18639 2.13× 10−4 574.8 55.0 24.6

20 11025 × 27405 1.48× 10−4 1617.2 100.3 37.7

22 15433 × 38962 1.11× 10−4 7442.7 265.9 65.6

25 24375 × 62725 6.87× 10−5 * 729.1 104.7

30 47275 × 124620 3.64× 10−5 * 3509.2 259.0

* SeDuMi fails due to memory requirements.

since IPMs are well-suited for small-scale SDPs. Note that

since the problem of constructing a Lyapunov functions is

a feasibility problem, the solutions returned by SeDuMi,

CDCS-primal and SOSADMM need not be the same.

We then consider randomly generated polynomial dynam-

ical systems ẋ = f(x) of degree three with a locally asymp-

totically stable equilibrium at the origin, and checked for lo-

cal nonlinear stability in the ball D = {x ∈ R
n|0.1−‖x‖2 ≥

0} using a complete quadratic polynomial as the candidate

Lyapunov function. Table IV summarizes the average CPU

times required to search for such a Lyapunov function, when

successful (note that we cannot detect infeasible problems

because we only solve the primal form (15)). The results

clearly show that SOSADMM is faster than both SeDuMi

and CDCS-primal for the largest problem instances (n ≥ 18).

Also, FOMs have much lower memory requirements, and

SOSADMM can solve problems that are not accessible with

IMPs: SeDuMi failed due to memory issues when n >

22. Finally, note that for the problem of finding Lyapunov

functions the m × m linear system solved in SeDuMi and

CDCS is not diagonal, and solving it is expensive: when

n = 30 it took over 150 s for CDCS just to factorize AAT ,

which is over 50% of the total time taken by SOSADMM

to return a solution.

VI. CONCLUSION

In this paper, we proposed an efficient ADMM algorithm

to exploit the row-sparsity of SDPs that arise from SOS

programming, which are implemented in SOSADMM. The

subproblems of our algorithm consist of one conic projection

and multiple quadratic programs with closed-form solutions,

which can be computed efficiently and—most importantly—

do not require any matrix inversion. Our numerical exper-

iments on random unconstrained polynomial optimization

and on Lyapunov stability analysis of polynomial/rational

systems demonstrate that our method can provide speed-ups

compared to the interior-point solver SeDuMi and the first-

order solver CDCS. One major drawback of our method is

the inability to detect infeasibility; future work will try to

exploit the sparsity of SDPs from SOS relaxations in a self-

dual embedding formulation similar to that of [15], [17].
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