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Scalable analysis of linear networked systems via chordal decomposition

Yang Zheng†, Maryam Kamgarpour‡, Aivar Sootla† and Antonis Papachristodoulou†

Abstract— This paper introduces a chordal decomposition
approach for scalable analysis of linear networked systems,
including stability, H2 and H∞ performance. Our main strategy
is to exploit any sparsity within these analysis problems and
use chordal decomposition. We first show that Grone’s and
Agler’s theorems can be generalized to block matrices with any
partition. This facilitates networked systems analysis, allowing
one to solely focus on the physical connections of networked
systems to exploit scalability. Then, by choosing Lyapunov
functions with appropriate sparsity patterns, we decompose
large positive semidefinite constraints in all of the analysis
problems into multiple smaller ones depending on the maximal
cliques of the system graph. This makes the solutions more
computationally efficient via a recent first-order algorithm. Nu-
merical experiments demonstrate the efficiency and scalability
of the proposed method.

I. INTRODUCTION

Large-scale networked systems consisting of multiple sub-

systems over a network have received considerable atten-

tion [1]. This class of systems arises in many practical

applications, such as the smart gird [2] and automated traffic

systems [3]. One of the challenges arising in these systems

is to develop scalable methods that are able to solve the

associated analysis and synthesis problems efficiently. How-

ever, classical methods often suffer from lack of scalability

to large-scale systems, since computational demand usually

grows rapidly as the system’s dimension increases.

In the literature, there are two groups of scalable analysis

techniques for large-scale networked systems: 1) composi-

tional analysis [4]–[6]; and 2) positive systems theory [7]–

[11]. The former method is usually carried out in the

framework of dissipative systems, while the latter method

aims to solve a special type of dynamical systems. The

main strategy of compositional analysis is to find individual

supply rates for each dissipative subsystem and then to

establish a global storage function as a combination of

the local storage functions [4]. Recently, Meissen et al.

employed a first-order method to optimize the local supply

rates for certifying stability of an interconnected system [5],

which might reduce the conservatism brought by individual

storage functions. Anderson and Papachristodoulou proposed

a decomposition technique based on graph partitioning that

facilitates the compositional analysis [6]. Another group of
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scalable strategies focuses on a particular class of systems,

i.e., positive systems [7], where the system matrices only

have nonnegative off-diagonal entries. It is well-known that

stability and performance of positive systems can be verified

using linear Lyapunov functions [8], which can be computed

by more scalable linear programs (LPs) instead of traditional

semidefinite programs (SDPs). Tanaka and Langbort showed

that it is necessary and sufficient to use a diagonal Lyapunov

function in the KYP lemma for positive systems [9]. Sootla

and Rantzer proposed scalable model reduction techniques

for positive systems using linear energy functions [10].

In contrast to the compositional analysis and positive

system theory, our approach focuses on the inherent struc-

ture and sparsity of networked systems and uses sparse

optimization techniques, particularly chordal decomposition,

to solve the analysis problems efficiently. This idea is in

line with some of the early results in the field [12]–[15].

Chordal decomposition is a celebrated result in linear alge-

bra that connects sparse positive semidefinite matrices and

chordal graphs. There is a broad literature regarding the

applications of chordal graph properties in combinatorial

problems, Cholesky factorization, matrix completion and

sparse semidefinite optimization; see [16] for a comprehen-

sive review.

In this paper, we introduce a chordal decomposition ap-

proach for scalable analysis of linear networked systems.

We focus on the well-known convex formulations of the

analysis problems, i.e., stability, H2 and H∞ performance,

and show how to decompose large positive semidefinite

constraints in all of the analysis problems into multiple

smaller ones, thus facilitating their solutions. Specifically,

compared to [12]–[15], the contributions of this paper are:

1) we generalize Grone’s and Agler’s theorems to block

matrices with arbitrary partition, and utilize the generaliza-

tion for networked systems analysis; 2) we extend the scope

of stability verification in [13] to H2 and H∞ analyses of

networked systems. Our approach can potentially be applied

to other analysis and synthesis problems, such as structured

model reduction and stabilizing feedback design.

