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Block Factor-Width-Two Matrices in Semidefinite

Programming

Aivar Sootla, Yang Zheng, and Antonis Papachristodoulou

Abstract—In this paper, we introduce a set of block factor-
width-two matrices, which is a generalisation of factor-width-two
matrices and is a subset of positive semidefinite matrices. The
set of block factor-width-two matrices is a proper cone and we
compute a closed-form expression for its dual cone. We use these
cones to build hierarchies of inner and outer approximations
of the cone of positive semidefinite matrices. The main feature
of these cones is that they enable a decomposition of a large
semidefinite constraint into a number of smaller semidefinite con-
straints. As the main application of these classes of matrices, we
envision large-scale semidefinite feasibility optimisation programs
including sum-of-squares (SOS) programs. We present numerical
examples from SOS optimisation showcasing the properties of
this decomposition.

I. INTRODUCTION

Optimisation programs with positive semidefinite (PSD)

constraints (or semidefinite programs — SDPs) are one of

the major computational tools in linear systems theory [1],

[2]. The introduction of sum-of-squares polynomial optimi-

sation (or SOS programming) [3], [4] (and the dual moment

approach [5]) extended the use of SDPs to polynomial opti-

misation and thus allowed addressing many nonlinear control

problems in polynomial time.

Modern SDPs (and especially SOS programs) are often

large-scale, that is, the PSD constraints have large dimen-

sions. Consequently, developing fast SDP solvers has received

considerable attention in the literature. Solvers for sparse

programs were developed in [6], [7], [8] (ADMM-based)

and in [9], [10] (interior-point solver) and a general purpose

ADMM-based solver was developed in [11]. The sparsity of

the PSD constraint was also exploited in the context of SOS

programming [12], [13], [14]. The key idea in these sparsity-

exploiting approaches is to decompose large PSD constraints

into a number of smaller PSD constraints, while the optimal

objective of the program remains the same for a special class

of sparsity patterns [15]. Since the PSD constraint typically

induces the largest computational burden, the computational

time can be significantly reduced by using these techniques.

These sparsity exploiting techniques can also be used for linear

control applications [16].

A related approach to speed-up SOS programming was

taken in [17], where the authors replaced the PSD cone with

the cone of factor-width-two matrices (which we denote FWN
2
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where N stands for the dimension of the matrix). A matrix has

a factor width two if it can be represented as a sum of rank

two PSD matrices [18] and hence it is also PSD. A certificate

for FWN
2 matrices can be written as a number of second-

order cone constraints, which can reduce the computational

and memory burden as demonstrated in [17]. We note that

FWN
2 matrices are also scaled diagonally dominant (SDD) as

discussed in [18]. The reader unfamiliar with SDD matrices

is referred to [19] for details. We only highlight that the

individual entries of SDD matrices satisfy a particular set of

constraints.

As discussed in [17] the size of the cone FWN
2 is signif-

icantly smaller than the size of the PSD cone, therefore, the

restricted problem may be infeasible or the optimal solution

of the FWN
2 program may be significantly different from

the optimal solution of the original SDP. There are several

approaches to bridge this restriction gap, cf. [20]. For exam-

ple, one can employ factor-width-k matrices, which can be

decomposed into a sum of PSD matrices of rank k. Enforcing

this constraint, however, is problematic due to a large number

of k × k PSD constraints, which is N choose k, i.e.,
(
N
k

)
.

Therefore, the computational burden can actually increase in

comparison to the original SDP.

In this paper, we take a different route in order to enrich the

cone of factor-width-two matrices: We draw inspiration from

SDD matrices and consider their block extension. The key

idea of this extension is to partition a matrix into a set of non-

intersecting blocks of entries and enforce the SDD constraints

on these blocks instead of the individual entries [21]. We

introduce the class of block factor-width-two matrices based

on the block SDD definitions from [22], [23]. A block factor-

width-two matrix is also PSD and the constraint “the matrix

is block factor-width-two” can be enforced using a number

of PSD constraints whose size is determined by the size of

the blocks. We proceed by deriving a hierarchy of inner and

outer approximations of the PSD cone based on the block

partition. We propose to use this approximation in SDPs by

replacing the PSD cone constraint with a block “factor-width-

two” constraint. The optimal objective value of the SDPs

typically cannot be achieved using this technique, however, the

computational cost is reduced. Striking the balance between

the accuracy of the solution and the speed can be delicate

in general, therefore, we envision the feasibility of SDPs

without a specific sparsity structure as the main application.

