
Chordal Decomposition in Rank Minimized Semidefinite Programs with
Applications to Subspace Clustering

Jared Miller1, Yang Zheng2, Biel Roig-Solvas1, Mario Sznaier1, Antonis Papachristodoulou3

Abstract— Semidefinite programs (SDPs) often arise in re-
laxations of some NP-hard problems, and if the solution of the
SDP obeys certain rank constraints, the relaxation will be tight.
Decomposition methods based on chordal sparsity have already
been applied to speed up the solution of sparse SDPs, but
methods for dealing with rank constraints are underdeveloped.
This paper leverages a minimum rank completion result to
decompose the rank constraint on a single large matrix into
multiple rank constraints on a set of smaller matrices. The
reweighted heuristic is used as a proxy for rank, and the
specific form of the heuristic preserves the sparsity pattern
between iterations. Implementations of rank-minimized SDPs
through interior-point and first-order algorithms are discussed.
The problems of maxcut and subspace clustering are used to
demonstrate the computational improvement of the proposed
method.

I. INTRODUCTION

Semidefinite programs (SDPs) are a class of convex op-
timization problems that minimize a linear functional of a
positive semidefinite (PSD) matrix under linear constraints.
SDPs often arise as relaxations of some NP-hard problems,
such as binary optimization, optimal power flow, and max-
cut problems [1], [2]. In addition, polynomial optimization
is generically NP-hard, and Lasserre has demonstrated a
hierarchy of SDPs that can approximate the true global
optimum [3]. Subspace clustering is an NP-hard algorithm
that groups points originating from a union of subspaces and
admits an SDP relaxation [4].

In each of these cases, the SDP relaxation is able to return
the same optimum as the original NP-hard problem if the
solution satisfies certain rank conditions. For example, max-
cut problems and optimal power flow problems require rank
one solutions [5]. Global optima can be extracted from the
Lasserre hierarchy only if certain rank conditions are met [6].
Subspace clustering is a polynomial optimization problem
that requires a rank one solution [4]. All of examples desire
a low rank solution, and the path to find this solution can be
formulated as a rank-constrained SDP:

min
X

〈C,X〉

subject to 〈Ai, X〉 = bi, i = 1, . . . ,m,

X ∈ Sn+, rank(X) ≤ t,
(1)

1J. Miller, B. Roig-Solvas and M. Sznaier are with the ECE
Department, Northeastern University, Boston, MA 02115. (Emails:
miller.jare@husky.neu.edu, biel@ece.neu.edu, msznaier@coe.neu.edu).

2Y. Zheng was with the Department of Engineering Science, University
of Oxford. He is now with the School of Engineering and Applied Sciences,
and also with the Harvard Center for Green Buildings and Cities, Harvard
University, Cambridge, MA 02138. (Email: yang.zheng@gsd.havard.edu).

3A. Papachristodoulou is with the Department of Engineering Science,
University of Oxford, Oxford, UK OX1 3PJ. (Email: antonis@eng.ox.ac.uk).

where 〈M,N〉 = Tr(MTN) is an inner product and
C,A1, . . . , Am ∈ Sn, b ∈ Rm, and t ∈ N are problem data.
Throughout this work, Rm is the m-dimensional Euclidean
space, Sn is the space of n×n symmetric matrices and Sn+is
the subspace of symmetric PSD matrices.

While the rank-constrained SDP in (1) is in general an
NP-hard problem, a great deal of interest has been put
in developing tractable rank proxies. Matrix factorization
(i.e., X = Y Y T) is a popular nonconvex method that
upper bounds the possible rank by the width of Y , and
Burer-Monteiro results may ensure a global optimality after
curvilinear optimization on the low-rank manifold [7], [8].
Variable splitting can also be employed through nonconvex
ADMM (e.g., X = LRT , L = R) [9], which is vulnerable
to the nonconvexity and pathological geometry of the low-
rank manifold. Projection onto this manifold in intermedi-
ate iterations is computationally tractable and may lead to
substantial speedup, but even with convergence guarantees
the nonconvexity of the rank constraint may lead to the
wrong solution [10]. Several convex relaxations of the rank
constraint have been developed, one of the most popular
being the nuclear norm. The nuclear norm ‖X‖∗ is the
sum of the singular values of X , and ‖X‖∗ = Tr(X) if
X ∈ Sn+ [11]. The nuclear norm is the biconjugate of the
rank function, and under certain restricted isometry property
(RIP)/coherence conditions, the nuclear norm-minimized so-
lution of an SDP is equivalent to the rank-minimal optimum
[12]. RIP/coherence holds only in a very narrow set of
problems, since the nuclear norm on singular values weight
all contributions equally. One approach to avoid this is the
weighted nuclear norm that penalizes each singular value
differently [13]. The reweighted heuristic is a linearization of
log-det, and adds a penalty of Tr(WtX) instead of the normal
nuclear norm Tr(X), where Wt = (X + δI)−1 updates at
each iteration [14]. We note that some recent work on the r∗
norm offers convex relaxations where the parameter r more
directly encourages rank(X∗) ≈ r, at the expense of more
complicated SDP representations [15].

It is known that the complexity of solving SDPs scales
in a polynomial time w.r.t. number of variables and con-
straints, and the addition of rank penalties and heuristics may
further increase this complexity. For large-scale instances,
exploitation of structure and sparsity is vital to speed up
computation. In sparse cases, only a small subset of entries
of X are used in the cost C and constraints Ai. All other
entries only need to guarantee that X is PSD. When the
sparsity pattern spanned by the used entries is or can be
extended to a chordal graph, chordal decomposition theory

ar
X

iv
:1

90
4.

10
04

1v
1

 [
m

at
h.