The rest of this paper is organized as follows. In Section II,

we present the problem formulation. Chordal decomposition

in sparse SDPs is introduced in Section III. Section IV

presents the scalable analysis approach for stability, H2 and

H∞ performance. Numerical results are shown in Section V,

and we conclude the paper in Section VI.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Preliminaries on graph-theoretic notions

A directed graph is denoted by G(V , E) and it consists of a

set of nodes V = {1, 2, . . . , n} and a set of edges E ⊆ V×V .

http://arxiv.org/abs/1803.05996v1


1

2 3 4

5

(a)

1

2 3 4

5

(b)

Fig. 1: (a) Nonchordal graph: the cycle (1-3-5-4) is of length four
but with no chords. (b) Chordal graph by adding an undirected edge
(3, 4): all cycles of length greater than three have a chord.

Graph G(V , E) is called undirected if (u, v) ∈ E ⇔ (v, u) ∈
E . A graph is complete if there exists an edge between any

pair of nodes. A clique is a subset of nodes C ⊆ V that

induces a complete subgraph. If C is not contained by any

other clique, then it is referred to as a maximal clique. A

cycle of length k is a sequence {v1, v2, . . . , vk} ⊆ V with

(vk, v1) ∈ E and (vi, vi+1) ∈ E , ∀i = 1, . . . , k − 1. A chord

in a cycle {v1, v2, . . . , vk} is an edge (vi, vj) that connects

two nonconsecutive nodes in the cycle.

An undirected graph is called chordal if every cycle

of length greater than three has a chord. Examples of

chordal graphs include complete graphs and acyclic undi-

rected graphs. Given a chordal graph, there are very efficient

algorithms to find maximal cliques [17]. Non-chordal graphs

G(V , E) can always be extended to a chordal graph Ĝ(V , Ê)
by adding edges to E , i.e., E ⊂ Ê , and this process is called

chordal extension. There are several efficient heuristics to

generate a good extension [16]. For example, the graph in

Fig. 1 (a) is non-chordal, and it can be chordally extended

to that in Fig. 1 (b) by adding an undirected edge (3, 4). The

graph in Fig. 1 (b) has three maximal cliques: C1 = {1, 3, 4},

C2 = {2, 3, 5} and C3 = {3, 4, 5}.

B. Sparse block matrices

A matrix M ∈ RN×N has α = {α1, α2, . . . , αn}-

partitioning with N =
∑n

k=1 αi if

M =











M11 M12 . . . M1n

M12 M22 . . . M2n

...
...

. . .
...

Mn1 Mn2 . . . Mnn











where Mij ∈ Rαi×αj , i, j = 1, . . . , n. We describe the

sparsity pattern of α-partitioned M by a graph G(V , E):

R
N×N
α (E , 0) = {M ∈ R

N×N |Mij = 0 if (j, i) /∈ E∗}, (1)

where E∗ = E∪{(i, i), ∀i ∈ V}. If G is undirected, we define

the space of sparse symmetric block matrices as

S
N
α (E , 0) = {M ∈ S

N |Mij = MT
ji = 0 if (j, i) /∈ E∗}, (2)

and the cone of sparse block positive semidefinite (PSD)

matrices as S
N
α,+(E , 0) = {M ∈ S

N
α (E , 0) | M � 0}.

Also, we define a cone SNα,+(E , ?) as the set of matrices in

SNα (E , 0) that have a positive semidefinite completion, i.e.,

SNα,+(E , ?) = PSNα (E,0)(S
N
+ ), where P denotes the projection

onto the space of sparse matrices.

Remark 1: The definitions (1) and (2) also allow the block

entry Mij = 0 if (j, i) ∈ E∗. Then we have M ∈ S
N
α (Ê , 0) if

M ∈ SNα (E , 0) and Ê is a chordal extension of E . This fact

will be used in Section III-B. The notation above is a natural

extension of sparse scalar matrices to sparse block matrices

with α partition. If α = {1, 1, . . . , 1}, then the notations are

reduced to the normal cases, as used in [16], [18], [19].