For example, finding a Lyapunov function certifying stability

of a nonlinear system often results in a feasibility SDP without

a particular sparsity structure. Therefore, in this paper, we

http://arxiv.org/abs/1903.04938v1


mainly focus on SOS programs as an application.

In Section II we cover preliminaries. In Section III we

introduce block factor-width-two matrices, a hierarchy of inner

and outer approximations of the PSD cone and their SDP

and SOS applications. We present numerical examples in

Section IV and conclude the paper in Section V.

Notation. The matrix AT denotes the transpose of A ∈
R

n×n. We denote the sets of n by n symmetric, positive

definite, positive semidefinite matrices as Sn, Sn+, Sn++, respec-

tively. We use Ik to denote an identity matrix of dimension

k × k.

II. PRELIMINARIES

A. Partitioned Matrices

We say that a matrix A ∈ R
N×N has α = {k1, . . . , kp}-

partition with N =
p∑

i=1

ki, if A can be written as

A =




A11 A12 . . . A1p

A21 A22 . . . A2p

...
...

. . .
...

Ap1 Ap2 . . . App


 ,

where Aij ∈ R
ki×kj . For a partition α = {k1, . . . , kp} we

define block basis matrices

Eij =
[
ET

i ET
j

]T
∈ R

(ki+kj)×N , i 6= j, (1)

where

I =




Ik1

Ik2

. . .

Ikp


 =




E1

E2

...

Ep


 ,

Ei =
[
0 . . . Iki

. . . 0
]
∈ R

ki×N .

We also define a relation between a partition β of the matrix

A and a coarser partition α of the same matrix.

Definition 1: Let α = {k1, . . . , kp1
} and β = {l1, . . . , lp2

},

where p1 < p2 and
∑p1

i=1 li =
∑p2

i=1 ki. We say that β is

a sub-partition of α and write α ⊒ β, if there exist integers

{mi}
p1

i=1 such that ki =
∑mi+1−1

j=mi
lj and m1 = 1, mp1

= p2,

mi < mi+1 for all i.
For example, given α = {4, 2}, β = {2, 2, 2} and γ =

{1, 1, 1, 1, 1, 1}, we have α ⊒ β ⊒ γ.

B. Semidefinite and sum-of-squares programming

The standard primal-form semidefinite program (SDP) is an

optimisation problem of the form:

min
X

〈C,X〉,

subject to 〈Ai, X〉 = bi, i = 1, . . . ,m,

X ∈ S
N
+ ,

(2)

where C,Ai ∈ S
N , i = 1, . . . ,m and b ∈ R

m are given

problem data.

SDPs have found many applications in linear systems

theory, such as stabilization and H2/H∞ control [2]. Also,

nonlinear control problems in a polynomial field can often

be written as polynomial optimisation programs: Given a set

of polynomials f0(x), f1(x), . . . , fm(x) (their coefficients are

given) with x ∈ R
n and the vector b ∈ R

m we aim to solve

min
y

〈b, y〉,

subject to f0(x) +

m∑

i=1

yifi(x) ≥ 0, ∀x ∈ R
n.

