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Abstract

We address the problem of designing optimal distributed controllers for linear time invari-
ant (LTI) systems, which corresponds to minimizing a norm of the closed-loop system subject
to sparsity constraints on the controller structure. This problem is NP-hard in general and
motivates the development of tractable approximations. We characterize a class of convex re-
strictions based on a new notion of Sparsity Invariance (SI). The underlying idea of SI is to
design sparsity patterns for transfer matrices Y(s) and X(s) such that any corresponding con-
troller K(s) = Y(s)X(s)−1 exhibits the desired sparsity pattern. For sparsity constraints, the
approach of SI goes beyond the well-known notion of Quadratic Invariance (QI) in the sense
that 1) the SI framework returns a convex restriction for any distributed control problem inde-
pendently of whether QI holds; 2) the solution via the SI approach is guaranteed to be globally
optimal when QI holds and performs at least as well as that obtained by considering a near-
est QI subset. Moreover, the notion of SI can be naturally applied to the problem of designing
structured static state-feedback controllers, while QI is not utilizable. Numerical examples show
that even for non-QI cases, SI can recover solutions that are 1) globally optimal and 2) strictly
more performing than previous methods.

1 Introduction

The safe and efficient operation of several large-scale systems, such as the smart grid [1], biological
networks [2], and automated highways [3], relies on the decision making of multiple interacting
agents. Coordinating the decisions of these agents is challenged by a lack of complete information of
the systems’ internal variables. Such limited information arises due to privacy concerns, geographic
distance or the challenges of implementing a reliable communication network. The celebrated work
of [4] highlighted that lacking full information can enormously complicate the design of optimal
control inputs. Indeed, the optimal feedback control policies may not even be linear for the Linear
Quadratic Gaussian (LQG) control problem. The intractability inherent to lack of full information
was investigated in the works [5, 6]. The core challenges discussed therein motivated identifying
special cases of optimal control problems with partial information for which efficient algorithms
can be used.
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Optimally controlling a linear time-invariant system (LTI) with distributed sensor measure-
ments amounts to computing a linear controller that complies with a desired sparsity pattern and
minimizes a norm of the closed-loop system. For this generally intractable problem, the notion of
Quadratic Invariance (QI) was shown to be necessary and sufficient for an exact convex reformu-
lation [7]. The interested reader is referred to [8] for an overview on QI and related information
structures.

1.1 Previous work on non-QI cases

Given the importance and intricacy of computing optimal distributed controllers, a variety of
approximation methods have been proposed for general systems and information structures that are
not QI. For example, the authors in [9] developed semidefinite programs (SDP) that are relaxations
of this generally NP-hard problem. However, these relaxations might fail to recover a sparse
controller that is stabilizing, as confirmed experimentally in [10]. To address this issue, polynomial
optimization has been used in [10] to obtain a sequence of convex relaxations which converges to a
stabilizing distributed controller. Nevertheless, performance of the recovered solution is not directly
addressed in [10]. For the finite-horizon control problem, [11] derived convex upper bounds to the
non-convex cost function to obtain conservative feasible solutions. However, the theoretical sub-
optimality bounds were shown to be loose. Alternatively, the system level approach [12] proposed
an implementation where controllers are required to share their past control signals. We note that
the classical distributed control only requires to share output measurements, but no control signals,
among subsystems. The need to share past control inputs in [12] might raise concerns of system
security and vulnerability in safety critical applications [13], where each subsystem can only rely
on its own sensor measurements.

A different approach to sparse output-feedback controller synthesis is to develop a convex re-
striction: the unstructured problem is reformulated as an equivalent convex program and convex
constraints are added to guarantee the desired sparsity pattern of the recovered controllers. Con-
vex restrictions exhibit specific advantages: 1) their optimal solutions can be readily computed
with standard convex optimization techniques, and 2) all their feasible solutions are structured
and stabilizing by design. A disadvantage is that a restriction may be infeasible even when the
original problem is feasible. This motivates developing convex restrictions that are as tight as pos-
sible for improved feasibility and performance. In the literature, convex restrictions have mostly
been developed for the special case of computing static controllers [14–16]. For the general case
of dynamic controllers given non-QI information structures, the work [17] suggested restricting the
desired sparsity pattern to a subset that is QI and thus obtain upper bounds on the minimum
cost. However, to the best of the authors’ knowledge, a method for convex restrictions that can
outpeform [17] and goes beyond the notion of QI is not known.

