
ar
X

iv
:1

70
8.

04
17

4v
2

 [
m

at
h.

O
C

]
 5

 S
ep

 2
01

8
1

Fast ADMM for sum-of-squares programs

using partial orthogonality†

Yang Zheng, Giovanni Fantuzzi, and Antonis Papachristodoulou, Senior Member, IEEE

Abstract—When sum-of-squares (SOS) programs are recast as
semidefinite programs (SDPs) using the standard monomial basis,
the constraint matrices in the SDP possess a structural property
that we call partial orthogonality. In this paper, we leverage partial
orthogonality to develop a fast first-order method, based on the
alternating direction method of multipliers (ADMM), for the solu-
tion of the homogeneous self-dual embedding of SDPs describing
SOS programs. Precisely, we show how a “diagonal plus low
rank” structure implied by partial orthogonality can be exploited
to project efficiently the iterates of a recent ADMM algorithm
for generic conic programs onto the set defined by the affine
constraints of the SDP. The resulting algorithm, implemented
as a new package in the solver CDCS, is tested on a range of
large-scale SOS programs arising from constrained polynomial
optimization problems and from Lyapunov stability analysis of
polynomial dynamical systems. These numerical experiments
demonstrate the effectiveness of our approach compared to
common state-of-the-art solvers.

Index Terms—Sum-of-squares (SOS), ADMM, large-scale op-
timization.

I. INTRODUCTION

Optimizing the coefficients of a polynomial in n variables,

subject to a nonnegativity constraint on the entire space Rn

or on a semialgebraic set S ⊆ Rn (i.e., a set defined by a

finite number of polynomial equations and inequalities), is

a fundamental problem in many fields. For instance, linear,

quadratic and mixed-integer optimization problems can be

recast as polynomial optimization problems (POPs) of the

form [1]

min
x∈S

p(x), (1)

where p(x) is a multivariate polynomial and S ⊆ R
n is a

semialgebraic set. Problem (1) is clearly equivalent to

max γ

s. t. p(x) − γ ≥ 0 ∀x ∈ S,
(2)

so POPs of the form (1) can be solved globally if a linear cost

function can be optimized subject to polynomial nonnegativity

constraints on a semialgebraic set.

Another important example is the construction of a Lya-

punov function V (x) to certify that an equilibrium point x∗ of

Y. Zheng, and A. Papachristodoulou are with Department of Engi-
neering Science at the University of Oxford. (E-mail: {yang.zheng, an-
tonis}@eng.ox.ac.uk). G. Fantuzzi is with Department of Aeronautics at
Imperial College London (E-mail: gf910@ic.ac.uk.). Y. Zheng is supported
by the Clarendon Scholarship and the Jason Hu Scholarship, G. Fantuzzi is
supported by an EPSRC Doctoral Prize Fellowship, and A. Papachristodoulou
is supported by EPSRC Grant EP/M002454/1.

†This document is an extended version of a homonymous article submitted
to IEEE Trans. Autom. Control.

a dynamical system
dx(t)
dt = f(x(t)) is locally stable. Taking

x∗ = 0 without loss of generality, given a neighbourhood D
of the origin, local stability follows if V (0) = 0 and

V (x) > 0, ∀x ∈ D \ {0}, (3a)

−f(x)T∇V (x) ≥ 0, ∀x ∈ D. (3b)

Often, the vector field f(x) is polynomial [2] and, if one

restricts the search to polynomial Lyapunov functions V (x),
conditions (3a)-(3b) amount to a feasibility problem over

nonnegative polynomials.

Testing for nonnegativity, however, is NP-hard for polyno-

mials of degree as low as four [3]. This difficulty is often

resolved by requiring that the polynomials under consideration

are a sum of squares (SOS) of polynomials of lower degree. In

fact, checking for the existence (or lack) of an SOS represen-

tation amounts to solving a semidefinite program (SDP) [3]. In

particular, consider a polynomial of degree 2d in n variables,

p(x) =
∑

α∈Nn,|α|≤2d

pαx
α1

1 . . . xαn

n .

The key observation in [3] is that an SOS representation of

p(x) exists if and only if there exists a positive semidefinite

matrix X such that

p(x) = vd(x)
TXvd(x), (4)

where

vd(x) = [1, x1, x2, . . . , xn, x
2
1, x1x2, . . . , x

d
n]

T (5)

is the vector of monomials of degree no larger than d. Upon

equating coefficients on both sides of (4), testing if p(x) is an

SOS reduces to a feasibility SDP of the form

find X

s. t. 〈Bα, X〉 = pα, α ∈ N
n
2d,

X � 0,

(6)

where Nn
2d is the set of n-dimensional multi-indices with

length at most 2d, Bα are known symmetric matrices indexed

by such multi-indices (see Section II for more details), and

〈A,B〉 = trace(AB) is the standard Frobenius inner product

of two symmetric matrices A and B.

Despite the tremendous impact of SOS techniques in the

fields of polynomial optimization [4] and systems analysis [5],

the current poor scalability of second-order interior-point

algorithms for semidefinite programming prevents the use of

SOS methods to solve POPs with many variables, or to analyse

dynamical systems with many states. The main issue is that,

when the full monomial basis (5) is used, the linear dimension

http://arxiv.org/abs/1708.04174v2

2

of the matrix X and the number of constraints in (6) are

N =
(

n+d
d

)

and m =
(

n+2d
2d

)

, respectively, both of which

grow quickly as a function of n and d.

One strategy to mitigate the computational cost of opti-

mization problems with SOS constraints (hereafter called SOS

programs) is to replace the SDP obtained from the basic

formulation outlined above with one that is less expensive

to solve using second-order interior-point algorithms. Facial

reduction techniques [6], including the Newton polytope [7]

and diagonal inconsistency [8], and symmetry reduction strate-

gies [9] can be utilised to eliminate unnecessary monomials

in the basis vd(x), thereby reducing the size of the positive

semidefinite (PSD) matrix variable X . Correlative sparsity [10]

can also be exploited to construct sparse SOS representations,

wherein a polynomial p(x) is written as a sum of SOS

polynomials, each of which depends only on a subset of

the entries of x. This enables one to replace the large PSD

matrix variable X with a set of smaller PSD matrices, which

can be handled more efficiently. Further computational gains

are available if one replaces any PSD constraints—either the

original condition X � 0 in (6) or the PSD constraints

obtained after applying the aforemention techniques—with the

stronger constraints the PSD matrices are diagonally or scaled-

diagonally dominant [11]. These conditions can be imposed

with linear and second-order cone programming, respectively,

and are therefore less computationally expensive. However,

while the conservativeness introduced by the requirement of

diagonal dominance can be reduced with a basis pursuit

algorithm [12], it cannot generally be removed.

Another strategy to enable the solution of large SOS

programs is to replace the computationally demanding interior-

point algorithms with first-order methods, at the expense of

reducing the accuracy of the solution. The design of efficient

first-order algorithms for large-scale SDPs has recently re-

ceived increasing attention: Wen et al. proposed an alternating-

direction augmented-Lagrangian method for large-scale dual

SDPs [13]; O’Donoghue et al. developed an operator-splitting

method to solve the homogeneous self-dual embedding of

conic programs [14], which has recently been extended by

the authors to exploit aggregate sparsity via chordal de-

composition [15]–[17]. Algorithms that specialize in SDPs

from SOS programming exist [18], [19], but can be applied

only to unconstrained POPs—not to constrained POPs of the

form (2), nor to the Lyapunov conditions (3a)-(3b). First-order

regularization methods have also been applied to large-scale

constrained POPs, but without taking into account any problem

structure [20]. Finally, the sparsity of the matrices Bα in (6)

was exploited in [21] to design an operator-splitting algorithm

that can solve general large-scale SOS programs, but fails to

detect infeasibility (however, recent developments [22], [23]

may offer a solution for this issue).