O
C

]
 2

2
A

pr
 2

01
9

can break up a large PSD constraint (X � 0) into a set of
smaller and coupled PSD constraints (Xk � 0) [16]. Taking
advantage of this structure rapidly speeds up computational
time, as the complexity of optimization problems is related
to the tree-width of the underlying graph [17]. Chordal
decomposition of SDPs can effectively reduce dimension of
sparse problems; see, e.g., [16], [18], [19], [20] for details.

After performing the chordal decomposition and optimiz-
ing over a reduced set of variables, there exist multiple
methods of matrix completion to generate a valid X∗. One
such choice is the minimum rank completion [21], in which
the minimal possible rank of the completion X is the
maximal rank among the blocks Xk. Numerical rounding on
the eigenvalues of Xk has already been used to reduce rank
of X , but the next step to penalize the rank of Xk was not
considered in the literature [22]. Minimum rank completions
over linear matrix inequalities with general graphs has been
performed in the context of optimal power flow, but few
details were mentioned about the mechanism for penalizing
the rank of tree components [23].

In this paper, we combine minimal rank completion and
the reweighted heuristic to effectively solve large-scale rank-
constrained SDPs. We first use the minimal rank completion
result to derive an equivalent reformulation of the rank-
constrainted SDP (1) with chordal sparsity. One key feature
is that the PSD and rank constraints on a single big matrix are
equivalently replaced by a set of PSD constraints and rank
constraints on multiple smaller matrices. The reweighted
heuristic is then used to relax the rank constraints, which
simply adds a penalty term to the objective function. We
show that the resulting SDP relaxation for each iteration of
the reweighted heuristic preserves the sparsity pattern of the
original problem. This fact allows us to take advantage of
normal chordal decomposition in both interior-point meth-
ods [18] and first-order methods [19] to greatly speed up the
solution of sparse instances. We apply the proposed method
to solve subspace clustering problems, which demonstrates
the computational improvements.

The rest of this paper is structured as follows. Section II
introduces chordal graphs, sparse matrices, and the minimum
rank completion problem. In section III, we present an equiv-
alent reformulation of (1). Implementations in interior-point
methods and first-order methods are discussed in section IV.
These algorithms are used in section V to solve MaxCut
and subspace clustering problems. Section VI concludes the
paper.

II. PRELIMINARIES

In this section, we cover some preliminaries on chordal
graphs, sparse PSD matrices, as well as minimum rank
completion. For a comprehensive treatment, the interested
reader is referred to [16].

A. Chordal graphs

An undirected graph G(V, E) is defined by a set of vertices
V = {1, 2, . . . , n} and edges E ∈ V × V . A cycle of length
N is a set of nodes vk such that (v1, v2), (v2, v3) . . . (vi, vi+

1 2 3 4

(a)

2

1 4

3

(b)

Fig. 1. Examples of chordal graphs: (a) a path graph; (b) a triangulated
graph (with dashed edge). Without the dashed edge there is a cycle of length
4 without a chord, so the graph is not chordal.

1) . . . (vN−1, vN), (vN , v1) ∈ E , and all vertices vk are
unique. A chord is an edge that connects two nonconsecutive
nodes in a cycle, which therefore breaks a large cycle
into smaller cycles, e.g., (v3, v7). An undirected graph is
chordal if all cycles of length four or more have at least
one chord [16]. The chordal extension Gc(Vc, Ec) of graph
G(V, E) is a chordal graph Gc where V = Vc and E ⊆ Ec,
and any non-chordal graph can be extended to be chordal.
Finding a chordal extension with a minimal number of added
edges is NP-hard, but efficient heuristics exist to give good
chordal extensions [24].

A clique C with cardinality |C| is a subset of vertices in
V that form a complete subgraph: ∀vi, vi ∈ C, (vi, vj) ∈ E .
A maximal clique is a clique not contained inside another
clique. Finding the set of all maximal cliques is NP-hard for
general graphs, but can be computed on chordal graphs in
linear time. Two common chordal graphs are demonstrated
in Fig. 1, where the graph in Fig. 1(a) has maximal cliques
Ci = {i, i + 1}, i = 1, 2, 3, and the graph in Fig. 1(b) has
maximal cliques C1 = {1, 2, 3} and C2 = {2, 3, 4}.

B. Sparse matrices and chordal decomposition

Considering the SDP (1), graph G(V, E) arises from stack-
ing up all the (C,Ai) and treating this as an adjacency
matrix. Let E∗ = E ∪ {(i, i),∀i ∈ V} be the edge set with
self loops. We define a set of sparse symmetric matrices as:

Sn(E , 0) = {X ∈ Sn | Xij = 0, ∀(i, j) 6∈ E∗},
Sn+(E , 0) = S(E , 0) ∩ Sn+

Sn+(E , 0) forms a cone of sparse PSD matrices that can be
nonzero only at specified entries defined by graph G(V, E).
The dual cone Sn+(E , 0)∗ = Sn+(E , ?), which is the set of
matrices that can be completed to be PSD:

Sn+(E , ?) = {X ∈ Sn(E , ?) |∃M ∈ Sn+,
Xij = Mij ∀(i, j) ∈ E∗ }

Note that such a completion is not usually unique, as there
may be multiple M associated to each X . For chordal
graphs, Sn+(E , ?) can be equivalently decomposed into a set
of smaller but coupled convex cones:

Theorem 1 (Grone’s Theorem [25]): Let G(V, E) be a
chordal graph with a set of maximal cliques {C1, C2, . . . , Cp}.
Then, X ∈ Sn+(E , ?) if and only if

ECkXE
T
Ck ∈ S|Ck|+ , k = 1, . . . , p.

In Theorem 1, ECk are 0/1 entry selector matrices that
index out components of X involved in clique Ck. Grone’s

theorem provides a set equivalence Sn+(E , ?) =
∏p
k=1 S

|Ck|
+

modulo overlaps between cliques, breaking a large PSD cone
into a host of smaller PSD cones and equality constraints.
This fact underpins the idea of much work that exploits
sparsity in large-scale SDPs [16], [18], [19], [20], [26].