(3)

Even though the nonnegativity constraint in (3) is convex,

the program is infinite dimensional due to the dependence

on x. Therefore, a tractable sum-of-squares relaxation of the

nonnegative constraint is typically used. Given x ∈ R
n, a

polynomial p(x) of degree 2d is called a sum-of-squares (SOS)

polynomial if it can be written into a sum of squares of other

polynomials of degree no greater than d. It is known ([24],

[25]) that p(x) admits an SOS decomposition if and only if

there exists Q ∈ S
N
+ with N =

(
n+d
d

)
such that

p(x) = vd(x)
TQvd(x), (4)

where vd(x) is a vector of monomials of degree no greater than

d. Replacing the nonnegative constraint with an SOS constraint

yields the following optimisation program:

min
y

〈b, y〉,

subject to vd(x)
TQvd(x) =

f0(x) +

m∑

i=1

yifi(x), ∀x ∈ R
n,

Q ∈ S
N
+ ,

(5)

where the constraints imply that f0(x) +
∑m

i=1 yifi(x) is

an SOS polynomial. Matching the coefficients on both sides

polynomial equality leads to a set of linear equality constraints

on Q and y, and we obtain an SDP of the form (2) with

additional free variables.

C. Factor Width of Positive Semidefinite Matrices

It is well-known that small and medium-sized SDPs can

be solved up to an arbitrary accuracy in polynomial time via

interior point methods [1]. However, as the size of the PSD

cone N in (2) increases, the current state-of-the-art interior

point algorithms become impractical in terms of memory

requirements, computational burden or numerical accuracy. In

the recent work [17] it was proposed to speed up semidefinite

and SOS optimisation by replacing the PSD cone by a cone of

factor-width-two matrices. This work is based on the following

definitions from [18].

Definition 2: A matrix X ∈ S
N
+ belongs to the class of

factor-width-k matrices (denoted as FWN
k ) if and only if

X =
s∑

i=1

eTi Xiei, with Xi ∈ S
k
+, ei ∈ Tk,

where Tk is a collection of matrices ei ∈ R
k×N with every row

having only one non-zero element equal to one, the columns

being orthonormal, and s =
(
N
k

)
.



The matrices ei can be seen as a decomposition basis for

the matrix X . It can be shown that a dual (with respect to

the trace inner product) set to FWN
k can be characterised as

follows

(FWN
k )∗ = {Z ∈ S

N |eiZeTi ∈ S
k
+, ∀ei ∈ Tk}.

One can also show that the following hierarchy of inner and

outer approximations of SN+ holds:

FWN
1 ⊂FWN

2 ⊂ . . . ⊂ FWN
N = S

N
+ =

(FWN
N )∗ ⊂ . . . ⊂ (FWN

2 )∗ ⊂ (FWN
1 )∗.

Replacing S
N
+ in (2) with FWN

k leads to a restriction with

multiple k × k PSD cones. In particular, the factor-width-two

matrices can be written as

X =

N−1∑

i=1

N∑

j=i+1

ET
ijXijEij , with Xij ∈ S

2
+,

where the matrices Eij are defined as in Section II-A with

α = {1, . . . , 1} and p = N . The constraints Xij ∈ S
2
+ can be

equivalently written as second-order cone constraints, which

can be solved much faster compared to solving SDPs. This

fact has been used to solve large-scale SOS programs in [17].

However, the solution from FWN
2 might be very conservative.

As was pointed out in [17], increasing the factor width may

reduce the degree of conservatism, but this requires working

with a combinatorial number
(
N
k

)
of PSD cones of size k×k,

which is not practical.

III. BLOCK FACTOR-WIDTH-TWO MATRICES

A. Block factor-width-two matrices

In this section, we introduce the class of block factor-width-

two matrices, which is less conservative than FWN
2 and more

scalable than FWN
k (k ≥ 3).

Definition 3: We say that α = {k1, . . . , kp}-partitioned

matrix X ∈ S
N belongs to the class FWN

α,2 if and only if

X =

p−1∑

i=1

p∑

j=i+1

ET
ijXijEij ,

where Xij ∈ S
ki+kj

+ and Eij are defined in (1).

It is straightforward to show that the set FWN
α,2 is a cone

with a non-empty interior, which is also:

• convex: for any X,Y ∈ FWN
α,2, 0 ≤ θ ≤ 1, we have

that θX + (1− θ)Y ∈ FWN
α,2,

• salient: for any nonzero X ∈ FWN
α,2, −X 6∈ FWN

α,2,

• pointed: the zero matrix is in FWN
α,2.

We will show in what follows that this cone is additionally

closed, which makes it a proper cone (closed, convex, pointed,

salient cone with non-empty interior).