One major shortcoming of all but the last of these recent

approaches is that they can only be applied to particular classes

of SOS programs. For this reason, in this paper we develop

a fast first-order algorithm, based on the alternating-direction

method of multipliers, for the solution of generic large-scale

SOS programs. Our algorithm exploits a particular structural

property of SOS programs and can also detect infeasibility.

Specifically, our contributions are:

1) We highlight a structural property of SDPs derived from

SOS programs using the standard monomial basis: the

equality constraints are partially orthogonal. Notably,

the SDPs formulated by common SOS modeling tool-

boxes [24]–[26] possess this property.

2) We show how partial orthogonality leads to a “diagonal

plus low rank” matrix structure in the ADMM algorithm

of [14], so the matrix inversion lemma can be applied

to reduce its computational cost. Precisely, a system of

m × m linear equations to be solved at each iteration

can be replaced with a t× t system, often with t ≪ m.

3) We demonstrate the efficiency of our method—available

as a new package in the MATLAB solver CDCS [27]—

compared to many common interior-point solvers (Se-

DuMi [28], SDPT3 [29], SDPA [30], CSDP [31],

Mosek [32]) and to the first-order solver SCS [33]. Our

results on large-scale SOS programs from constrained

POPs and Lyapunov stability analysis of nonlinear poly-

nomial systems suggest that the proposed algorithm

will enlarge the scale of practical problems that can be

handled via SOS techniques.

The rest of this work is organized as follows. Section II

briefly reviews SOS programs and their reduction to SDPs.

Section III discusses partial orthogonality in the equality con-

straints of SDPs arising from SOS programs, while Section IV

shows how to exploit it to facilitate the solution of large-scale

SDPs using ADMM. Sections V and VI extend our results to

matrix-valued SOS programs and weighted SOS constraints.

Numerical experiments are presented in Section VII, and

Section VIII concludes the paper.

II. PRELIMINARIES

A. Notation

The sets of nonnegative integers and real numbers are,

respectively, N and R. For x ∈ Rn and α ∈ Nn, the monomial

xα = xα1

1 xα2

2 · · ·xαn
n has degree |α| :=

∑n
i=1 αi. Given

d ∈ N, we let Nn
d = {α ∈ Nn : |α| ≤ d} and R[x]n,2d be

the set of polynomials in n variables with real coefficients of

degree 2d or less. A polynomial p(x) ∈ R[x]n,2d is a sum-of-

squares (SOS) if p(x) =
∑q

i=1[fi(x)]
2, for some polynomials

fi ∈ R[x]n,d, i = 1, . . . , q. We denote by Σ[x]n,2d the set of

SOS polynomials in R[x]n,2d. Finally, Sn+ is the cone of n×n
PSD matrices and Ir×r is the r × r identity matrix.

B. General SOS programs

Consider a vector of optimization variables u ∈ Rt, a

cost vector w ∈ R
t, and note that any polynomial pj(x) ∈

R[x]n,2dj
whose coefficients depend affinely on u can be

written as pj(x) = gj0(x)−
∑t

i=1 uig
j
i (x) for a suitable choice

of polynomials or monomials gj0, . . . , g
j
t ∈ R[x]n,2dj

. We

consider SOS programs written in the standard form

min
u, s1,...,sk

wTu

s. t. sj(x) = gj0(x)−

t
∑

i=1

uig
j
i (x) ∀j = 1, . . . , k,

sj ∈ Σ[x]n,2dj
, j = 1, . . . , k.

(7)

3

Note that any linear optimization problem with polynomial

nonnegativity constraints on fixed semialgebraic sets can be

relaxed into an SOS program of the form (7). For instance,

when S ≡ Rn problem (2) can be relaxed as [3]

min
γ,s

− γ

s. t. s(x) = p(x)− γ,

s ∈ Σ[x]n,2d.

(8)

Similarly, the global stability of the origin for a polynomial

dynamical system such that f(0) = 0 may be established

by looking for a polynomial Lyapunov function of the form

V (x) = −
∑t

i=1 uigi(x), where g1(0) = · · · = gt(0) = 0.

With D ≡ Rn, and after subtracting xTx from the left-hand

side of (3a) to ensure strict positivity for x 6= 0 [5], suitable

values ui can be found via the SOS feasibility program

find u, s1, s2

s.t. s1(x) = −xTx−

t
∑

i=1

uigi(x),

s2(x) =

t
∑

i=1

uif(x)
T∇gi(x),

s1, s2 ∈ Σ[x]n,2d.

(9)

Sum-of-squares programs arising from polynomial non-

negativity constraints over fixed semialgebraic sets, such as

Lasserre’s relaxations of constrained POPs [4] and SOS re-

laxations of local Lyapunov inequalities [2], [34], can also

be recast as in (7) by adding extra polynomials to represent

the SOS multipliers introduced after applying Positivstellen-

satz [2]. For example, consider the constrained POP

min
x

p0(x)

s. t. p1(x) ≥ 0, . . . , pk(x) ≥ 0,
(10)

where p0, . . . , pk are fixed polynomials of degree no greater

than ω. The Lasserre relaxation of order 2d ≥ ω for (10) is

(see, for example, Chapter 5.3 in [1])

min − γ

s. t. p0(x)− γ = s0(x) +

k
∑

i=1

ri(x)pi(x),

s0 ∈ Σ[x]n,2d,

rj ∈ Σ[x]n,2dj
, j = 1, . . . , k,

(11)

where dj = ⌊d − ωj/2⌋, j = 1, . . . , k and ωj is the degree

of pj(x). Upon introducing extra polynomials s1, . . . , sk we

can consider the equivalent problem

min − γ

s. t. s0(x) = p0(x)− γ −

k
∑

i=1

ri(x)pi(x),

sj(x) = rj(x), j = 1, . . . , k,

s0 ∈ Σ[x]n,2d,

sj ∈ Σ[x]n,2dj
, j = 1, . . . , k.

(12)

This can be written in the form (7) for a suitable set of

polynomials {gji } if the optimization vector u lists the scalar

γ and the coefficients of the tunable polyomials r1, . . . , rk . A

similar argument holds for linear optimization problems with

polynomial inequalities on semialgebraic domains, such as

the feasibility problems arising from local Lyapunov stability

analysis.

Of course, while the introduction of extra polynomials

allows one to reformulate problem (11) in the framework given

by (7), it is undesirable in practice because it increases the

number of optimization variables. In Section VI we show how

problems with weighted SOS constraints such as (11) can be

handled directly with no need for extra optimization variables.

Before that, however, we consider the standard form (7) as

a general framework for SOS programming. To simplify the

exposition, instead of (7), we will consider the basic SOS

program

min
u, s

wTu

s. t. s(x) = g0(x) −

t
∑

i=1

uigi(x),

s ∈ Σ[x]n,2d.