1.2 Contributions

This paper proposes a generalized framework for the convex design of optimal and near-optimal
dynamic output-feedback controllers with a pre-determined sparsity pattern. Our underlying idea
is to identify appropriate sparsity patterns for two transfer matrices Y(s) and X(s) such that any
corresponding feedback controller in the form K(s) = Y(s)X(s)−1 exhibits the desired structure.
This fundamental property is denoted as Sparsity Invariance (SI).

Our first contribution is to develop algebraic conditions on the binary matrices associated with
the sparsities of Y(s) and X(s) that are necessary and sufficient for SI. Among all such sparsities,
we suggest a polynomial-time algorithm to design sparsities that lead to better performance for
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the distributed control problem at hand. Second, we show that the SI framework steps beyond the
QI notion in several ways. Indeed, SI can be applied to systems with any information structure
regardless of whether QI holds. Furthermore, SI recovers a controller that is provably globally
optimal when QI holds and performs at least as well as that obtained by considering a nearest QI
subset [17] when QI does not hold. Third, we provide examples to show that, even if QI does not
hold, controllers obtained through the SI approach can be 1) globally optimal and 2) in general
strictly more performing than those obtained using the nearest QI subset approach of [17]. Finally,
we remark that the SI framework is directly applicable to distributed static controller design, as
studied in our preliminary work [16], whereas the Youla parametrization and thus the QI notion
is not utilizable. For clarity, we mainly focus on continuous-time systems in the paper, but the
results can be naturally extended to discrete-time systems.

The rest of this paper is structured as follows. Section 2 states necessary background and
formulates the problem. Section 3 introduces the class of convex restrictions under investigation
and fully characterizes our notion of Sparsity Invariance (SI). We describe how SI can be utilized
in an optimized way. In Section 4, we show that 1) SI encompasses the previous approaches based
on the QI notion, and 2) that strictly better performing distributed controllers can be computed
efficiently with the SI framework. We present numerical results in Section 5 and conclude the paper
in Section 6.

2 Background and Problem Statement

Here, we first introduce some notation on sparsity structures and transfer functions. Then, we state
the problem of distributed optimal control, and introduce the necessary background on the Youla
parametrization of internally stabilizing controllers.

2.1 Notation and sparsity structures

We use R, C and N to denote real numbers, complex numbers and positive integers, respectively.
The (i, j)-th element in a matrix Y ∈ Rm×n is referred to as Yij. We use In to denote the identity
matrix of size n× n, 0m×n to denote the zero matrix of size m× n and 1m×n to denote the matrix
of size m× n with all entries set to 1.

Transfer functions: We denote the imaginary axis as jR := {z ∈ C | ℜ(z) = 0} . We consider
continuous-time transfer functions, defined as rational functions g : jR → C. A transfer function
is called proper (resp. strictly-proper) if the degree of the numerator polynomial does not exceed
(resp. is strictly lower than) the degree of the denominator polynomial. We define the poles of g
as the roots of the denominator polynomials of g. Similar to [7], we denote by Rm×n

p the set of
m× n proper transfer matrices, that is the set of m× n matrices whose entries are proper transfer
functions. Also, we denote by Rm×n

sp the set of m×n strictly proper transfer matrices. Finally, we
let RHm×n

∞ be the set of m× n proper stable transfer matrices, i.e.,

RHm×n
∞ := {G ∈ Rm×n

p | G has no poles in C+} .

where C+ = {z ∈ C| ℜ(z) ≥ 0}. Sparsity structures of transfer matrices can be conveniently
represented by binary matrices. A binary matrix is a matrix with entries from the set {0, 1}, and
we use {0, 1}m×n to denote the set of m×n binary matrices. Given a binary matrix X ∈ {0, 1}m×n,
we define the associated sparsity subspace of transfer matrices as

Sparse(X) := {Y ∈ Rm×n
p | Yij(jω) = 0 for all i, j

such that Xij = 0 for almost all ω ∈ R} .
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Similarly, given a transfer function Y ∈ Rm×n
p , we define X = Struct(Y) as the binary matrix

given by

Xij :=

{

0 if Yij(jω) = 0 for almost all ω ∈ R,

1 otherwise .