C. Problem statement: analysis of linear networked systems

We consider a network of linear heterogeneous subsystems

interacting over a directed graph G(V , E). Each node in V
represents a subsystem, and the edge (i, j) ∈ E means that

subsystem i exerts dynamical influence on subsystem j. The

dynamics of subsystem i ∈ V are written as

ẋi(t) = Aiixi(t) +
∑

j∈Ni

Aijxj(t) +Biwi(t),

yi(t) = Cixi(t) +Diwi(t),

(3)

where xi ∈ Rαi , yi ∈ Rdi , wi ∈ Rmi represent the local

state, output and disturbance, respectively, and Ni denotes the

neighbours of node i. By collecting the subsystems’ states,

the overall state-space model is then written concisely as

ẋ(t) = Ax(t) +Bw(t),

y(t) = Cx(t) +Dw(t),
(4)

where x = [xT
1 , x

T
2 , . . . , x

T
n ]

T , and the vectors y, w are

defined similarly. The matrix A is composed by blocks Aij ,

and enjoys a block sparsity pattern A ∈ RN×N
α (E , 0). The

matrices B,C,D have block-diagonal structures.

In this paper, we develop scalable methods for three

analysis problems [20] of the linear networked system (4):

1) Stability analysis: System (4) with w = 0 is asymp-

totically stable if and only if the Lyapunov linear matrix

inequality (LMI) is feasible

find P ≻ 0

subject to ATP + PA ≺ 0.
(5)

2) H2 performance: The H2 performance of a stable

system (4) with D = 0 can be computed as

min
P

Tr(BTPB)

subject to ATP + PA+ CTC ≺ 0,

P ≻ 0,

(6)

where ‖C(sI −A)−1B‖H2
=

√

Tr(BTPB).
3) H∞ performance: The H∞ performance of a stable

system (4) can be computed as

min
P

γ

subject to





ATP + PA PB CT

BTP −γI DT

C D −γI



 ≺ 0,

P ≻ 0,

(7)

where ‖C(sI −A)−1B +D‖H∞
= γ.

Problems (5)-(7) are convex, and ready to be solved

via existing interior-point solvers, such as SeDuMi [21].



The main difficulty is that standard interior-point solvers

suffer from scalability for large-scale problem instances. One

major reason is that the constraints in (5)-(7) are imposed

on the global system and consequently the computational

complexity grows very quickly as the number of subsystems

increases. Typically, the system graph G is sparse for prac-

tical large-scale systems, meaning that each subsystem only

has physical connections with a few other subsystems. In

this paper, we aim to exploit this sparsity in the algorithmic

level to solve (5)-(7) efficiently.

Remark 2: Note that there are also other efficient formu-

lations to test stability, and compute H2 and H∞ perfor-

mance [20]. An additional benefit of problems (5)-(7) is

that we obtain an appropriate Lyapunov function V (x) =
xTPx. Also, problems (5)-(7) are helpful for some synthesis

problems via a standard change of variables. In this paper,

we will focus on (5)-(7), and introduce a scalable approach

to solve them efficiently when the system graph G is sparse.

III. CHORDAL DECOMPOSITION IN SPARSE SDPS

In this section, we focus on the SDP formulations of the

optimization problems (5)-(7) and explain how to decompose

them using chordal graph theory. The standard primal form

of an SDP is

min
X

〈A0, X〉

subject to 〈Ai, X〉 = bi, i = 1, . . . ,m,

X � 0,

(8)

and its standard dual form is

max
y,Z

〈b, y〉

subject to Z +
m
∑

i=1

yiAi = A0,

Z � 0,

(9)

where X is the primal variable, y, Z are the dual variables,

and b ∈ Rm, Ai ∈ SN , i = 0, 1, . . . ,m are problem data.

A. Chordal decomposition of sparse block PSD matrices

Here, we introduce two key theorems that decompose

SNα,+(E , ?) and SNα,+(E , 0) into a set of smaller and coupled

cones, respectively. Given a partition α = {α1, α2, . . . , αn}
and a clique Ck of G, we define an index matrix ECk

∈
R|Ck|×N with |Ck| =

∑

i∈Ck
αi and N =

∑n

i=1 αi as

(ECk
)ij =

{

Iαi
, if Ck(i) = j

0, otherwise

where Ck(i) denotes the i-th node in Ck, sorted in the natural

ordering. Given a block matrix X ∈ SN with α-partition,

ECk
XET

Ck
∈ S|Ck| extracts a principal submatrix defined by

the clique Ck, and the operation ET
Ck
Y ECk

inflates a |Ck| ×
|Ck| matrix into a sparse N ×N matrix. Then, we have:

Theorem 1 (Generalized Grone’s theorem): Let G(V , E)
be a chordal graph with a set of maximal cliques