C. Minimum rank completion

Given X ∈ S+(E , ?), many choices of PSD completions
are available after determining Xk = ECkXE

T
Ck , two of

which are the maximum determinant completion and min-
imum rank completion. There exists a unique completion
with maximum determinant with an explicit formula [27].
Minimum rank completions are not necessarily unique:

Theorem 2 (Minimum rank completion [21]): Given a
chordal graph G(V, E) with a set of maximal cliques
{C1, C2, . . . , Cp}, for any X ∈ Sn+(E , ?), there exists
at least one minimum rank PSD completion, where
rank(X) = maxk rank(ECkXE

T
Ck).

A procedure to perform minimum rank completion is
Algorithm 3.1 in [22], which updates a factorization of the
completion while proceeding through the elimination tree.
We conclude this section with the following example:

X =

3 0.5 ? 0.25

0.5 2 0.75 ?
? 0.75 1 ?

0.25 ? ? 5

 , (2)

where ? denotes elements that need to be filled in. In this
case, the sparsity pattern of X is a 4-length path graph
(see Fig. 1), which is chordal with maximal cliques C1 =
{1, 2}, C2 = {1, 4}, C3 = {2, 3}. It is easy to verify that

ETC1XEC1 =

[
3 0.5

0.5 2

]
∈ S2

+,

and that the principal submatrices corresponding to C2 and
C3 are PSD. Then, Thereom 1 guarantees that X is PSD
completable. Also, since we have max |Ci| = 2, Theorem 2
guarantees that there exists a PSD completion of rank exactly
two as follows

X∗ =

3 0.5 −1.25 0.25

0.5 2 0.75 −3.05
−1.25 0.75 1 −1.65
0.25 −3.05 −1.65 5

 .
III. CHORDAL DECOMPOSITION IN SPARSE SDPS WITH A

RANK CONSTRAINT

In this section, we first introduce a chordal decomposition
approach in sparse SDPs with a rank constraint by combining
Theorems 1 and 2. Then, we discuss the application of
nuclear norm relaxations to the decomposed problem.

A. An equivalent reformulation

Let the rank constrained SDP (1) be sparse with an aggre-
gate sparsity pattern described by graph G(V, E), meaning
that C ∈ Sn(E , 0), Ai ∈ Sn(E , 0), i = 1, . . . ,m. Throughout
this paper, we assume that the aggregate sparsity pattern
G is chordal (otherwise, a suitable chordal extension can

be found) with a set of maximal cliques C1, ..., Cp. Then,
combining Grone’s theorem (Theorem 1) with the minimum
rank completion theorem (Theorem 2), leads to the following
observation:

Proposition 1: Suppose that Problem (1) is feasible and
the problem data has an aggregate sparsity pattern G(V, E).
Then, (1) is equivalent to the following reformulation

min
X,Xk

〈C,X〉

subject to 〈Ai, X〉 = bi, i = 1, . . . ,m,

Xk = ECkXE
T
Ck , k = 1, . . . , p,

Xk ∈ S|Ck|+ , k = 1, . . . , p,

rank(Xk) ≤ t, k = 1, . . . , p,

(3)

in the sense that (1) and (3) have the same cost value, and
their optimal solutions can be mutually recovered.

Proof: Thanks to the aggregate sparsity pattern, the cost
function and the equality constraints in (1) depend only on
the elements Xij with (i, j) ∈ E∗. The PSD constraint X ∈
Sn+ in (1) can be equivalently replaced by a PSD completable
constraint X ∈ Sn+(E , ?).

The rest of proof directly follows the application of
Theorems 1 and 2 to (1). We denote the optimal cost values
to (1) and (3) as f∗1 and f∗2 respectively.
• First, assume we find an optimal solution X∗1 to (1) with

an optimal cost value f∗1 = 〈C,X∗1 〉 and rank(X∗1) ≤ t.
Then, the solution X∗1 is also a feasible solution to (3).
It means that f∗2 ≤ f∗1 .

• Second, assume we find an optimal solution X∗2 to (3)
with an optimal cost value f∗2 = 〈C,X∗2 〉. Then, accord-
ing to Theorems 1 and 2, we can find a PSD completion
X̂∗2 , where rank(X̂∗2) = maxk rank(ECkX

∗
2E

T
Ck) ≤ t.

Thus, the PSD completion X̂∗2 is a feasible solution to
(3), indicating that f∗1 ≤ f∗2 .

Combining these facts, we know f∗1 = f∗2 , and the optimal
solutions to (1) and (3) can be recovered from each other.

One key feature of problem (3) is that both the PSD
and rank constraints are only imposed on multiple small
symmetric matrices of smaller dimension rather than on the
single large symmetric matrix. The minimum rank comple-
tion automatically yields an upper bound on the minimized
full matrix rank according to maximum clique size.

B. Rank relaxations
In general, problem (3) is hard to solve due to the rank

constraints. One popular approach is to apply a nuclear norm
relaxation [11]. For PSD matrices, we have ‖X‖∗ = Tr(X).
In this paper, we replace the hard rank constraint with a soft
reweighted heuristic [14], leading to a standard SDP with
chordal sparsity:

min
X,Xk

〈C,X〉+

p∑
k=1

〈Wk, Xk〉

subject to 〈Ai, X〉 = bi, i = 1, . . . ,m

Xk = ECkXE
T
Ck ,

Xk ∈ S|Ck|+ ,∀ k = 1, . . . , p,

(4)

Algorithm 1 Chordal SDP with Reweighted Heuristic
1: procedure CHORDAL RANK
2: Wk ← I ∀ k = 1, . . . , p
3: while X not converged do
4: (X,Xk)← optimum of (4) given Wk

5: W̃k ← (Xk + δI)−1

6: Wk ← τkW̃k/‖W̃k‖2

where Wk is the weight matrix corresponding to clique Ck
that encourages low rank behavior.