(13)

All of our results from Sections III and IV extend to (7) when

k > 1, because each of s1, . . . , sk enters one and only one

equality constraint, as well as to more general SOS programs

with additional linear equality, inequality, or conic constraints

on u.

C. SDP formulation

The SOS program (13) can be converted into an SDP upon

fixing a basis to represent the SOS polynomial variables. The

simplest and most common choice to represent a degree-2d
SOS polynomial is the basis vd(x) of monomials of degree

no greater than d, defined in (5). As discussed in [3] and [35],

the polynomial s(x) in (13) is SOS if and only if

s(x) = vd(x)
TXvd(x) =

〈

X, vd(x)vd(x)
T
〉

, X � 0. (14)

Let Bα be the 0/1 indicator matrix for the monomial xα in

the outer product matrix vd(x)vd(x)
T, i.e.,

(Bα)β,γ =

{

1 if β + γ = α

0 otherwise,
(15)

where the natural ordering of multi-indices β, γ ∈ Nn
d is used

to index the entries of Bα. Then,

vd(x)vd(x)
T =

∑

α∈Nn
2d

Bαx
α. (16)

Upon writing gi(x) =
∑

α∈Nn
2d
gi,αx

α for each i = 0, 1, . . . , t,

and representing s(x) as in (14), the equality constraint in (13)

becomes

∑

α∈Nn
2d

(

g0,α −

t
∑

i=1

uigi,α

)

xα =
〈

X, vd(x)vd(x)
T
〉

=
∑

α∈Nn
2d

〈Bα, X〉xα. (17)

4

Matching the coefficients on both sides yields

g0,α −

t
∑

i=1

uigi,α = 〈Bα, X〉, ∀α ∈ N
n
2d. (18)

We refer to (18) as the coefficient matching conditions [21].

The SOS program (13) is then equivalent to the SDP

min
u

wTu

s. t. 〈Bα, X〉+

t
∑

i=1

uigi,α = g0,α ∀α ∈ N
n
2d,

X � 0.

(19)

As already mentioned in Section I, when the full monomial

basis vd(x) is used to formulate the SDP (19), the size of X
and the number of constraints are, respectively, N =

(

n+d
d

)

and m =
(

n+2d
2d

)

. The size of SDP (19) may be reduced (often

significantly) by eliminating redundant monomials in vd(x)
based on the structure of the polynomials g0(x), . . . , gt(x);
the interested reader is referred to Refs. [6]–[9].

III. PARTIAL ORTHOGONALITY IN SOS PROGRAMS

For simplicity, we re-index the coefficient matching condi-

tions (18) using integers i = 1, . . . ,m instead of the multi-

indices α. Let vec : SN → RN2

map a matrix to the stack of

its columns and define A1 ∈ R
m×t and A2 ∈ R

m×N2

as

A1 :=

g1,1 · · · gt,1
...

. . .
...

g1,m · · · gt,m

, A2 :=

vec(B1)
T

...

vec(Bm)T

. (20)

In other words, A1 collects the coefficients of polynomials

gi(x) column-wise, and A2 lists the vectorized matrices Bα

(after re-indexing) in a row-wise fashion. Finally, let S+ be the

vectorized positive semidefinite cone, such that vec(X) ∈ S+

if and only if X � 0, and define

A := [A1, A2] ∈ R
m×(t+N2), (21a)

b := [g0,1, . . . , g0,m]
T
∈ R

m, (21b)

c :=
[

wT, 0, . . . , 0
]T

∈ R
t+N2

, (21c)

ξ :=
[

uT, vec(X)T
]T

∈ R
t+N2

, (21d)

K := R
t × S+ . (21e)

Then, noticing from the definition of the trace inner prod-

uct of matrices that 〈Bm, X〉 = vec(Bm)Tvec(X), we can

rewrite (19) as the primal-form conic program

min
ξ

cTξ

s. t. Aξ = b,

ξ ∈ K.

(22)

The key observation at this stage is that the rows of the

constraint matrix A are partially orthogonal. We show this

next, assuming without loss of generality that t < m; in

fact, very often t ≪ m in practice (cf. Tables I and III in

Section VII).

Proposition 1: Let A = [A1, A2] be the constraint matrix in

the conic formulation (20) of a SOS program modeled using

(a) (b) (c)

Fig. 1: Sparsity patterns for (a) AAT, (b) A1A
T

1
, and (c) A2A

T

2
for problem

sosdemo2 in SOSTOOLS [24].

the monomial basis. The m×m matrix AAT is of the “diagonal

plus low rank” form. Precisely, D := A2A
T

2 is diagonal and

AAT = D +A1A
T

1 .

Proof: The definition of A implies AAT = A1A
T

1 +A2A
T

2 ,

so we need to show that A2A
T

2 is diagonal. This follows

from the definition (15) of the matrices Bα: if an entry of

Bα is nonzero, the same entry in Bβ , α 6= β, must be zero.

Upon re-indexing the matrices using integers i = 1, . . . , m
as explained above and letting ni be the number of nonzero

entries in Bi, it is clear that vec(Bi)
Tvec(Bj) = ni if i = j,

and zero otherwise. Thus, A2A
T

2 = diag(n1, . . . , nm). �

In essence, Proposition 1 states that the constraint sub-

matrices corresponding to the matrix X in the SOS decomposi-

tion (14) are orthogonal. This fact is a basic structural property

for any SOS program formulated using the usual monomial

basis. It is not difficult to check that Proposition 1 also

holds when the full monomial basis vd(x) is reduced using

any of the techniques implemented in any of the modeling

toolboxes [24]–[26].

Remark 1: In general, the product A1A
T

1 has no particular

structure, and AAT is not diagonal except for very special

problem classes. For example, Figure 1 illustrates the sparsity

pattern of AAT, A1A
T

1 , and A2A
T

2 for sosdemo2 in SOS-

TOOLS [24], an SOS formulation of a Lyapunov function

search: A2A
T

2 is diagonal, but A1A
T

1 and AAT are not. This

makes the algorithms proposed in [18], [19] inapplicable, as

they require that AAT is diagonal.

Remark 2: Using the monomial basis to formulate the

coefficient matching conditions (18) makes the matrix A
sparse, because only a small subset of entries of the matrix

vd(x)vd(x)
T are equal to a given monomial xα. In particular,

the density of the nonzero entries of A2 is O(n−2d) [21].

However, the aggregate sparsity pattern of SDP (22) is dense,

so methods that exploit aggregate sparsity in SDPs [15]–[17],

[36] are not useful for general SOS programs.

IV. A FAST ADMM-BASED ALGORITHM

Partial orthogonality of the constraint matrix A in conic

programs of the form (22) allows for the extension of a first-

order, ADMM-based method proposed in [14]. To make this

paper self-contained, we summarize this algorithm first.