The main difference with the definition of factor-width-two

matrices comes in the partition α, which dictates the sizes of

Xij’s and Eij ’s, as well as their number. The number of basis

matrices Eij is the same as in the case when we treat every

block Xij as a scalar and apply the factor width decomposition

to it. In our definition, we have a fixed partition α and a

fixed “block factor-width”, which is equal to two. In order to

create a hierarchy of approximations of S
N
+ we can increase

the “block factor-width”, which means increasing the number

of basis matrices Eij . However, we can also build a hierarchy

based on the partition coarsening, which reduces the number

of basis matrices Eij .

Theorem 1: Given α = {k1, . . . , kp}, β = {k̃1, . . . , k̃q} and

α ⊒ β, we have the following inclusion:

FWN
2 = FWN

1,2 ⊂ FWN
β,2 ⊂ FWN

α,2 ⊂

FWN
1,maxi6=j{ki+kj} ⊂ FWN

{K1,K2},2 = S
N
+ ,

where 1 = {1, 1, . . . , 1}, K1, K2 are positive integers and

K1 +K2 = N .

Proof. First, FWN
2 = FWN

1,2, FWmaxi6=j{ki+kj} ⊂

FWN
{K1,K2},2 = S

N
+ hold by definition. Furthermore,

FWN
α,2 ⊂ FWN

1,maxi6=j{ki+kj} is true since in the decom-

position for FWN
α,2 we use PSD matrices of dimension at

most maxi6=j{ki + kj}.

In order to prove FWN
β,2 ⊂ FWN

α,2 it suffices to

consider the case β = {k1, . . . , kp−1, kp, kp+1}, α =
{k1, . . . , kp−1, kp + kp+1}. Let Eβij for i, j = 1, . . . , p + 1
be the decomposition basis for the β-partition and Eαij for

i, j = 1, . . . , p be the decomposition basis the α-partition. By

the premise, there exist Xij ∈ S
ki+kj

+ such that:

X =

p∑

i=1

p+1∑

j=i+1

ET
βijXijEβij =

p−1∑

i=1

p−1∑

j=i+1

ET
βijXijEβij+

p−1∑

i=1

ET
βipXipEβip +

p∑

i=1

ET
βi(p+1)Xi(p+1)Eβi(p+1).

We need to construct X̃ij so that X is decomposed as:

X =

p−1∑

i=1

p∑

j=i+1

ET
αijX̃ijEαij . (6)

Since the first p − 1 blocks in both partitions are the same,

we have that Eαij = Eβij and X̃ij = Xij for all i, j < p.

Therefore, in order to obtain the decomposition (6), it remains

to construct X̃ip for i = 1, . . . , p− 1 such that

p−1∑

i=1

ET
αipX̃ipEαip =

p−1∑

i=1

ET
βipXipEβip+

p∑

i=1

ET
βi(p+1)Xi(p+1)Eβi(p+1). (7)

Consider the matrices Xij for i < p and j = p, p+1 and split

them according to the partition

Xij =

(
X11

ij X12
ij

X12
ij X22

ij

)
,



where X11
ij ∈ S

ki

+ , X12
ij ∈ R

ki×kj , X22
ij ∈ S

kj

+ . It can be

verified by direct computation that the identity (7) holds if

X̃ip for i < p are chosen as follows:

X̃ip =



0 0 0
0 X11

p(p+1) X12
p(p+1)

0 X12
p(p+1) X22

p(p+1)


 1

p− 1
+




X11

i(p+1) 0 X12
i(p+1)

0 0 0
X12

i(p+1) 0 X22
i(p+1)



+




X11

ip X12
ip 0

X12
ip X22

ip 0
0 0 0



 .

Thus we complete the proof.

Example 1: Consider the following PSD matrix

X =




6 8 −2 −2
8 16 1 1
−2 1 10 −1
−2 1 −1 24


 .