As summarized in Algorithm 1, reweighted heuristic cal-
culates a new set of weights Wk at each iteration based
on the previous Xk. In general, the inner product between
Wk and Xk promotes the concentration of energy of Xk

onto the dominant eigenspace of Xk,old and thus incentivizes
the reduction of its rank. Weights Wk are normalized in
Algorithm 1, and τk is a per clique regularization parameter.
Reweighted heuristic is a local linearization of log-det and
will converge to a stationary point X∗, but X∗ will not in
general match the log-det penalty [14]. Fig. 2 demonstrates
the rank reduction behavior of Algorithm 1 on a Maxcut
problem with 1000 vertices (see Section V for details).

0 100 200 300 400 500 600 700

Clique k

0

5

10

15

20

25

30

35

R
a
n
k
 o

f
C

liq
u
e
 m

a
tr

ix

Rank of SDP after Reweighting

Round 1 (max=9)

Round 15 (max=4)

Clique Size (max=31)

Fig. 2. Example of reweighting heuristic (Algorithm 1) on a Maxcut
problem with 1000 vertices. There are 740 cliques with a maximum
|Cmax| = 31 (black dots). The maximum clique rank starts at 9 (blue),
and drops to 4 (orange) after 15 rounds of optimization. See Section V-A
for details, seed = 845.

IV. ALGORITHM IMPLEMENTATIONS

Problem (4) is convex and ready to solve by existing conic
solvers, e.g., SeDuMi or Mosek. However, a naive passing to
SeDuMi or Mosek does not scale well to large-scale intances.
Interior point methods such as SeDuMi will suffer from
additional equality constraints introduced from the chordal
decomposition. In this section, we modify Problem (4) to
exploit its structure for adaptation in both interior point
methods and first order methods.

A. Interior-point methods via SparseCoLO

Here, we show that Problem (4) also preserves the sparsity
pattern of (1). This can be observed by eliminating the

variables Xk, which leads to

min
X,Xk

〈C,X〉+

p∑
k=1

〈Wk, ECkXE
T
Ck〉

subject to 〈Ai, X〉 = bi, i = 1, . . . ,m,

X ∈ Sn+(E , ?).

(5)

Next, ECk can be transferred from the right side of the inner
product to the left side to find a weighted cost matrix:

〈C,X〉+

p∑
k=1

〈Wk, ECkXE
T
Ck〉

= 〈C,X〉+

p∑
k=1

〈ETCkWkECk , X〉

=

〈
C +

p∑
k=1

ETCkWkECk , X

〉
= 〈C +WC , X〉 ,

where WC =
∑p
k=1E

T
CkWkECk is the accumulated clique

weight. By construction, we know that WC ∈ Sn(E , 0).
Problem (4) is then equivalent to

min
X,Xk

〈C +WC , X〉

subject to 〈Ai, X〉 = bi, i = 1, . . . ,m,

X ∈ Sn+(E , ?).

(6)

It is easy to see that C + WC ∈ Sn(E , 0) and Ai ∈
Sn(E , 0), indicating that Problem (6) has exactly the same
aggregate sparsity pattern as that in (1). This sparsity pattern
can be ready to be exploited in SparseCoLO [28]. In partic-
ular, SparseCoLO uses range-space and domain-space (r and
d) conversion techniques to reduce the number of variables
needed to represent the problem while attaining an equivalent
optimum [28]. SparseCoLO will perform conversion routines
to generate a standard conic form that is suitable for standard
interior-point solvers, e.g., SeDuMi. Clique-tree decomposi-
tions may be used for r-space and d-space conversions, and
SparseCoLO typically tries to merge some small cliques into
a big one. WC and the minimum rank completion use cliques
generated by the chordal decomposition and extension, but
the choice is free.

In Algorithm 1, only the cost matrix C + WC changes
between reweighting iterations, so no repeat conversions are
necessary. The output X∗ will generally be full rank from
SparseCoLO. The low rank solution can be extracted by
indexing out and rounding the cliques X∗k and then forming
the minimal rank completion X∗r .

Remark 1: As shown in Proposition 1, Problems (1)
and (3) are equivalent. This tightness is lost when con-
ducting rank relaxations. One can also directly apply the
reweighted heuristic to Problem (1). Then, one need to
compute the inverse of a big matrix to update the weight
W = (X + δI)−1. In addition, as the inverse is generically
dense, the next iteration’s cost C + W would be dense
and the sparsity pattern would be destroyed. Instead, in
the proposed method, only the inverses of multiple small

matrices are required and the weight WC in (6) preserves the
sparsity structure. Reweighted heuristic on problems (1) and
(3) produce different weights W and WC , and the resulting
optima will not generally match as W 6= WC . We note that
using W in the formulation of (1) will still penalize rank,
but may settle at a high rank solution as the upper bound on
clique size is lost.

B. Alternating Direction Method of Multipliers (ADMM)

Following [19], [26], we can build an ADMM algorithm to
exploit the underlying structure (4) to obtain its solution. The
ADMM algorithm is able to take advantage of the variable-
split Xk = ECkXE

T
Ck from Theorem 1 to separate affine

and PSD constraints. Each iteration of ADMM has three
steps [29]: The affine constraints in X are handled in step
1, the PSD projection in Xk is form step 2, and step 3 is
the dual ascent on dual variables Λk to enforce the variable-
split. First order algorithms such as ADMM are vulnerable
to slow convergence, but have a relatively low per-iteration
cost.