5

A. The ADMM algorithm

The algorithm in [14] solves the homogeneous self-dual

embedding [37] of the conic program (22) and its dual,

max
y,z

bTy

s. t. ATy + z = c.

z ∈ K∗,

(23)

where the cone K∗ is the dual of K. When strong duality

holds, optimal solutions for (22) and (23) or a certificate of

primal or dual infeasibility can be recovered from a nonzero

solution of the homogeneous linear system

z
s
κ

 =

0 −AT c
A 0 −b

−cT bT 0

ξ
y
τ

 , (24)

provided that it also satisfies (ξ, y, τ) ∈ K × Rm × R+ and

(z, s, κ) ∈ K∗ ×{0}m×R+. The interested reader is referred

to [14] and references therein for more details. Consequently,

upon defining

u :=

ξ
y
τ

 , v :=

z
s
κ

 , Q :=

0 −AT c
A 0 −b

−cT bT 0

 , (25)

and introducing the cones C := K × Rm × R+ and C∗ :=
K∗×{0}m×R+ to ease notation, a primal-dual optimal point

for problems (22) and (23) or a certificate of infeasibility can

be computed from a nonzero solution of the homogeneous

self-dual feasibility problem

find (u, v)

s. t. v = Qu,

(u, v) ∈ C × C∗.

(26)

It was shown in [14] that (26) can be solved using a

simplified version of the classical ADMM algorithm (see

e.g., [38]), whose k-th iteration consists of the following

three steps (PC denotes projection onto the cone C, and the

superscript (k) indicates the value of a variable after the k-th

iteration):

û(k) = (I +Q)−1
(

u(k−1) + v(k−1)
)

, (27a)

u(k) = PC

(

û(k) − v(k−1)
)

, (27b)

v(k) = v(k−1) − û(k) + u(k). (27c)

Practical implementations of the algorithm rely on being able

to carry out these steps at moderate computational cost. We

next show that partial orthogonality allows for an efficient im-

plementation of (27a) when (26) represents an SOS program.

B. Application to SOS programming

Each iteration of the ADMM algorithm requires: a projec-

tion onto a linear subspace in (27a) through the solution of a

linear system with coefficient matrix I +Q; a projection onto

the cone C in (27b); and the inexpensive step (27c). The conic

projection (27b) can be computed efficiently when the cone

size is not too large. On the other hand, Q ∈ St+N2+m+1 and

m = O(n2d) is extremely large in SDPs arising from SOS

programs. For instance, an SOS program with polynomials

of degree 2d = 6 in n = 16 variables has a PSD variable

of size N = 969 and m = 74 613 equality constraints. This

makes step (27a) computationally expensive not only if I+Q
is factorized directly, but also when applying the strategies

proposed in [14]. Fortunately, Q is highly structured and, in the

context of SOS programming, the block-entry A has partially

orthogonal rows (cf. Propositions 1 and 2). As we will now

show, these properties can be taken advantage of to achieve

substantial computational savings.

To show how partial orthogonality can be exploited, we

begin by noticing that (27a) requires the solution of a linear

system of equations of the form

I −AT c
A I −b

−cT bT 1

û1

û2

û3

 =

ω1

ω2

ω3

 . (28)

After letting

M :=

[

I −AT

A I

]

, ζ :=

[

c
−b

]

,

and eliminating û3 from the first and second block-equations

in (28) we obtain

(M + ζζT)

[

û1

û2

]

=

[

ω1

ω2

]

− ω3ζ. (29a)

û3 = ω3 + cTû1 − bTû2. (29b)

Applying the matrix inversion lemma [39] to (29a) yields
[

û1

û2

]

=

[

I −
(M−1ζ)ζT

1 + ζT(M−1ζ)

]

M−1

[

ω1 − cω3

ω2 + bω3

]

. (30)

Note that the first matrix on the right-hand side of (30)

only depends on problem data, and can be computed before

iterating the ADMM algorithm. Consequently, all that is left

to do at each iteration is to solve a linear system of equations

of the form
[

I −AT

A I

] [

σ1

σ2

]

=

[

ω̂1

ω̂2

]

. (31)

Eliminating σ1 from the second block-equation in (31) gives

σ1 = ω̂1 +ATσ2, (32a)

(I +AAT)σ2 = −Aω̂1 + ω̂2. (32b)

It is at this stage that partial orthogonality comes into play: by

Propositions 1 and 2, there exists a diagonal matrix P such

that I +AAT = I +A1A
T

1 +A2A
T

2 = P +A1A
T

1 . Recalling

from Section III that A1 ∈ Rm×t with t ≪ m for typical SOS

programs (e.g., t = 3 and m = 58 for problem sosdemo2

in SOSTOOLS), it is therefore convenient to apply the matrix

inversion lemma to (32b) and write

(I +AAT)−1 = (P +A1A
T

1)
−1

= P−1 − P−1A1(I +AT

1P
−1A1)

−1AT

1P
−1.

Since P is diagonal, its inverse is immediately computed.

Then, σ1 and σ2 in (32) are found upon solving a t× t linear

system with coefficient matrix

I +AT

1P
−1A1 ∈ S

t, (33)

6

plus relatively inexpensive matrix-vector, vector-vector, and

scalar-vector operations. Moreover, since the matrix I +
AT

1P
−1A1 depends only on the problem data and does not

change at each iteration, its preferred factorization can be

cached before iterating steps (27a)-(27c). Once σ1 and σ2 have

been computed, the solution of (28) can be recovered using

vector-vector and scalar-vector operations.

Remark 3: In [14], system (31) is solved either through a

“direct” method based on a cached LDLT factorization, or

by applying the “indirect” conjugate-gradient (CG) method

to (32b). Both these approaches are reasonably efficient, but

exploiting partial orthogonality is advantageous because only

a smaller linear system with size t × t need be solved, with

t ≤ m and typically t ≪ m. As shown in the Appendix,

when sparsity is ignored, each iteration of our method to

solve (31) requires O(t2+mN2+mt) floating-point operations

(flops), compared to O((t+N2 +m)2) flops for the “direct”

method of [14] and O(ncgm
2 + mN2 + mt) flops for the

“indirect” method with ncg CG iterations. Of course, practical

implementations of the methods of [14] exploit sparsity and

have a much lower complexity than stated, but the results in

Section VII confirm that the strategy outlined in this work

remains more efficient.

V. MATRIX-VALUED SOS PROGRAMS

Up to this point we have discussed partial orthogonality for

scalar-valued SOS programs, but our results and the algorithm

proposed in Section IV extend also to the matrix-valued case.

Given symmetric matrices Cα ∈ S
r, we say that the

symmetric matrix-valued polynomial

P (x) :=
∑

α∈Nn
2d

Cαx
α

is an SOS matrix if there exits a q × r polynomial matrix

H(x) such that P (x) = H(x)TH(x). Clearly, an SOS matrix

is positive semidefinite for all x ∈ Rn. It is known [40] that

P (x) is an SOS matrix if and only if there exists a PSD matrix

Y ∈ Sl+ with l = r ×
(

n+d
d

)

such that

P (x) = (Ir ⊗ vd(x))
T
Y (Ir ⊗ vd(x)) . (34)

Similar to (13), we consider the matrix-valued SOS program

min
u

wTu

s. t. P (x) = P0(x)−

t
∑

h=1

uhPh(x),

P (x) is SOS,

(35)

where P0(x), . . . , Pt(x) are given symmetric polynomial ma-

trices. Using (34), matching coefficients, and vectorizing, the

matrix-valued SOS program (35) can be recast as a conic

program of standard primal-form (22), for which the following

proposition holds.

Proposition 2: The constraint matrix A in the conic pro-

gram formulation of the matrix-valued SOS problem (35)

has partially orthogonal rows, i.e., it can be partitioned into

A =
[

A1 A2

]

such that A2A
T

2 is diagonal.