We say that the transfer matrix G ∈ Rn×n
p is invertible if G(jω) ∈ Cn×n is invertible for almost

all ω ∈ R.
Let X, X̂ ∈ {0, 1}m×n and Z ∈ {0, 1}n×p be binary matrices. Throughout the paper, we adopt

the following conventions: X + X̂ := Struct(X + X̂), and XZ := Struct(XZ). We say X ≤ X̂ if
and only if Xij ≤ X̂ij ∀i, j, and X < X̂ if and only if X ≤ X̂ and there exist indices i, j such that
Xij < X̂ij . Also, we denote X � X̂ if and only if there exist indices i, j such that Xij > X̂ij . Given
a binary matrix X ∈ {0, 1}m×n we denote its cardinality, i.e., the total number of nonzero entries,
as

‖X‖0 :=

m
∑

i=1

n
∑

j=1

Xij.

Considering the following binary matrices

X1 =

[

0 1 0
1 1 1

]

, X2 =

[

0 1 0
1 0 1

]

, X3 =

[

1 1 0
1 0 1

]

,

we have X2 < X1,X3 � X1 and X2 +X1 = X1. Their cardinalities are ‖X1‖0 = 4, ‖X2‖0 = 3 and
‖X3‖0 = 4, respectively. For the following transfer matrix,

Y =

[

0 1
s+1 0

1
s+1

1
s+1

1
s+1

]

∈ RH2×3
∞ ,

if we consider the binary matrix X1 in the example above, we have Y ∈ Sparse(X1) and X1 =
Struct(Y).

2.2 Problem statement

We consider linear systems in continuous-time

ẋ(t) = Ax(t) +Bu(t) +Hxw(t) , (1)

y(t) = Cyx(t) +Hyw(t) ,

z(t) = Czx(t) +Dzu(t) +Hzw(t) ,

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp, z(t) ∈ Rq, and w(t) ∈ Rr are the state, control input,
observed output, a performance signal defined based on our control objectives, and additive dis-
turbance at time t ∈ R, respectively. The input-output transfer function representation for (1) can
be written as

[

z

y

]

= P

[

w

u

]

=

[

P11 P12

P21 G

] [

w

u

]

,

with
P11 := Cz(sIn −A)−1Hx +Hz,

P12 := Cz(sIn −A)−1B +Dz,

P21 := Cy(sIn −A)−1Hx +Hy,

G := Cy(sIn −A)−1B,
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Figure 1: Interconnection of P and K.

where s belongs to jR. Notice that P11,P12,P21 are proper transfer functions and G is strictly
proper.

Consider the interconnection of Figure 1. A dynamic output-feedback controller u = Ky with
K ∈ Rm×p

p is said to be internally stabilizing if and only if the nine transfer matrices from w, ν1, ν2
to z, y, u are stable. We denote the set of all internally stabilizing output-feedback controllers
as Cstab. We say that P is stabilizable if only and if Cstab 6= ∅ and any K ∈ Cstab stabilizes P.
Furthermore, we say that a controller K stabilizes G if and only if the four transfer matrices from
ν1, ν2 to y, u are all stable. For the rest of the paper we make the following assumption.

Assumption 1: The system P is stabilizable.
A test for stabilizability of P is offered in [18, Chapter 4]. It is well-known [18, Chapter 4], [7]

that under Assumption 1 a controller K stabilizes P if and only if it stabilizes G. The control
problem is to compute a dynamic output-feedback controller K ∈ Cstab which minimizes a given
norm ‖ · ‖ of

f(K) = P11 +P12K(Ip −GK)−1P21 , (2)

which is the closed-loop transfer function from w to z.
In distributed control, we add the requirement that K only uses partial output measurements.

This requirement can be captured by adding the constraint K ∈ Sparse(S) for a given binary matrix
S ∈ {0, 1}m×p, where Sij = 0 encodes the fact that the i-th scalar control input cannot measure
the j-th measurement output. We formulate this distributed control problem as follows [7].

Problem PK

minimize
K∈Cstab

‖f(K)‖

subject to K ∈ Sparse(S) ,

where ‖ · ‖ is any norm of interest. It was shown that a necessary and sufficient condition for
a feasible solution to PK to exist is that all the distributed fixed modes associated with S lie
in the left half of the complex plane [19]. Even if PK is feasible, directly computing its optimal
solution is intractable because the set Cstab is non-convex in general. This can be easily verified by
checking that when K1,K2 ∈ Cstab, the controller K = 1

2(K1 +K2) does not lie in Cstab in general.
Furthermore, the cost function ‖f(K)‖ is non-convex in K.