Applying ADMM to (4), we need to solve the following
subproblems at each iteration t (with optional adjustment of
ρ between iterations following [29]):
• Step 1: Solve the following quadratic program (QP)

min
X
〈C,X〉+

ρ

2

p∑
k=1

∥∥∥∥X(t)
k − ECkXE

T
Ck +

1

ρ
Λ

(t)
k

∥∥∥∥2

F

〈Ai, X〉 = bi, i = 1, . . . ,m.
(7)

• Step 2: Project onto S|Ck|+ in parallel

min
Xk

Tr(WkXk) +
ρ

2

∥∥∥∥Xk − ECkX(t+1)ETCk +
1

ρ
Λ

(t)
k

∥∥∥∥2

F

Xk � 0.
(8)

• Step 3: Update the multipliers by dual ascent

Λ
(t+1)
k = Λ

(t)
k + ρ

(
X

(t+1)
k − ECkX(t+1)ETCk

)
.

The QP in step 1 can be solved by vectorizing all the
variables. Entry selection on the clique Ck can be replaced
by a matrix Hk where Hkvec(X) = ECkXE

T
Ck . Likewise

ai = vec(Ai) is collated into A and bi into b, c = vec(C),
and vk = vec(X

(t)
k + 1

ρΛ
(t)
k). Step 1 is vectorized into:

min
X

〈c, x〉+
ρ

2

p∑
k=1

‖Hkx− vk‖22

subject to Ax = b

(9)

The KKT system for the QP involves x and dual variable ω:[
D AT

A 0

] [
x
ω

]
=

[∑p
k=1H

T
k vk − c
b

]
Since each Hk is orthonormal, HT

k Hk is diagonal and
D =

∑p
k=1H

T
k Hk. The diagonal-offset lends itself nicely

to block elimination and precomputed factorization.

Step 2 involves parallel PSD projections:

min
Xk�0

Tr(WkXk) +
ρ

2
‖Xk − Vk‖2F

This minimization occurs by taking Mk = Vk − 1
ρWk and

then projecting Mk onto the PSD cone (setting all negative
eigenvalues of Mk to zero). If Wk = I , this procedure
is singular value thresholding [30]. Xk can be computed
through a full eigendecomposition of Mk or by power
methods where power/subspace iteration proceeds until a
zero or a negative eigenvalue is hit.

C. Homogoneous Self-Dual Embedding
Finally, we show that the reweighted heuristic for the

proposed decomposition also fits naturally into homoge-
nous self-dual embedding (HSDE) framework [31]. HSDE
combines the primal and dual problems together to al-
low for the identification of infeasible SDPs. Solutions of
chordally-sparse SDPs through HSDE have been already
implemented [20], which is based on the general conic
formulation introduced in [32]. Each iteration of HSDE
is comprised of a large block-sparse linear system call, a
projection onto a product of multiple cones, and a dual
update step (see [20], [32] for details).

If s is the concatenation of vec(Xk) and m is the concate-
nation of vec(Wk) across all cliques Ck, the linear system
in HSDE v = Qu is:

h
z
r
w
k

 =

−AT −HT c

I m
A −b
H −I
−cT −mT b

x
s
y
v
t

The only difference as compared to [20] is that in the rank-
unconstrained formulation, m = 0. m is the only varying
parameter (last column/row), and the large blocks of the
linear system remain identical between iterations.

V. NUMERICAL EXAMPLES

In this section, we demonstrate the performance of Al-
gorithm 1 to solve maxcut and subspace clustering: prob-
lems that each involves SDP relaxations with rank-one con-
straints. In our experiments, we solved the subproblem (4)
through a variety of solvers. Sedumi [33], SparseCoLO [28],
SDPT3 [34], and CDCS [35] are used for maxcut, and sub-
space clustering is tested on Mosek [36] using Yalmip [37].

A. Maxcut
Maxcut is an NP-hard problem that is standard for testing

SDPs [1]. Given a graph G(V, E) with N vertices where
edges eij ∈ V have weight wij , vertices in vi ∈ V are
partitioned into two groups (xi = ±1). A cut T (E is
a set of edges such that on each edge eij ∈ T : xi 6= xj .
The goal of Maxcut is to find a cut with maximal weight:

max
x

∑
(i,j)∈E

wij
1− xixj

2

subject to |xi| = 1.

Fig. 3. Execution time of Maxcut SDPs. Error bars are ± one standard
deviation over 5 iterations. SDPT3 with chordal regularization is fastest.

Edges only contribute to the cost function if xi 6= xj . Maxcut
can be equivalently rewritten as a rank-minimized SDP [5]

max
X

1

2
〈W,X〉

subject to Diag(X) = e,

X ∈ SN+ , rank(X) = 1.

Where e is the vector of all 1’s. If rank(X) = 1,
by definition X = xxT , and the vertex partition x can
be recovered from the solitary nonzero eigenvector. This
rank constraint is NP-hard, and methods such as Goemans-
Williamson hyperplane rounding based on the SDP relax-
ation are provably within 0.878 of the optimum cost [38].
In this SDP formulation, the matrices Ai each have only 1
nonzero entry on the main diagonal, and all other problem
structure comes from the Laplacian L. In the typical case
where the graph is sparse. the chordal decomposition can
remove redundant variables and provide rank guarantees
based on the minimum rank completion.

Data was synthesized through the maxCutSDP routine
in the SparseCoLO experiments section [28]. Between 10
and 1140 Points were placed on the unit square [0, 1]2

and connected with degree parameter 4. The maxcut SDPs
were run for 15 reweighting rounds with chordal regular-
ization Wk (sedumi, sparsecolo sedumi, sdpt3, cdcs) and
with nonchordal regularization W (sdpt3 no chord and se-
dumi no chord) (difference between Wk and W in 1). Data
is evaluated over 5 iterations (random seeds 2968, 1649,
845, 232, 1334), and all solvers have roughly equivalent
cost functions at optima. Maxcut experiments were run on
an Intel i7 6820HQ CPU on Matlab R2018a. The results
are shown in Fig. 3 and Fig. 4. GPU acceleration was not
fully utilized in this set of experiments, which especially hurt
CDCS (parallel nuclear norm updates). Parallelism will be
levereged for future experiments.