It can be verified that X ∈ FW4
β,2 for the partition β =

{1, 1, 1, 1} and the matrices in the decomposition can be

chosen as follows:

X12 =

(
4.5 8
8 14.5

)
, X13 =

(
1 −2
−2 6

)
, X23 =

(
1 1
1 2

)
,

X14 =

(
0.5 −2
−2 12

)
, X24 =

(
0.5 1
1 6

)
, X34 =

(
2 −1
−1 6

)
.

If we collapse the last two entries into a block and obtain the

partition α = {1, 1, 2}, then we can use the constructions in

Theorem 1 in order to obtain the matrices X̃12 = X12,

X̃13 =




1.5 −2 −2
−2 7 −0.5
−2 −0.5 15



 , X̃23 =




1.5 1 1
1 3, −0.5
1 −0.5 9



 .

The matrices X̃12, X̃13, X̃23 are PSD, which shows that X ∈
FW4

α,2.

We can also describe a dual set of matrices to FWN
α,2

matrices (with respect to the trace inner product), which

creates an outer approximation hierarchy for the cone S
N
+ .

Corollary 1: The dual to FWN
α,2 with respect to the trace

inner product is defined as:

(FWN
α,2)

∗ = {Z ∈ S
N |EijZET

ij ∈ S
ki+kj

+ , ∀1 ≤ i < j ≤ p}.

Furthermore, let α = {k1, . . . , kp} and β = {k̃1, . . . , k̃q},

α ⊒ β, then we have the following inclusions:

(FWN
1,2)

∗ ⊃ (FWN
β,2)

∗ ⊃ (FWN
α,2)

∗ ⊃

(FWN
1,maxi6=j{ki+kj})

∗ ⊃ (FWN
{K1,K2,},2)

∗ = S
N
+ ,

where K1, K2 are positive integer and K1 +K2 = N .

Proof. The proof of the first part follows after noticing

that for any matrix Z ∈ S
N such that EijZET

ij ∈ S
ki

+ for

all 1 ≤ i < j ≤ p, and for any matrix X ∈ FWN
α,2,

we have trace(XZ) ≥ 0. The proof of the second part is

straightforward.

Remark 1: Using the terminology in [26] the cone

(FWN
α,2)

∗ is a partially separable cone, which ensures that

its dual is FWN
α,2 and (FWN

α,2)
∗ is a proper cone.

The major difference between our hierarchy of FWN
α,2

and the hierarchy of FWN
k is the number of basis matrices,

which in our case is substantially lower due to two reasons:

We use factor-width-two generalisations and we coarsen the

partitions. Therefore the number of basis matrices is equal

to p(p − 1)/2 for α = {k1, . . . , kp}, and as we make a

partition coarser the number p and hence the number of basis

matrices decreases. We note however that the set FWN
3 is not

contained in FWN
α,2 for p > 2. This is because FWN

3 contains

all possible combinations of ei’s as the basis vectors (read

all possible partitions). In contrast, FWN
α,2 will not consider

certain choices of partitions. Therefore, our approach has a

particular advantage in applications where partitions come as

a natural property of the problem.

B. Applications to SDPs in the Standard Primal Form

The main idea is to replace the cone S
N
+ with FWN

α,2 or its

dual in order to obtain a restriction of the original program.

Consider a restriction of (2), where we assume the matrix X
is partitioned according to α = {k1, . . . , kp},

min
X

〈C,X〉,

subject to 〈Ai, X〉 = bi, i = 1, . . . ,m

X ∈ FWN
α,2.

(8)

This program can be cast in the SDP form as follows:

min
Xlj

p−1∑

j=1

p∑

l=j+1

〈EljCET
lj , Xlj〉,

subject to

p−1∑

j=1

p∑

l=j+1

〈EljAiE
T
lj , Xlj〉 = bi, i = 1, . . . ,m

Xlj ∈ S
kl+kj

+ , 1 ≤ j < l ≤ p.
(9)

which is amenable for a straightforward implementation in

standard SDP solvers such as SeDuMi [27], MOSEK [28]

or SCS [11]. This program has the same number of equality

constraints as (2), but the number and the dimensions of PSD

constraints are different. We can also perform a relaxation

of (2) by replacing X ∈ S
N
+ by X ∈ (FWN

α,2)
∗. We will not

discuss the relaxation in detail since we focus on the restriction

of the primal SDP.