Proof: First, introduce matrices Cα(u), affinely dependent

on u, such that

P0(x)−

t
∑

h=1

uhPh(x) =
∑

α∈Nn
2d

Cα(u)x
α.

By virtue of (16), the SOS representation (34) of P (x) can be

written as

P (x) =
∑

α∈Nn
2d

〈Y11, Bα〉 . . . 〈Y1r, Bα〉
...

. . .
...

〈Yr1, Bα〉 . . . 〈Yrr, Bα〉

xα,

where Yij ∈ S
N , i, j = 1, . . . , r is the (i, j)-th block of matrix

Y ∈ Sl+. Then, the equality constraints in (35) require

Cα(u) =

〈Y11, Bα〉 . . . 〈Yr1, Bα〉
...

. . .
...

〈Yr1, Bα〉 . . . 〈Yrr, Bα〉

, ∀α ∈ N

n
2d. (36)

Upon vectorization, this set of affine equalities can be written

compactly as
[

A1 A2

]

[

u
vec(Y)

]

= b (37)

for suitably defined matrices A1, A2 and a vector b.
The matrix A1 depends on the matrices Cα(u), and gen-

erally has no particular structure. Instead, A2 has orthogonal

rows, hence A2A
T

2 is diagonal. To see this, let ei ∈ Rr be the

standard unit vector in the i-th direction and define

Ei := ei ⊗ IN ∈ R
l×N ,

so ET

i Y Ej = Yij selects the (i, j)-th N × N block of

Y . Moreover, let (Cα)ij denote the (i, j)-th element of the

matrix Cα. The linear equalities (36) require that, for all

i, j = 1, . . . , r and all α ∈ Nn
2d,

〈ET

i Y Ej , Bα〉 = (Cα)ij . (38)

Vectorization of the left-hand side yields

vec(Bα)
T(ET

j ⊗ ET

i)vec(Y) = (Cα)ij .

It is then not difficult to see that the rows of the matrix A2

in (37) are the vectors vec(Bα)
T · (ET

j ⊗ ET

i) for all triples

(α, i, j) (the precise order of the rows is not important). To

show that A2A
T

2 is diagonal, therefore, it suffices to show that,

for any two different triples (α1, i1, j1) and (α2, i2, j2),

0 = vec(Bα1
)T(ET

j1
⊗ ET

i1
)(Ej2 ⊗ Ei2)vec(Bα2

)

= vec(Bα1
)T(ET

j1
Ej2 ⊗ ET

i1
Ei2)vec(Bα2

), (39)

where the second equality follows from the properties of the

Kronecker product. To show (39), we invoke the properties of

the Kronecker product once again to write

ET

i Ej = (eTi ej)⊗ IN =

{

IN , if i = j,

0, otherwise,
(40a)

vec(Bα)
Tvec(Bβ) =

{

nα, if α = β,

0, otherwise,
(40b)

7

where nα is the number of nonzeros in Bα. It is then clear

that (39) holds if, and in fact only if, (α1, i1, j1) 6= (α2, i2, j2).
Consequently, A2A

T

2 is diagonal. �

Proposition 2 reveals an inherent structural property of

SDPs derived from matrix-valued SOS programs using the

monomial basis, and the algorithm of Section IV applies

verbatim because the conic program representation of scalar-

and matrix-valued SOS programs has the same general form.

VI. WEIGHTED SOS CONSTRAINTS

The discussion of Section III is general and encompasses

all SOS programs once they are recast in the form (7). As

already mentioned in Section II-B, handling SOS constraints

over semialgebraic sets through (7) requires introducing extra

optimization variables, which is not desirable in practice.

To overcome this difficulty, we show here that partial or-

thogonality holds also for so-called “weighted” SOS con-

straints. Specifically, consider a family of fixed polynomials

g0, . . . , gt ∈ R[x]n,2d, a second family of fixed polynomials

p1 ∈ R[x]n,d1
, . . . , pk ∈ R[x]n,dk

, and let ωi := ⌊d − di/2⌋
for each i = 1, . . . , k. (We have assumed that d1, . . . , dk ≤
2d without loss of generality.) We say that the polynomial

g(x) := g0(x)−

t
∑

i=1

uigi(x) (41)

is a weighted SOS with respect to p1, . . . , pk if there exist

SOS polynomials s0 ∈ Σ[x]n,2d and si ∈ Σ[x]n,2ωi
, i =

1, . . . , k, such that

g(x) = s0(x) +

k
∑

i=1

pi(x)si(x). (42)

It is not difficult to see that if g(x) is a weighted SOS with

respect to p1, . . . , pk, then it is non-negative on the semialge-

braic set S := {x ∈ Rn : p1(x) ≥ 0, . . . , pk(x) ≥ 0}. Thus,

weighted SOS constraints arise naturally when polynomial

inequalities on semialgebraic sets are cast as SOS conditions

using the Positivstellensatz [2].

To put (42) in the form used by the standard conic pro-

gram (22), we begin by introducing Gram matrix representa-

tions for each SOS poynomial. That is, we consider matrices

X0 ∈ S
N0

+ , X1 ∈ S
N1

+ , . . . , Xk ∈ S
Nk

+ , with N0 :=
(

n+d
d

)

and Ni =
(

n+ωi

ωi

)

for i = 1, . . . , k, and rewrite (42) as

g(x) = 〈vd(x)vd(x)
T, X0〉

+

k
∑

i=1

pi(x)〈vωi
(x)vωi

(x)T, Xi〉. (43)

In this expression, the vector vd(x) is as in (5) and, similarly,

vωi
(x) lists the monomials of degree no larger than ωi.

At this stage, let Bα be the mutually orthogonal 0/1
indicator matrix for the monomial xα in the outer product

matrix vd(x)vd(x)
T, defined as in (15), such that (16) holds.

Similarly, introduce symmetric indicator matrices B
(i)
α such

that

pi(x)vωi
(x)vTωi

(x) =
∑

α∈Nn
2d

B(i)
α xα.

Note that the matrices B
(i)
α are not pairwise orthogonal in

general: their nonzero entries overlap to some extent because

the entries of the matrix pi(x)vωi
(x)vTωi

(x) are typically poly-

nomials rather than simple monomials. Pairwise orthogonality

holds for B
(i)
α if pi is a monomial, but this is uncommon in

practice. Using such indicator matrices, (43) can be written as

g(x) =
∑

α∈Nn
2d

(

〈Bα, X0〉+

k
∑

i=1

〈B(i)
α , Xi〉

)

xα, (44)

and we require that the coefficients of the monomials xα on

both sides of this expression match. To do this in compact

notation, we index the monomials xα using integers 1, . . . , m
as in Section III and define the m×

∑k
i=1 N

2
i matrix

A2 :=

vec(B
(1)
1)T · · · vec(B

(k)
1)T

...
...

vec(B
(1)
m)T · · · vec(B

(k)
m)T

, (45)

the m×N2
0 matrix

A3 :=

vec(B1)
T

...

vec(Bm)T

, (46)

and the vector

χ :=
[

vec(X1)
T, · · · , vec(Xk)

T
]T

. (47)

Recalling the definition of g(x) in (41), we can then use the

m× t matrix A1 defined in (20) and the vector b in (21b) to

write the coefficient matching conditions obtained from (44)

in the matrix-vector form

[

A1 A2 A3

]

u
χ

vec(X0)

 = b. (48)

As already noticed in Section III, nonzero entries in Bi

must be zero in Bj if i 6= j, so the rows of A3 are

mutually orthogonal. Since (48) corresponds to the equality

constraints in the conic program formulation of a weighted

SOS constraint, we obtain the following result.