B. Subspace clustering

The problem of subspace clustering refers to the task of,
given a set of Np points xj ∈ RD ∀Np

j=1 sampled from Ns
subspaces, find the normals ri ∈ RD ∀Ns

i=1 of the sampled
subspaces [39]. Alternatively, it can be posed as finding

Fig. 4. Maxcut Rank± one standard deviation. With chordal regularization,
SeDuMi and SDPT3 produces the lowest rank solutions. Without chordal
regularization, SeDuMi produces extremely high rank solutions.

the set of binary labels si,j ∀Ns
i=1∀

Np

j=1 that assign each
point xj to the subspace spanned by the normal vector ri.
This problem arises in many practical applications, and in
particular, in systems theory, in the context of identification
of switched models from noisy input/output data (see e.g.,
[40], [41]), where each subspace normal is defined by the
coefficients of each switching system.

In the general formulation, a point xj is said to belong to
a given subspace if it is orthogonal to the subspace normal,
i.e., rTi xj = 0. Under the presence of bounded noise, this
orthogonality constrained is relaxed to |rTi xj | ≤ ε, where ε
is the noise bound. The task of subspace clustering can be
cast as the following feasibility problem:

min
r,s

0

si,j |rTi xj | ≤ si,jε, ∀Ns
i=1,∀

Np

j=1, (10a)

si,j = s2
i,j , ∀Ns

i=1,∀
Np

j=1, (10b)
Ns∑
i=1

si,j = 1, ∀Np

j=1, (10c)

rTi ri = 1, ∀Ns
i=1, (10d)

where (10a) controls the orthogonality constraint and is only
active when si,j 6= 0, (10b) enforces the binary nature
of the labels, (10c) assigns every point xj to a subspace
and (10d) forces the normal vectors to have unity norm
(otherwise, ri = 0 would be a trivial feasible solution). The
feasibility problem in (10) is nonconvex due to quadratic
equality constraints and bilinear interactions between s and
r.

In [4], it was proposed to reformulate (10) as an
SDP by defining a matrix X = [1, v] [1, v]T , where
v = [r1, . . . , rNs

, s1,1, . . . , sNs,1, . . . , sNs,Nj
] contains all

the variables of (10) in vectorized form. X is a symmetric
PSD matrix of size (1+Ns(D+Np)), and all the constraints
in (10) become linear with respect to the entries of X at
the cost of adding a non-convex rank 1 constraint. The
reweighted nuclear norm heuristic was then employed to

Fig. 5. A typical problem in Subspace Clustering

relax the rank constraint into a convex problem. 1

We note that in problem (10) there are no bilinear in-
teractions between different si,j terms, nor any interactions
between sī,j and rî when ī 6= î. As a result, only a very
reduced number of entries of X are actually used in the
constraints of (10), leading to a very sparse pattern. This
pattern is shown, in dark grey, in Figure 6.a. To exploit
this underlying sparsity, [4] proposed to solve (10) only in a
chordal extension of the sparsity graph, shown by the union
of light grey and red cells in Figure 6.a, instead of using
all the entries of X . This approach led to a split from a
single (1 + Ns(D + Np))-sized PSD constraint to Np PSD
constraints of size (1 +Ns(D + 1)), and a reduction of the
rank 1 constraint from a (1 + Ns(D + Np))-sized matrix
onto a (1 +NsD) one, effectively decoupling the size of the
contraints from the number of points Np.

In this paper, we propose a reduced chordal extension
of X , shown in red in Figure 6.a. This extension, besides
being significantly smaller than the one in [4] with respect
to the number of edges (a 13% increase in |E|, compared to
more than a 350% increase for [4]), allows us to simplify
the aforementioned rank 1 constraint of size (1 +NsD) into
a collection of Ns rank 1 constraints of size (1 + D), and
breaking the Np PSD contraints of size (1+NsD) into NpNs
constraints of size (2 +D), decoupling this time the size of
the constraints from both the number of points Np and the
number of subspace Ns.

Next we analyze the performance of the proposed ap-
proach with respect to the number of subspaces and points
of the subspace clustering problem, and compare it to
that of [4]. Figure 6.b shows the average runtime of each
reweighted heuristic iteration for a problem of D = 2,
Np = 50 and Ns = 2, . . . , 8. It is observed that the proposed
approach presents a close-to-linear complexity with respect
to the number of subspaces Ns, while [4] scales in a clear

1Due to the particular structure of the subspace clustering problem,
enforcing a rank 1 constraint on a particular principal submatrix of X is
equivalent to enforcing rank 1 on the overall matrix. The interested reader
is referred to [4] for the proof of this exact relaxation.

Fig. 6. a) Variable structure of X in Problem (10) and chordal extensions
for [4] and this work. b) Runtime for a single iteration of reweighted
heuristic (i.e. a whole SDP execution) for fixed D = 2 and Np = 50
and variable Ns = 2, . . . , 8 for the two chordal extensions in a). c) and d)
Runtime and number of iterations of Algorithm 1 for D = 2, Ns = 3 as
a function of points Np.

superlinear fashion. These trends are consistent with our
expectation of problems scaling worse with the size of the
PSD constraints than with the amount of said constraints (the
proposed approach has Ns times more constraints, but each
constraint is Ns times smaller than those of [4]).