{C1, C2, . . . , Cp}. Given a partition α = {α1, α2, . . . , αn}
and N =

∑n

i=1 αi, then, X ∈ SNα,+(E , ?) if and only if

ECk
XET

Ck
∈ S

|Ck|
+ , k = 1, . . . , p. (10)

Theorem 2 (Generalized Agler’s theorem): Let G(V , E)
be a chordal graph with a set of maximal cliques

{C1, C2, . . . , Cp}. Given a partition α = {α1, α2, . . . , αn}
and N =

∑n

i=1 αi, then, Z ∈ SNα,+(E , 0) if and only if

there exist matrices Zk ∈ S
|Ck|
+ for k = 1, . . . , p such that

Z =

p
∑

k=1

ET
Ck
ZkECk

. (11)

For the scalar case, i.e., α = {1, 1, . . . , 1}, Theorems 1

and 2 reduce to the Grone’s [22] and Agler’s [23] theorems,

respectively. Here, we show that these two celebrated the-

orems can be generalized into sparse block matrices with

an arbitrary partition. Due to lack of space, the proofs are

omitted here1. One direct benefit of the generalized Grone’s

and Agler’s theorems is the convenience for networked

system analysis, i.e., they allow us to solely focus on the

physical connections characterized by G to exploit scalability.

In this paper, chordal decomposition refers to the application

of Theorems 1 and 2 to decompose a large sparse block PSD

cone into a set of smaller but coupled PSD cones. In the next

section, we summarize a recent first-order algorithm [19] that

can exploit Theorems 1 and 2.

B. Chordal decomposition in first-order methods

Suppose the data matrices in (8) and (9) have an aggregate

sparsity pattern: A0, A1, . . . , Am ∈ SNα (E , 0). It is assumed

that the pattern E is chordal (otherwise, a suitable chordal

extension can be found; as stated in Remark 1, making an

extension does not affect the problem data), with a set of

maximal cliques C1, C2, . . . , Cp. Note that the cost function

and equality constraints in (8) only depend on the entries Xij

on its diagonal and (i, j) ∈ E . The remaining elements sim-

ply guarantee that the matrix is PSD. Also, in (9) any feasible

solution Z satisfies the sparsity pattern SNα (E , 0). Recalling

the definition of S
N
α,+(E , ?) and S

N
α,+(E , 0), and according

to Theorems 1 and 2, we can equivalently reformulate the

primal SDP (8) and the dual SDP (9), respectively, as

min
X,Xk

〈A0, X〉

subject to 〈Ai, X〉 = bi, i = 1, . . . ,m,

Xk = ECk
XET

Ck
, k = 1, . . . , p,

Xk ∈ S
|Ck|
+ , k = 1, . . . , p,

(12)

and

max
y,Zk,Vk

〈b, y〉

subject to

p
∑

k=1

ET
Ck
VkECk

+
m
∑

i=1

yiAi = A0,

Zk = Vk, k = 1, . . . , p,

Zk ∈ S
|Ck|
+ , k = 1, . . . , p.

(13)

In (12) and (13), the original single large PSD cone has

been replaced by multiple smaller PSD cones, coupled by a

1See proofs via http://sysos.eng.ox.ac.uk/wiki/images/7/7c/ECC2018.pdf

http://sysos.eng.ox.ac.uk/wiki/images/7/7c/ECC2018.pdf


set of consensus variables. Then, first-order methods can be

applied to the decomposed formulations (12) and (13) [24],

or their homogeneous self-dual embedding [19], which lead

to algorithms only involving parallel PSD projections onto

p smaller cones and a projection onto an affine set at each

iteration. If the size of the largest maximal clique is small,

then the reduction of cone dimensions enables us to com-

pute PSD projections much more efficiently. Consequently,

the application of first-order methods in the decomposed

problems (12) and (13) improves the scalability to solve

sparse SDPs when seeking a solution of moderate accuracy.

The interested reader is referred to [19], [24] for details.

The MATLAB package CDCS [25] provides an efficient

implementation of the above decomposition method.

Remark 3: Note that chordal sparsity has been identified

as a key structure in large-scale sparse SDPs. In addition

to the decomposition approach [19], there are several other

methods to exploit chordal properties (Theorems 1 and 2) in

solving sparse SDPs, e.g., [18], [26]. In this paper, we use

the decomposition approach [19] as an example to show the

computational benefits brought by exploiting chordal sparsity

in the analysis of large-scale networked systems.