2.3 The Youla parametrization of stabilizing controller

The first step to convexify problem PK is to derive a convex formulation of the set Cstab and the
function f(K). This is achieved by using a doubly coprime factorization of G.
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Lemma 1 (Chapter 4 of [18]) For any G ∈ Rp×m
sp , there exist eight proper and stable transfer

matrices defining a doubly coprime factorization of G, that is, they satisfy

G = NrM
−1
r = M−1

l Nl ,
[

Ul −Ul

−Nl Ml

] [

Mr Vr

Nr Ur

]

= Im+p . (3)

Then, the Youla parametrization of all internally stabilizing controllers [20] establishes the
following equivalence [18, Chapter 4]:

Cstab = {(Vr −MrQ)(Ur −NrQ)−1| Q ∈ RHm×p
∞ }1 . (4)

In other words, given a doubly-coprime factorization of G, Cstab can be expressed as an affine map
over the linear subspace of stable Youla parameters Q ∈ RHm×p

∞ . Furthermore, it was proved
in [18, Chapter 4] that the set of all closed-loop transfer functions from w to z achievable by
K ∈ Cstab is

f(Cstab) = {T1 −T2QT3| Q ∈ RH
m×p
∞ } ,

where f(·) is defined in (2) and T1 = P11 + P12VrMlP21, T2 = P12Mr and T3 = MlP21. To
facilitate our problem formulation, we define

YQ = (Vr −MrQ)Ml , (5)

XQ = (Ur −NrQ)Ml . (6)

It directly follows from from (4) that

Cstab = {YQX
−1
Q | (5), (6), Q ∈ RHm×p

∞ } . (7)

We notice that (3) implies Ur = M−1
l +GVr and (5) implies VrMl = YQ +MrQMl. Hence,

XQ = (M−1
l +GVr −NrQ)Ml

= Ip +G(YQ +MrQMl)−NrQMl

= Ip +GYQ . (8)

Now we can equivalently reformulate PK into the following optimization problem.

Problem PQ

minimize
Q∈RH

m×p
∞

‖T1 −T2QT3‖

subject to (5), (6), YQX
−1
Q ∈ Sparse(S) .

Without the sparsity constraint Sparse(S), problem PQ would be convex, as (5), (6) and the cost
function are affine in Q. The primary source of non-convexity is the requirement that YQX

−1
Q ∈

Sparse(S). We conclude that the complexity of distributed control is ultimately linked to non-
convex sparsity requirements on the Youla parameter.

1Equivalently, Cstab = {(Ul −QNl)
−1(Vl −QMl)| Q ∈ RHm×p

∞ }.
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3 Sparsity Invariance

One approach to remove non-convex sparsity requirements on the Youla parameter is as follows:
replace the non-convex constraint YQX

−1
Q ∈ Sparse(S) with the convex constraint that YQ and

XQ comply with appropriate sparsity patterns, in a way such that YQX
−1
Q is guaranteed to lie

in Sparse(S). In other words, we restrict our attention to distributed controllers K ∈ Sparse(S)
defined as the product of two structured matrix factors.

Following the general idea above, in this paper we investigate a notion of Sparsity Invariance
(SI) for convex design of distributed controllers. As will be thoroughly discussed in Section 4, SI
leads to the largest known class of convex restrictions of PK for general systems and information
structures.

Definition 1 (Sparsity Invariance (SI)) Given a binary matrix S, the pair of binary matrices
T,R satisfies a property of sparsity invariance (SI) with respect to S if

Y ∈ Sparse(T ) and X ∈ Sparse(R)

⇓ (9)

YX−1 ∈ Sparse(S).

Motivated by the SI property, consider the following convex problem:

Problem PT,R

minimize
Q∈RH

m×p
∞

‖T1 −T2QT3‖

subject to (5), (6) ,

YQΓ ∈ Sparse(T ), XQΓ ∈ Sparse(R) ,

where T ∈ {0, 1}m×p, R ∈ {0, 1}p×p and Γ ∈ Rp×p
p , with Γ invertible, are parameters to be designed

before performing the optimization. For simplicity, one could select Γ = Ip, but we illustrate in
Example 1 of Section 4 that there are cases where a different choice of Γ might lead to improved
and even globally-optimal performance for non-QI problems. For any choice of T, R and Γ, the
above program is convex. One fundamental question is when its feasible solutions lead to stabilizing
controllers K = (YQΓ)(XQΓ)

−1 = YQX
−1
Q lying in the desired sparsity subspace Sparse(S). The

notion of SI (9) defined above is a mathematical expression of this requirement. In the next
subsection we establish necessary and sufficient conditions on the binary matrices T and R to
satisfy the SI property (9).