IV. NUMERICAL EXAMPLES

In our numerical examples, we used YALMIP [29] in order

to reformulate the polynomial optimisation program into a

standard SDP and we solve the SDPs using MOSEK [28]1

1Code is available via https://github.com/zhengy09/SDPfw.

https://github.com/zhengy09/SDPfw


TABLE I
COMPUTATIONAL RESULTS FOR AN SDP PARTITION IN SECTION IV-A

n
Full
SDP

Number of Partitions in SDP Variables
4 10 20 50

Computational Time (seconds)

10 2.38 1.43 1.29 1.28 1.49

15 27.3 23.3 15.6 10.1 5.36

20 489 252 98.1 66.8 28.1

25 ∞ 1.97 · 103 7.83 · 102 5.71 · 102 1.32 · 102

30 ∞ ∞ 5.68 · 103 3.71 · 103 8.4 · 102

Objective values

10 −0.9 −0.45 134 483 2.12 · 103

15 −0.92 −0.75 80.1 459 2.24 · 103

20 −0.87 −0.87 −0.11 251 1.91 · 103

25 ∞ −1.07 −0.21 231 1.36 · 103

30 ∞ ∞ −0.37 177 1.77 · 103

Sizes of SDP Constraints

10 66 32 − 34 12− 14 6− 8 2− 4

15 136 68 26− 28 12− 14 4− 6

20 231 114 − 116 46− 48 22− 24 8− 10

25 351 174 − 176 70− 72 34− 36 14− 16

30 496 248 98− 100 48− 50 18− 20

A. Polynomial Optimisation

We consider the polynomial optimisation problem:

min
γ

− γ

subject to q(x) − γ ≥ 0, ∀x ∈ R
n,

(10)

where

q(x) = ((3− 2x1)x1 − 2x2 + 1)2+

+

n−1∑

i=2

((3− 2xi)xi − xi−1 − 2xi+1 + 1)2+

+ ((3 − 2xn)xn − xn−1 + 1)2 +

(
n∑

i=1

xi

)2

.

We added the last term, so that the problem does not enjoy the

structure exploited by the methods in [12], [13]. We vary n
and obtain different semidefinite optimisation problems in the

standard primal form with constraints of different sizes listed

in Table I.

We partition the SDP as discussed in Section III-B. We fix

the partition size p and we choose the size of the blocks as

the closest integers to N/p, where N is the size of the SDP

constraint. In particular, if k1 ≤ N/n ≤ k2, then we pick the

maximum number of blocks of size k1 and the rest of size k2.

The number of SDP constraints, as discussed above is equal to

p(p−1)/2. Note that the number of linear constraints remains

the same as in the full SDP.

We present the computational times and the objective values

in Table I. It noticeable that with a finer partition we obtain

faster solutions, which are, however, conservative in terms of

the objective function. Fine partitions may be very useful for

feasibility programs, while coarse partitions are competitive

for large SDPs, where the value of the objective function

is important. Note that for large-scale instances n ≥ 25,

MOSEK ran out of memory on our machine. On the other

hand, our strategy of using block factor-with-two matrices can

still provide a useful upper bound for (10).

B. Matrix Sum-of-Squares Programming

In our second example, we show that there exists a natural

partition α in the case of the matrix-vision of SOS programs.

Indeed, consider a polynomial matrix constraint:

P (x) =




p11(x) p12(x) . . . p1n(x)
p21(x) p22(x) . . . p2n(x)

...
...

. . .
...

pn1(x) pn2(x) . . . pnn(x)


 � 0, ∀x ∈ R

m.

Treating this constraint directly is intractable and the usual

technique is the SOS-relaxation, which results in the following

reformulation [30]

P (x) = (In ⊗ vd(x))
TQ(In ⊗ vd(x)), ∀x ∈ R

m (11)

Q � 0, (12)

where the constraint (11) is actually a linear constraint linking

the coefficients of P (x) with the matrix Q. The SOS programs

are known to suffer from the curse of dimensionality, in

particular, the size of Q grows combinatorially when we vary

both m and d. Therefore, another technique was proposed

in [17], which replaces the constraint (12) with

P (x) = (In ⊗ vd(x))
TQ(In ⊗ vd(x)), ∀x ∈ R

m (13)

Q ∈ FWN
2 . (14)

Now instead of the large semidefinite constraint we are dealing

with a large number of 2 × 2 PSD constraints, which can

actually be cast as second order cone constraints.