Finally, we test Algorithm 1 on the subspace clustering
problem, for fixed D = 2 and Ns = 3 and variable
Np = 20, . . . , 70. A value of δ = 10−3 is used for the
update of Wk and the algorithm terminates whenever the
dominant eigenvalue of the reweighted matrices is above 0.98
of the sum of eigenvalues or the iteration count reaches 20,
whichever happens first. Figure 6.c shows the runtime of the
algorithm for the proposed chordal extension and [4], and
Figure 6.d shows the number of iterations until convergence.
The proposed approach clearly outperforms [4] both in
terms of runtime and iterations needed to converge, with [4]
average being close to 20 due to many runs stopping by
reaching the iteration threshold. Interestingly, the use of the
reweighted heuristic on separate cliques seems to promote a
faster convergence to an overall rank 1 solution than applying
the heuristic to bigger submatrices of X . These results seem
to show that there might be additional advantages to the use
of chordal decompositions in rank-constrained SDPs beyond
the computational speed-ups offered by the use of smaller
cliques, and hint to possible size-dependencies in low-rank
promotion techniques.

VI. CONCLUSIONS

In this paper, we have applied the minimum rank com-
pletion to show an equivalence between minimizing rank
over a matrix X and of its cliques Xk in a rank constrained

SDP. We then relaxed the rank penalty using the reweighted
heuristic, and showed that this weighting WC over cliques
preserves the sparsity pattern. We discussed implementations
of chordal rank minimized SDPs by interior-point and first-
order methods. Scalability and efficiency of the chordal
decomposition for rank minimization were demonstrated in
the specific examples of maxcut and subspace clustering. We
expect that these gains will hold in many other chordally
sparse rank-minimized SDPs. Future work includes utilizing
other rank surrogate functions and applying chordal rank
minimization to more general polynomial and rational op-
timization problems.

VII. ACKNOWLEDGMENTS
This work was supported in part by NSF grants

CNS–1646121, CMMI–1638234, IIS–1814631 and ECCS–
1808381; AFOSR grant FA9550-15-1-0392; and the Alert
DHS Center of Excellence under Award Number 2013-ST-
061-ED0001.

REFERENCES

[1] L. Vandenberghe and S. Boyd, “Applications of semidefinite program-
ming,” Applied Numerical Mathematics, vol. 29, no. 3, 1999.

[2] X. Bai, H. Wei, K. Fujisawa, and Y. Wang, “Semidefinite programming
for optimal power flow problems,” International Journal of Electrical
Power & Energy Systems, vol. 30, no. 6-7, pp. 383–392, 2008.

[3] J. B. Lasserre, Moments, Positive Polynomials And Their Applications,
ser. Imperial College Press Optimization Series. World Scientific
Publishing Company, 2009.

[4] Y. Cheng, Y. Wang, M. Sznaier, and O. Camps, “Subspace clustering
with priors via sparse quadratically constrained quadratic program-
ming,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 5204–5212.

[5] S. Burer, R. D. Monteiro, and Y. Zhang, “Rank-two relaxation heuris-
tics for max-cut and other binary quadratic programs,” SIAM Journal
on Optimization, vol. 12, no. 2, pp. 503–521, 2002.

[6] D. Henrion and J.-B. Lasserre, “Detecting global optimality and
extracting solutions in gloptipoly,” in Positive polynomials in control.
Springer, 2005, pp. 293–310.

[7] M. Journée, F. Bach, P.-A. Absil, and R. Sepulchre, “Low-rank
optimization on the cone of positive semidefinite matrices,” SIAM
Journal on Optimization, vol. 20, no. 5, pp. 2327–2351, 2010.

[8] N. Boumal, V. Voroninski, and A. Bandeira, “The non-convex burer-
monteiro approach works on smooth semidefinite programs,” in Ad-
vances in Neural Information Processing Systems, 2016.

[9] Y. Liu, L. Jiao, F. Shang, F. Yin, and F. Liu, “An efficient matrix
bi-factorization alternative optimization method for low-rank matrix
recovery and completion,” Neural Networks, vol. 48, pp. 8–18, 2013.

[10] M. Souto, J. D. Garcia, and Á. Veiga, “Exploiting low-rank structure
in semidefinite programming by approximate operator splitting,” arXiv
preprint arXiv:1810.05231, 2018.

[11] B. Recht, M. Fazel, and P. A. Parrilo, “Guaranteed minimum-rank
solutions of linear matrix equations via nuclear norm minimization,”
SIAM review, vol. 52, no. 3, pp. 471–501, 2010.

[12] E. J. Candes and Y. Plan, “Tight oracle inequalities for low-rank matrix
recovery from a minimal number of noisy random measurements,”
IEEE Transactions on Information Theory, vol. 57, no. 4, pp. 2342–
2359, 2011.

[13] S. Gu, L. Zhang, W. Zuo, and X. Feng, “Weighted nuclear norm
minimization with application to image denoising,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2014, pp. 2862–2869.

[14] K. Mohan and M. Fazel, “Reweighted nuclear norm minimization with
application to system identification,” in American Control Conference
(ACC), 2010. IEEE, 2010, pp. 2953–2959.

[15] C. Grussler and P. Giselsson, “Low-rank inducing norms with opti-
mality interpretations,” SIAM Journal on Optimization, vol. 28, no. 4,
pp. 3057–3078, 2018.

[16] L. Vandenberghe, M. S. Andersen et al., “Chordal graphs and semidef-
inite optimization,” Foundations and Trends R© in Optimization, vol. 1,
no. 4, pp. 241–433, 2015.

[17] V. Chandrasekaran, N. Srebro, and P. Harsha, “Complexity of inference
in graphical models,” arXiv preprint arXiv:1206.3240, 2012.

[18] M. Fukuda, M. Kojima, K. Murota, and K. Nakata, “Exploiting
sparsity in semidefinite programming via matrix completion i: General
framework,” SIAM Journal on Optimization, vol. 11, no. 3, pp. 647–
674, 2001.