Proposition 3: The constraint matrix in the conic program

formulation of the weighted SOS constraint (42) has partially

orthogonal rows, i.e., it can be partitioned as
[

A1 A2 A3

]

such

that A3A
T

3 is diagonal.

In other words, partial orthogonality obtains also when

weighted SOS constraints are dealt with directly. Thus, the

ADMM algorithm descibed in Section IV can in principle

be applied to solve SOS programs with weighted SOS con-

straints. Applying the matrix inversion lemma as proposed in

Section IV is advantageous if t+
∑k

i=1 N
2
i < m, meaning that

the degree ω1, . . . , ωk of the SOS polynomials s1, . . . , sk
in (42) should be small such that

t+

k
∑

i=1

(

n+ ωi

ωi

)

<

(

n+ 2d

2d

)

=: m. (49)

Table I confirms that this is not unusual for typical problems.

When (49) does not hold, instead of implementing weighted

SOS constraints directly, it may be more convenient introduce

extra polynomials as described at the end of Section II-B.

8

TABLE I: CPU time (in seconds) to solve the SDP relaxations of (50). N is the size of the largest PSD cone, m is the number of constraints, t is the size
of the matrix factorized by CDCS-sos.

Dimensions CPU time (s)

n N m t SeDuMi SDPT3 SDPA CSDP Mosek SCS-direct SCS-indirect CDCS-sos

10 66 1 000 66 2.6 2.1 1.6 2.5 0.8 0.4 0.4 0.4
12 91 1 819 91 12.3 7.0 5.7 4.0 2.4 0.7 0.8 0.7
14 120 3 059 120 68.4 24.2 18.1 13.5 6.5 1.7 1.7 1.4
17 171 5 984 171 516.9 129.6 97.9 75.8 38.1 4.6 4.4 3.5
20 231 10 625 231 2 547.4 494.1 452.7 374.2 178.9 10.6 10.6 8.5
24 325 20 474 325 ** ** 2 792.8 2 519.3 1 398.3 32.0 31.2 22.8
29 465 40 919 465 ** ** ** ** ** 125.9 126.3 67.1
35 666 82 250 666 ** ** ** ** ** 425.3 431.3 216.9
42 946 163 184 946 ** ** ** ** ** 1 415.8 1 436.9 686.6

VII. NUMERICAL EXPERIMENTS

We implemented the algorithm of [14], extended to take

into account partial orthogonality in SOS programs, as a new

package in the open-source MATLAB solver CDCS [27].

Our implementation, which we refer to as CDCS-sos, solves

step (27a) using a sparse permuted Cholesky factorization of

the matrix in (33). The source code can be downloaded from

https://github.com/oxfordcontrol/CDCS.

We tested CDCS-sos on a series of SOS

programs and our scripts are available from

https://github.com/zhengy09/sosproblems. CPU times were

compared to the direct and indirect implementations of

the algorithm of [14] provided by the solver SCS [33],

referred to as SCS-direct and SCS-indirect, respectively. In

our experiments, the termination tolerance for CDCS-sos

and SCS was set to 10−3, and the maximum number of

iterations was 2 000. Since first-order methods only aim at

computing a solution of moderate accuracy, we assessed

the suboptimality of the solution returned by CDCS-sos

by comparing it to an accurate solution computed with the

interior-point solver SeDuMi [28]. Besides, to demonstrate

the low memory requirements of first-order algorithms, we

also tested the interior-point solvers SDPT3 [29], SDPA [30],

CSDP [31] and Mosek [32] for comparison. All interior-point

solvers were called with their default parameters and their

optimal values (when available) agree to within 10−8. All

computations were carried out on a PC with a 2.8 GHz

Intel® Core™ i7 CPU and 8GB of RAM; memory overflow

is marked by ** in the tables below.

A. Constrained polynomial optimization

As our first numerical experiment, we considered the con-

strained quartic polynomial minimization problem

min
x

∑

1≤i<j≤n

(xixj + x2
i xj − x3

j − x2
i x

2
j)

s. t.

n
∑

i=1

x2
i ≤ 1.

(50)

We used the Lasserre relaxation of order 2d = 4 and the parser

GloptiPoly [25] to recast (50) into an SDP.

Table I reports the CPU time (in seconds) required by each

of the solvers we tested to solve the SDP relaxations as the

number of variables n was increased. CDCS-sos is the fastest

method in all cases. For large-scale POPs (n ≥ 29), the

number of constraints in the resulting SDP is over 40, 000,

and all interior-point solvers (SeDuMi, SDPT3, SDPA, CSDP

TABLE II: Terminal objective value from interior-point solvers, SCS-direct,
SCS-indirect and CDCS-sos for the SDP relaxation of (50).

n †Interior-point solvers SCS-direct SCS-indirect CDCS-sos

10 −9.11 −9.12 −9.13 −9.10
12 −11.12 −11.10 −11.10 −11.11
14 −13.12 −13.09 −13.09 −13.12
17 −16.12 −16.09 −16.09 −16.06
20 −19.12 −19.17 −19.17 −19.08
24 −23.12 −23.04 −23.04 −23.15
29 ** −28.17 −28.18 −28.17
35 ** −34.05 −34.05 −34.08
42 ** −41.21 −41.21 −41.05

Fig. 2: Average CPU time per 100 iterations for the SDP relaxations of: (a)
the POP (50); (b) the Lyapunov function search problem.

and Mosek) ran out of memory on our machine. The first-

order solvers do not suffer from this limitation, and for POPs

with n ≥ 29 variables our MATLAB solver was approximately

twice as fast as SCS. This is remarkable considering the SCS

is written in C, and is due to the fact that t ≪ m, cf. Table I,

so the cost of the affine projection step (27a) in CDCS-sos

is greatly reduced compared to the methods implemented in

SCS. Figure 2(a) illustrates that, for all test problems, CDCS-

sos was faster than both SCS-direct and SCS-indirect also in

terms of average CPU time per 100 iterations (this metric

is unaffected by differences in the termination criteria used

by different solvers). Finally, Table II shows that although

first-order methods only aim to provide solutions of moderate

accuracy, the objective value returned by CDCS-sos and SCS

was always within 0.5% of the high-accuracy optimal value

computed using interior-point solvers. Such a small difference

may be considered negligible in many applications.

B. Finding Lyapunov functions

In our next numerical experiment, we considered the prob-

lem of constructing Lyapunov functions to verify local stability

of polynomial systems, i.e., we solved the SOS relaxation

of (3a)-(3b) for different system instances. We used SOS-

TOOLS [24] to generate the corresponding SDPs.

https://github.com/oxfordcontrol/CDCS
https://github.com/zhengy09/sosproblems

9

TABLE III: CPU time (in seconds) to solve the SDP relaxations of (3a)-(3b). N is the size of the largest PSD cone, m is the number of constraints, t is the
size of the matrix factorized by CDCS-sos.