IV. SCALABLE PERFORMANCE ANALYSIS OF SPARSE

SYSTEMS

This section applies the chordal decomposition techniques

in stability, H2 and H∞ analyses of linear networked sys-

tems. Our strategy is to restrict the sparsity pattern of P ,

such that the sparsity structure of the dynamical system is

preserved in the SDP formulations of (5)-(7). This allows

one to decompose a single large PSD constraint into multiple

smaller ones using chordal decomposition, thus facilitating

their solutions using sparse optimization techniques [25]. We

note that the proposed method of this section may introduce

certain conservatism for general networked systems since we

use a sparse Lyapunov function.

A. Stability verification

We first show that the sparsity pattern of ATP + PA
reflects the aggregate sparsity pattern of the resulting SDP

formulation. Let us write the Lyapunov LMI as
[

−P 0
0 ATP + PA

]

≺ 0. (14)

There are up to m = N(N+1)
2 free variables in matrix P . We

denote W1,W2, . . . ,Wm as the standard basis matrices for

SN , and define the matrices A1, A2, . . . , Am ∈ S2N as

Ai =

[

−Wi 0
0 ATWi +WiA

]

, i = 1, 2, . . . ,m. (15)

Then, (14) can be reformulated into a standard dual SDP

max
y,Z

〈b, y〉

subject to Z +
m
∑

i=1

yiAi = A0,

Z � 0,

(16)

where y ∈ Rm, Z ∈ S2N+ , A0 = −ǫI, ǫ > 0, b = 0, and Ai

is defined in (15). At this point, we know that the aggregate

sparsity pattern of (16) is

P(A0)∪P(A1)∪· · ·∪P(Am) = P

([

−P 0
0 ATP + PA

])

,

where P(·) denotes the sparsity pattern of a matrix. The

aggregate sparsity pattern of (16) directly depends on the

sparsity patterns of P and ATP + PA.

For a networked system (4), matrix A has an inherent

structure described by G(V , E), i.e., A ∈ R
N×N
α (E , 0), where

α = {α1, α2, . . . , αn} denotes the dimensions of local states.

Apparently, a dense P has no conservatism in certifying

stability, but leads to a full pattern of ATP+PA. To preserve

the sparsity structure G, we consider the following problem.

Q∗ Given a sparse A ∈ RN×N
α (E , 0), find a sparsity

pattern of P , such that the sparsity pattern of

ATP + PA inherits the original pattern E (more

favorably, the resulting pattern is chordal with small

maximal cliques).

We note that a complete answer to Q∗ is difficult for gen-

eral systems, especially considering the relationship between

sparsity (i.e., efficiency) and conservativeness. One trivial

choice is a block-diagonal P with block sizes compatible

with the subsystem sizes αi. Then, the graph structure in the

dynamical system (3) is naturally inherited in (16), i.e.,

ATP + PA ∈ S
N
α (E ∪ Er, 0), (17)

where Er denotes a set of reverse edges obtained by reversing

the order of the pairs in E . We note that the existence of

block-diagonal P is investigated in [11], and diagonal P
is necessary and sufficient to certify stability of positive

systems [8]. Other choices of P are available for special

graphs G, such as trees and cycles [13].

In this paper, we assume the pattern of ATP + PA can

be described by a chordal graph Gc(V , Ec) with a set of

maximal cliques C1, . . . , Cp. As mentioned above, one basic

choice is a block-diagonal P . If E ∪ Er is non-chordal,

then we can make a chordal extension to get Ec. In (16),

the single large PSD cone Z � 0 has two blocks, where

the upper-left one corresponds to block-diagonal P and

the bottom-right one can be replaced by SNα,+(Ec, 0). Then,

SNα,+(Ec, 0) can be subsequently decomposed into multiple

smaller cones using chordal decomposition (see Theorem 1

and the reformulations (12) and (13)). Consequently, if the

largest maximal clique is small, the SDP formulation (16)

can be expected to be solved efficiently for sparse systems

using the first-order method described in Section III-B.