[19] Y. Zheng, G. Fantuzzi, A. Papachristodoulou, P. Goulart, and A. Wynn,
“Chordal decomposition in operator-splitting methods for sparse
semidefinite programs,” arXiv preprint arXiv:1707.05058, 2017.

[20] ——, “Fast admm for homogeneous self-dual embedding of sparse
sdps,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 8411–8416, 2017.

[21] J. Dancis, “Positive semidefinite completions of partial hermitian
matrices,” Linear algebra and its applications, vol. 175, 1992.

[22] X. Jiang, “Minimum rank positive semidefinite matrix completion with
chordal sparsity pattern,” Ph.D. dissertation, UCLA, 2017.

[23] R. Madani, S. Sojoudi, G. Fazelnia, and J. Lavaei, “Finding low-rank
solutions of sparse linear matrix inequalities using convex optimiza-
tion,” SIAM Journal on Optimization, vol. 27, no. 2, 2017.

[24] M. Yannakakis, “Computing the minimum fill-in is np-complete,”
SIAM Journal on Algebraic Discrete Methods, vol. 2, no. 1, 1981.

[25] R. Grone, C. R. Johnson, E. M. Sá, and H. Wolkowicz, “Positive
definite completions of partial hermitian matrices,” Linear Algebra
Appl., vol. 58, pp. 109–124, 1984.

[26] Y. Zheng, G. Fantuzzi, A. Papachristodoulou, P. Goulart, and A. Wynn,
“Fast admm for semidefinite programs with chordal sparsity,” in 2017
American Control Conference (ACC). IEEE, 2017, pp. 3335–3340.

[27] W. W. Barrett, C. R. Johnson, and M. Lundquist, “Determinantal
formulae for matrix completions associated with chordal graphs,”
Linear Algebra and its Applications, vol. 121, pp. 265–289, 1989.

[28] K. Fujisawa, S. Kim, M. Kojima, Y. Okamoto, and M. Yamashita,
“Users manual for sparsecolo: Conversion methods for sparse conic-
form linear optimization problems,” Research Report B-453, Dept. of
Math. and Comp. Sci. Japan, Tech. Rep., pp. 152–8552, 2009.

[29] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein et al., “Dis-
tributed optimization and statistical learning via the alternating di-
rection method of multipliers,” Foundations and Trends R© in Machine
learning, vol. 3, no. 1, pp. 1–122, 2011.

[30] J.-F. Cai, E. J. Candès, and Z. Shen, “A singular value thresholding
algorithm for matrix completion,” SIAM Journal on Optimization,
vol. 20, no. 4, pp. 1956–1982, 2010.

[31] Y. Ye, M. J. Todd, and S. Mizuno, “An o(
√

(nl))-iteration homoge-
neous and self-dual linear programming algorithm,” Mathematics of
Operations Research, vol. 19, no. 1, pp. 53–67, 1994.

[32] B. ODonoghue, E. Chu, N. Parikh, and S. Boyd, “Conic optimization
via operator splitting and homogeneous self-dual embedding,” Journal
of Optimization Theory and Applications, vol. 169, no. 3, pp. 1042–
1068, 2016.

[33] J. F. Sturm, “Using sedumi 1.02, a matlab toolbox for optimization
over symmetric cones,” Optimization methods and software, vol. 11,
no. 1-4, pp. 625–653, 1999.

[34] K.-C. Toh, M. J. Todd, and R. H. Tütüncü, “Sdpt3a matlab software
package for semidefinite programming, version 1.3,” Optimization
methods and software, vol. 11, no. 1-4, pp. 545–581, 1999.

[35] Y. Zheng, G. Fantuzzi, A. Papachristodoulou, P. Goulart, and A. Wynn,
“CDCS: Cone decomposition conic solver, version 1.1,” https://github.
com/giofantuzzi/CDCS, Sep. 2016.

[36] E. D. Andersen and K. D. Andersen, “The mosek interior point opti-
mizer for linear programming: an implementation of the homogeneous
algorithm,” in High performance optimization. Springer, 2000, pp.
197–232.

[37] J. Löfberg, “Yalmip: A toolbox for modeling and optimization in
matlab,” in Proceedings of the CACSD Conference, vol. 3. Taipei,
Taiwan, 2004.

[38] M. X. Goemans and D. P. Williamson, “Improved approximation algo-
rithms for maximum cut and satisfiability problems using semidefinite
programming,” Journal of the ACM (JACM), vol. 42, no. 6, pp. 1115–
1145, 1995.

[39] R. Vidal, “A tutorial on subspace clustering,” IEEE Signal Processing
Magazine, vol. 28, no. 2, pp. 52–68, 2011.

[40] “Identification of hybrid systems a tutorial,” European Journal of
Control, vol. 13, no. 2, pp. 242 – 260, 2007.

[41] Y. Cheng, Y. Wang, and M. Sznaier, “A convex optimization approach
to semi-supervised identification of switched arx systems,” in 53rd
IEEE Conference on Decision and Control, Dec 2014, pp. 2573–2578.

https://github.com/giofantuzzi/CDCS
https://github.com/giofantuzzi/CDCS

	I Introduction
	II Preliminaries
	II-A Chordal graphs
	II-B Sparse matrices and chordal decomposition
	II-C Minimum rank completion

	III Chordal decomposition in sparse SDPs with a rank constraint
	III-A An equivalent reformulation
	III-B Rank relaxations

	IV Algorithm Implementations
	IV-A Interior-point methods via SparseCoLO
	IV-B Alternating Direction Method of Multipliers (ADMM)
	IV-C Homogoneous Self-Dual Embedding

	V Numerical Examples
	V-A Maxcut
	V-B Subspace clustering

	VI CONCLUSIONS
	VII ACKNOWLEDGMENTS
	References