Dimensions CPU time (s)

n N m t SeDuMi SDPT3 SDPA CSDP Mosek SCS-direct SCS-indirect CDCS-sos

10 65 1 100 110 2.8 1.8 2.0 2.6 0.7 0.2 0.2 0.3
12 90 1 963 156 6.3 4.9 3.5 1.0 2.1 0.3 0.3 0.4
14 119 3 255 210 36.2 16.3 44.8 2.6 5.5 0.8 0.7 0.6
17 170 6 273 306 265.1 78.0 204.7 9.5 26.9 1.3 1.3 1.1
20 230 11 025 420 1 346.0 361.3 940.5 40.4 112.5 3.1 3.0 2.4
24 324 21 050 600 ** ** 8 775.5 238.4 632.2 15.1 6.6 5.1
29 464 41 760 870 ** ** ** ** ** 17.1 16.9 14.3
35 665 83 475 1260 ** ** ** ** ** 67.6 57.1 37.4
42 945 164 948 1806 ** ** ** ** ** 133.7 129.2 92.8

In the experiment, we randomly generated polynomial dy-

namical systems ẋ = f(x) of degree three with a linearly sta-

ble equilibrium at the origin. We then checked for local nonlin-

ear stability in the ball D = {x ∈ Rn :
∑n

i=1 x
2
i ≤ 0.1} using

a quadratic Lyapunov function of the form V (x) = xTQx and

Positivstellensatz to derive SOS conditions from (3a) and (3b)

(see e.g., [2] for more details). The total CPU time required

by the solvers we tested are reported in Table III, while

Figure 2(b) shows the average CPU times per 100 iterations

for SCS and CDCS-sos. As in our previous experiment, the

results clearly show that the iterations in CDCS-sos are faster

than in SCS for all our random problem instances, and that

both first-order solvers have low memory requirements and are

able to solve large-scale problems (n ≥ 29) beyond the reach

of interior-point solvers.

C. A practical example: Nuclear receptor signalling

As our last example, we considered a 37-state model of

nuclear receptor signalling with a cubic vector field and an

equilibrium point at the origin [41, Chapter 6]. We verified

its local stability within a ball of radius 0.1 by constructing

a quadratic Lyapunov function. SOSTOOLS [24] was used

to recast the SOS relaxation of (3a)-(3b) as an SDP with

constraint matrix of size 102 752× 553 451 and a large PSD

cone of linear dimension 741. Such a large-scale problem

is currently beyond the reach of interior-point methods on a

regular desktop computer, and all of the interior point solvers

we tested (SeDuMi, SDPT3, SDPA, CSDP and Mosek) ran

out of memory on our machine. On the other hand, the first-

order solvers CDCS-sos and SCS managed to construct a valid

Lyapunov function, with our partial-orthogonality-exploiting

algorithm being more than twice as fast as SCS (148 s vs.

≈ 400 s for both SCS-direct and SCS-indirect).

VIII. CONCLUSION

In this paper, we proved that SDPs arising from SOS

programs formulated using the standard monomial basis pos-

sess a structural property that we call partial orthogonality.

We then demonstrated that this property can be leveraged

to substantially reduce the computational cost of an ADMM

algorithm for conic programs proposed in [14]. Specifically,

we showed that the iterates of this algorithm can be projected

efficiently onto a set defined by the affine constraints of the

SDP. The key idea is to exploit a “diagonal plus low rank”

structure of a large matrix that needs to be inverted/factorized,

which is a direct consequence of partial orthogonality. Numer-

ical experiments on large-scale SOS programs demonstrate

that the method proposed in this paper yield considerable

savings compared to many state-of-the-art solvers. For this

reason we expect that our method will facilitate the use of

SOS programming for the analysis and design of large-scale

systems.

REFERENCES

[1] J. B. Lasserre, Moments, positive polynomials and their applications.
World Scientific, 2009.

[2] J. Anderson and A. Papachristodoulou, “Advances in computational Lya-
punov analysis using sum-of-squares programming,” Discrete Contin.

Dynam. Syst. B, vol. 20, no. 8, 2015.
[3] P. A. Parrilo, “Semidefinite programming relaxations for semialgebraic

problems,” Math. Program., vol. 96, no. 2, pp. 293–320, 2003.
[4] J. B. Lasserre, “Global optimization with polynomials and the problem

of moments,” SIAM J. Optim., vol. 11, no. 3, pp. 796–817, 2001.
[5] A. Papachristodoulou and S. Prajna, “A tutorial on sum of squares

techniques for systems analysis,” in Am. Control Conf. (ACC). IEEE,
2005, pp. 2686–2700.

[6] F. Permenter and P. A. Parrilo, “Basis selection for SOS programs via
facial reduction and polyhedral approximations,” in 53rd IEEE Conf.

Decis. Control (CDC), 2014, pp. 6615–6620.
[7] B. Reznick et al., “Extremal PSD forms with few terms,” Duke Math.

J., vol. 45, no. 2, pp. 363–374, 1978.
[8] J. Löfberg, “Pre-and post-processing sum-of-squares programs in prac-

tice,” IEEE Trans. Autom. Control, vol. 54, no. 5, pp. 1007–1011, 2009.
[9] K. Gatermann and P. A. Parrilo, “Symmetry groups, semidefinite

programs, and sums of squares,” J. Pure Appl. Algebra, vol. 192, no. 1,
pp. 95–128, 2004.

[10] H. Waki, S. Kim, M. Kojima, and M. Muramatsu, “Sums of squares and
semidefinite program relaxations for polynomial optimization problems
with structured sparsity,” SIAM J. Control Optim., vol. 17, no. 1, pp.
218–242, 2006.

[11] A. A. Ahmadi and A. Majumdar, “DSOS and SDSOS optimization: more
tractable alternatives to sum of squares and semidefinite optimization,”
arXiv:1706.02586, 2017.

[12] A. A. Ahmadi and G. Hall, “Sum of squares basis pursuit with linear
and second order cone programming,” arXiv:1510.01597, 2015.

[13] Z. Wen, D. Goldfarb, and W. Yin, “Alternating direction augmented
Lagrangian methods for semidefinite programming,” Math. Program.

Comput., vol. 2, no. 3-4, pp. 203–230, 2010.
[14] B. O’Donoghue, E. Chu, and S. Parikh, Nealand Boyd, “Conic opti-

mization via operator splitting and homogeneous self-dual embedding,”
J. Optim. Theory Appl., vol. 169, no. 3, pp. 1042–1068, 2016.

[15] Y. Zheng, G. Fantuzzi, A. Papachristodoulou, P. Goulart, and A. Wynn,
“Fast ADMM for Semidefinite Programs with Chordal Sparsity,” in Proc.

2017 Am. Control Conf. IEEE, 2017, pp. 3335–3340.
[16] ——, “Fast ADMM for homogeneous self-dual embeddings of sparse

SDPs,” IFAC-PapersOnline, vol. 50, no. 1, pp. 8411–8416, 2017.
[17] ——, “Chordal decomposition in operator-splitting methods for sparse

semidefinite programs,” arXiv:1707.05058, 2017.
[18] D. Henrion and J. Malick, “Projection methods in conic optimization,”

in Handbook on Semidefinite, Conic and Polynomial Optimization.
Springer, 2012, pp. 565–600.

10

[19] D. Bertsimas, R. M. Freund, and X. A. Sun, “An accelerated first-
order method for solving SOS relaxations of unconstrained polynomial
optimization problems,” Optim. Methods Softw., vol. 28, no. 3, pp. 424–
441, 2013.