B. H2 performance

Similar to the stability analysis, the H2 optimization

problem (6) can be reformulated into a standard SDP of

primal form (8) or dual form (9). The aggregate sparsity

pattern of the resulting SDP is determined by the pattern of

ATP +PA+CTC. Considering the structure of networked

system (3), we have

P(ATP + PA+ CTC) = P(ATP + PA). (18)



Then, the argument for stability analysis can be applied to H2

analysis for the purpose of scalable computation. We assume

the pattern of ATP + PA can be described by a chordal

graph Gc(V , Ec), leading to ATP +PA+CTC ∈ SNα (Ec, 0).
Consequently, the sparse optimization technique [25] is ready

to solve the decomposed version of (6). Note that we can

only obtain an approximated (upper bound) H2 performance

in general due to using a sparse P .

C. H∞ performance

When reformulating the H∞ analysis problem (7) into a

standard SDP, the aggregate sparsity pattern depends on the

pattern of the following matrix

M =





ATP + PA PB CT

BTP −γI DT

C D −γI



 . (19)

According to the inherent structure in (3), we know A ∈
RN×N

α (E , 0) and B,C,D are block-diagonal. If we restrict

P to be block-diagonal with compatible block sizes, then the

entry PB is also block-diagonal. The sparsity pattern of the

first block on the diagonal is ATP+PA ∈ S
N
α (Ec, 0), where

Ec is the chordal extension of E∪Er , defined in Section IV-A.

Then, we have the following result.

Theorem 3: Consider a networked system with dynam-

ics (4) and a block-diagonal P . Suppose that the sparsity

pattern of ATP +PA has p maximal cliques C1, C2, . . . , Cp,

and the cardinality of the largest maximal clique is h. Then,

1) the block matrix M in (19) has a partition α̂ =
{α1, α2, . . . , αn,m1,m2, . . . ,mn, d1, d2, . . . , dn};

2) the sparsity pattern of M , denoted as M ∈ SN̂α̂ (Ê , 0),
has p+ n maximal cliques, and the cardinality of the

largest maximal clique is max{h, 3}.

Proof: According to (3), it is straightforward to

see that the block matrix M in (19) has a parti-

tion α̂ = {α1, α2, . . . , αn,m1,m2, . . . ,mn, d1, d2, . . . , dn},

where αi,mi, di(i = 1, . . . , n) are the dimensions of local

states, disturbances and outputs, respectively.

Let us first consider the following block

M1 =

[

ATP + PA PB
BTP −γI

]

∈ S
N̂1

α̂1
(Ê1, 0), (20)

where the partition α̂1 = {α1, α2, . . . , αn,m1,m2, . . . ,mn}
and N̂1 =

∑n

i=1(αi + mi). Since PB and γI are block

diagonal, every node i ∈ {n+1, . . . , n+n} is only connected

to one node i− n. Then, the edge set for M1 is shown as

Ê1 = Ec
⋃

{(i, i+ n) | i = 1, . . . , n} , (21)

indicating that the maximal cliques of Ê1 are given by

C1, . . . , Cp, Cp+i = {i, i+ n}, i = 1, . . . , n. (22)

Next, according to (19) and (20), we know

M =

[

M1 H
HT −γI

]

∈ S
N̂
α̂ (Ê , 0), (23)

where HT =
[

C D
]

and N̂ =
∑n

i=1(αi+mi+di). Since

the matrices C,D and γI are block diagonal, every node

G1 G2
. . . Gn

x1

x2

x2

x3

xn−1

xn

(a)

1 2 . . . n

(b)

Fig. 2: (a) A chain of n subsystems; (b) a simplified line graph.

Fig. 3: CPU time (s) required by SeDuMi, SCS and CDCS to solve
the SDPs of the analysis problems (5)-(7) of a chain of subsystems.

i ∈ {2n+1, . . . , 2n+n} is connected to another two nodes

i− n, i− 2n. Consequently, the edge set for M is given by

Ê = Ê1
⋃

{(i, i+ 2n), (i+ n, i+ 2n) | i = 1, . . . , n} .

According to the edge set Ê1 (21), we know that in the edge

set Ê , {i, i+n, i+2n} forms a maximal clique. This implies

that the maximal cliques of Ê are

C1, . . . , Cp, Cp+i = {i, i+ n, i+ 2n}, i = 1, . . . , n. (24)

Therefore, SN̂α̂ (Ê , 0) has p + n maximal cliques, and the

cardinality of the largest maximal clique is max{h, 3}.