In addition, we can address this problem by replacing the

constraint (12) with Q ∈ FWN
α,2 with a natural choice of α.

In particular, we assume that P (x) ∈ FWn
2 for every x ∈ R

n

resulting in the decomposition

P (x) =

p−1∑

i=1

p∑

j=i+1

ET
ijPij(x)Eij , Pij(x) � 0,

and only then use the SOS relaxation on the polynomial

matrices Pij(x) of the dimension 2 × 2. In order to avoid

the question of existence of such decompositions, we restrict

the search of P (x) to the following set of constraints:

P (x) =

p−1∑

i=1

p∑

j=i+1

ET
ijPij(x)Eij , Pij(x) is SOS.

Some rudimentary linear algebra results in the following

reformulation of the PSD constraints:

P (x) = (In ⊗ vd(x))
TQ(In ⊗ vd(x)), ∀x ∈ R

m, (15)

Q ∈ FWN
α,2, (16)

where α is pre-determined.



TABLE II
COMPUTATIONAL RESULTS FOR SECTION IV-B

Computational time
n 20 25 30 35 40 45 50

SOS 5.28 14.4 35.9 87.2 175.0 316.0 487.8

FWα,2 7.90 10.8 16.6 25.3 36.0 57.4 71.4

FW2 1.04 1.1 1.3 1.6 2.1 2.6 3.3

Objective value

SOS 149.0 266.5 316.2 460.8 562.0 746.9 919.8

FWα,2 149.0 266.5 316.2 460.8 562.0 746.9 919.8

FW2 154.4 270.3 324.8 477.7 570.9 762.2 961.7

Using the FWN
α,2 restriction provides with a larger set of

solutions than FWN
1,2. For example, the polynomial matrix:

P (x) =




4x2 + 9y2 + 0.315 x+ y x+ y

x+ y 9x2 + 4y2 + 0.315 x+ y

x+ y x+ y x2 + 25y2 + 0.315





satisfies the constraints (15, 16), but does not satisfy the

constraints (13, 14).

We further test our approach on the following program:

max
P (x),γ

γ

P (x)− γI ∈ S
n
+, ∀x ∈ R

3,
(17)

where every entry of P (x) is a random polynomial of degree

two in three variables, and we vary the dimension of P (x). The

computational results are depicted in Table II. Our restriction

offers faster computational solutions with almost the same

optimal objectives compared to the standard SOS technique,

while the technique [17] provides even faster solutions, but

their quality is worse.

V. CONCLUSION AND DISCUSSION

We introduced a novel class of matrices and presented a

hierarchy of inner and outer approximations of the cone of

positive semidefinite (PSD) matrices. Both inner and outer

approximations are proper cones and enjoy useful duality

relations, furthermore, the inclusion certificates for these cones

is a set of PSD constraints smaller than the size of the

matrix. This allows deriving a hierarchy of scalable relaxations

and restrictions of semidefinite programs (SDPs). The inner

approximations (cones FWN
α,2) are built by partitioning the

matrix into a non-intersecting set of entries. It is not entirely

clear at the moment how to build “the best” partition in

terms of the solution of the particular SDP. However, in some

problems, the partition comes naturally from the problem for-

mulation, e.g., the matrix-version of SOS programs discussed

in Section IV-B. Our numerical experiments suggest that these

hierarchies can be used for dense large-scale SDPs, which arise

in SOS programming.

Our future work will investigate the consequences of block

factor-width-two matrices in relevant control applications that

involve SDPs. Also, it would be interesting to incorporate the

properties of block factor-width-two matrices in the develop-

ment of first-order algorithms (e.g., the solvers [11], [6]) for

solving general SDPs.
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