[20] J. Nie and L. Wang, “Regularization methods for SDP relaxations in
large-scale polynomial optimization,” SIAM J. Optim., vol. 22, no. 2,
pp. 408–428, 2012.

[21] Y. Zheng, G. Fantuzzi, and A. Papachristodoulou, “Exploiting aparsity
in the coefficient matching conditions in sum-of-squares programming
using ADMM,” IEEE Control Syst. Lett., vol. 1, no. 1, pp. 80–85, 2017.

[22] G. Banjac, P. Goulart, B. Stellato, and S. Boyd, “Infeasibility detection in
the alternating direction method of multipliers for convex optimization,”
optimization-online.org, Jun 2017.

[23] Y. Liu, E. K. Ryu, and W. Yin, “A new use of Douglas-Rachford splitting
and ADMM for identifying infeasible, unbounded, and pathological
conic programs,” arXiv:1706.02374, 2017.

[24] A. Papachristodoulou, J. Anderson, G. Valmorbida, S. Prajna, P. Seiler,
and P. Parrilo, “SOSTOOLS version 3.00 sum of squares optimization
toolbox for MATLAB,” arXiv:1310.4716, 2013.

[25] D. Henrion and J.-B. Lasserre, “GloptiPoly: Global optimization over
polynomials with MATLAB and SeDuMi,” ACM Trans. Math. Softw.,
vol. 29, no. 2, pp. 165–194, 2003.

[26] J. Löfberg, “YALMIP: A toolbox for modeling and optimization in
matlab,” in Proc. IEEE Int. Symp. Computer Aided Control Syst. Design.
IEEE, 2004, pp. 284–289.

[27] CDCS: Cone Decomposition Conic Solver.
https://github.com/oxfordcontrol/CDCS, Sep. 2016.

[28] J. F. Sturm, “Using SeDuMi 1.02, a MATLAB toolbox for optimization
over symmetric cones,” Optimiz. Meth. Softw., vol. 11, no. 1-4, pp. 625–
653, 1999.

[29] K.-C. Toh, M. J. Todd, and R. H. Tütüncü, “SDPT3—a MATLAB
software package for semidefinite programming, version 1.3,” Optimiz.

Meth. Softw., vol. 11, no. 1-4, pp. 545–581, 1999.
[30] M. Yamashita, K. Fujisawa, and M. Kojima, “Implementation and

evaluation of SDPA 6.0 (semidefinite programming algorithm 6.0),”
Optimiz. Meth. Softw., vol. 18, no. 4, pp. 491–505, 2003.

[31] B. Borchers, “CSDP, a C library for semidefinite programming,” Opti-

miz. Meth. Softw., vol. 11, no. 1-4, pp. 613–623, 1999.
[32] The MOSEK optimization software. http://www.mosek.com.
[33] SCS: Splitting Conic Solver. https://github.com/cvxgrp/scs, Apr. 2016.
[34] A. Papachristodoulou and S. Prajna, “On the construction of Lyapunov

functions using the sum of squares decomposition,” in 41st IEEE Conf.

Decis. Control (CDC), vol. 3. IEEE, 2002, pp. 3482–3487.
[35] V. Powers and T. Wörmann, “An algorithm for sums of squares of real

polynomials,” Journal of pure and applied algebra, vol. 127, no. 1, pp.
99–104, 1998.

[36] M. Fukuda, M. Kojima, K. Murota, and K. Nakata, “Exploiting sparsity
in semidefinite programming via matrix completion I: General frame-
work,” SIAM J. Control Optim., vol. 11, no. 3, pp. 647–674, 2001.

[37] Y. Ye, M. J. Todd, and S. Mizuno, “An O(
√
nl)-iteration homogeneous

and self-dual linear programming algorithm,” Math. Oper. Res., vol. 19,
no. 1, pp. 53–67, 1994.

[38] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122,
2011.

[39] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
University Press, 2004.

[40] C. W. Scherer and C. W. Hol, “Matrix sum-of-squares relaxations for
robust semi-definite programs,” Math. Program., vol. 107, no. 1, pp.
189–211, 2006.

[41] S. H. A. Khoshnaw, “Model reductions in biochemical reaction net-
works,” Ph.D. dissertation, Department of Mathematics, 2015.

APPENDIX

We present here a detailed count of floating-point operations

(flops) to support the claims made in Remark 3. An accurate

analysis that takes sparsity into account is not straightforward,

especially given that sparsity is problem-dependent, so we

ignore sparsity for simplicity. Following the convention in [39,

Appendix C], we then take the cost of an m×n matrix-vector

multiplication to be 2mn flops.
To compare the complexity of our proposed method to that

of SCS only the cost of solving the linear system (27) need

be considered, since that is the only difference. Our method

solves (27) as

σ1 = ω̂1 +ATσ2, (51a)

(I +AAT)σ2 = ω̂2 −Aω̂1, (51b)

where ω̂1 ∈ Rt+N2

and ω̂2 ∈ Rm are given vectors and A ∈
Rm×(t+N2). Computing the right-hand sides for a given σ2

cost 2m(t +N2) + t+ N2 + (2m(t +N2) +m) = 4m(t+
N2)+ t+N2+m flops, to which we have to add the cost of

calculating σ2 = (I +AAT)−1r where r = ω̂2−Aω̂1. Taking

advantage of the “diagonal plus low structure” in I + AAT,

we have

(I +AAT)−1 = (P +A1A
T

1)
−1

= P−1 − P−1A1(I +AT

1P
−1A1)

−1AT

1P
−1,

where P = I + A2A
T

2 is an m × m diagonal matrix and

A1 ∈ Rm×t. The inverse P−1 and the Cholesky factorization

(I + AT

1P
−1A1) = LLT can be pre-computed, so to find σ2

at each iteration of our algorithm we need:

• m flops to compute x = P−1r
• 2mt flops to compute y = AT

1x
• 2t2 flops to solve LLTz = y using forward and backward

substitutions

• 2mt+m to compute v = P−1A1z
• m flops to compute σ2 = x− v.

In total, therefore the proposed method requires 2t2+4(N2+
2t)m+4m+ t+N2 = O(t2 +mN2 +mt) at each iteration.

In contrast:

• The method in SCS-direct uses a cached LDLT factor-

ization of (27) and requires O
(

(m+ t+N2)2
)

flops to

carry out forward and backwards substitutions.

• The method in SCS-indirect solves (51b) above using a

conjugate gradient (CG) method, which costs a total of

2m(2t + 2N2 + mncg) + m + t + N2 = O(ncgm
2 +

mN2 +mt) flops (here, ncg denotes the number of CG

iterations).

https://github.com/oxfordcontrol/CDCS
http://www. mosek. com
https://github.com/cvxgrp/scs

	I Introduction
	II Preliminaries
	II-A Notation
	II-B General SOS programs
	II-C SDP formulation

	III Partial orthogonality in SOS programs
	IV A fast ADMM-based algorithm
	IV-A The ADMM algorithm
	IV-B Application to SOS programming

	V Matrix-valued SOS programs
	VI Weighted SOS constraints
	VII Numerical Experiments
	VII-A Constrained polynomial optimization
	VII-B Finding Lyapunov functions
	VII-C A practical example: Nuclear receptor signalling

	VIII Conclusion
	References
	Appendix