Although H∞ analysis problem (7) appears to be more

complex than the Lyapunov LMI (5), Theorem 3 shows

that the underlying maximal cliques are similar and that the

cardinality of the largest maximal clique for (7) and (5) is

almost identical. Therefore, the strategy for stability analysis

can be applied to H∞ analysis problem (7): the single large

PSD cone can be decomposed into p+ n smaller ones, and

the sparse optimization technique [25] can be used to solve

the decomposed problem in a scalable fashion.

V. NUMERICAL SIMULATIONS

To show the efficiency of the chordal decomposition

approach, we consider a chain of n subsystems where each

subsystem has physical interactions with its two neighbour-

ing ones except the first and last subsystem, which only

interacts with one neighbouring subsystem; see Fig. 2 (a)

for illustration. A simplified version of this chain is shown

in Fig. 2 (b). In this case, the maximal cliques of the graph in

Fig. 2 (b) are {i, i+1}, i = 1, . . . , n− 1, and the cardinality

of the largest maximal clique is only 2.

We solved the SDP formulations of stability analysis (5),

H2 performance (6), and H∞ performance (7) using standard



TABLE I: Approximated H2 and H∞ performance of a chain of
subsystems computed by different solvers.

H2 H∞

n † sedumi SCS CDCS ‡ sedumi SCS CDCS

20 9.70 17.73 17.73 17.73 3.65 3.66 3.70 3.66
40 11.66 20.07 20.07 20.07 3.67 3.68 3.74 3.68
60 14.72 25.78 25.79 25.78 3.75 3.77 3.85 3.77
80 16.85 28.70 28.71 28.69 4.32 4.34 4.37 4.34
100 18.08 29.88 29.91 29.88 3.91 3.92 3.96 3.92
120 19.71 32.10 32.12 32.09 4.02 4.03 4.10 4.04
140 21.51 35.59 35.64 35.58 4.09 4.10 4.16 4.11
160 24.64 40.65 40.73 40.65 4.07 4.08 4.18 4.09

†: Accurate H2 performance returned by the MATLAB routine norm(sys,2).

‡: Accurate H∞ performance returned by the MATLAB routine norm(sys,inf).

dense solvers: SeDuMi [21] and SCS [27], as well as using

the sparse conic solver CDCS [25] that exploits chordal

sparsity. Block-diagonal P was used in the formulations.

For the interior-point solver SeDuMi, we used its default

parameters, and the first-order solvers SCS and CDCS were

called with termination tolerance 10−4 and number of iter-

ations limited to 2000. All simulations were run on a PC

with a 2.8 GHz Intel Core i7 CPU and 8GB of RAM. In the

simulations, the state dimension ni was chosen randomly

from 5 to 10, and the dimensions of output and disturbance

(di,mi) were chosen randomly from 1 to 5. Then, we

generated random matrices Aii, Aij , Bi, Di and imposed the

global state matrix A with negative eigenvalues by setting

A := A − (λmax + 5)I , where λmax denotes the maximum

real part of the eigenvalues of A.

Fig. 3 shows the CPU time in seconds required by the

solvers for testing stability, and computing approximated H2

and H∞ performance. The chordal decomposition approach

(via CDCS) took significantly less time than standard dense

methods (using either SeDuMi or SCS). Moreover, the CPU

time required by CDCS seems to grow linearly as the system

size increases. This is expected since the size of the largest

maximal clique is fixed for a line graph, indicating that

the size of the PSD cones after decomposition is fixed and

only the number of PSD cones increases linearly as growth

of the graph size. Finally, Table I lists the H2 and H∞

performance computed by different solvers. We can see that

using block-diagonal P indeed brought certain conservatism

when searching for performance bounds.

VI. CONCLUSION

In this paper, we have introduced scalable analysis tech-

niques for sparse linear networked systems by exploiting

chordal decomposition and using a recent first-order algo-

rithm. The numerical results have shown that when the

largest maximal clique is small, the chordal decomposition

approach is significantly faster than the standard dense

method. This makes it a promising approach for large sparse

systems analysis. Future work will consider non-block diago-

nal Lyapunov functions that can preserve the sparsity pattern

in the analysis problems. Also, there are several interior-point

methods that are able to exploit chordal properties in solving

sparse SDPs [18], [26]. It will be interesting to apply these

solvers in sparse systems analysis and synthesis as well.
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