Remark 1 We assume that R ≥ Ip. Since XQ = Ip +GYQ ∈ Sparse(R) and G is strictly proper,
the assumption is without loss of generality for Γ = Ip. For convenience, in the definition of
problem PT,R we do not indicate Γ explicitly as a parameter. This is because the SI property (9)
only depends on the binary matrices T and R.

3.1 Characterization of SI

One immediate idea in designing the binary matrices T and R to guarantee K = (YQΓ)(XQΓ)
−1 =

YQX
−1
Q ∈ Sparse(S) is to simply select T = S and R = Ip similar to [14, 15, 21]. However, many

other choices are available that lead to improved convex restrictions.
The next Theorem provides a full characterization of the SI property (9) in terms of the binary

matrices T and R.
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Theorem 1 Let T ∈ {0, 1}m×p and R ∈ {0, 1}p×p be such that R ≥ Ip. The following two
statements are equivalent:

1. T ≤ S and TRp−1 ≤ S.

2. SI as per (9) holds.

The proof of Theorem 1 is reported in the Appendix. The relevance of Theorem 1 to characterizing
a class of convex restrictions of PK is stated in the following Corollary.

Corollary 1 Let T ∈ {0, 1}m×p and R ∈ {0, 1}p×p be such that R ≥ Ip, T ≤ S and TRp−1 ≤ S.
Then, problem PT,Rp−1 is a convex restriction of PK for any invertible transfer matrix Γ ∈ Rp×p

p .

Proof Problem PT,Rp−1 is obviously convex. We only need to show that any solution to PT,Rp−1 cor-

responds to a feasible solution of PQ. Indeed, for any invertible Γ ∈ Rp×p
p we have (YQΓ)(XQΓ)

−1 =
YQX

−1
Q . Let Y = YQΓ and X = XQΓ in (9). Since (9) holds by Theorem 1, by definition

YX−1 = YQX
−1
Q ∈ Sparse(S) and thus every solution of PT,R is also a solution of PQ. Since PQ is

equivalent to PK , we conclude that PT,R is a restriction of PK for every invertible Γ ∈ Rp×p
p . Since

TRp−1 ≤ S and R ≥ Ip we have that T (Rp−1)p−1 ≤ S. Hence, PT,Rp−1 is a convex restriction of

PK for every invertible Γ ∈ Rp×p
p .

We note that Theorem 1 and Corollary 1 directly extend [16, Theorem 1], which was only valid
for designing static distributed controllers. In summary, the algebraic conditions

T ≤ S and TRp−1 ≤ S , (10)

are equivalent to SI and yield a class of convex restrictions of PK . Clearly, our condition (10)
includes the choice T = S and R is (block)-diagonal as per [14, 15, 21]. We will further show in
Section 4 that the convex restrictions developed in [17] are a particular case of (10). Therefore, our
notion of SI naturally encompasses and extends previous convex restrictions of PK .

Remark 2 For each T and R as per (10), it is always preferable to solve the convex restriction
PT,Rp−1 instead of PT,R. Indeed, notice that since TRp−1 ≤ S and R ≥ Ip, then T (Rp−1)p−1 ≤ S.
Equivalently, when T and R satisfy sparsity invariance (10), so do T and Rp−1, and both PT,R and
PT,Rp−1 are convex restrictions of PK . Since requiring XQ ∈ Sparse(R′) for some R′ < Rp−1 can
be conservative due to Sparse(R′) ⊂ Sparse(Rp−1), we will mainly focus on the convex restriction
PT,Rp−1 for the rest of the paper.

After determining all the matrices T and R for sparsity invariance, a natural follow-up question
arises: how can we choose T and R as per Theorem 1 to obtain a convex restriction of PK that is
as tight as possible?

3.2 Optimized design of SI

Here, we study how to choose the sparsities T and R optimally for a fixed invertible Γ ∈ Rp×p
p .

In order to determine the best performing choice for T and R satisfying (10), one would need
in general to solve PT,Rp−1 with the chosen Γ for each T and R such that (10) holds, and then
select the problem minimizing the objective ‖T1−T2QT3‖. Clearly, this approach is not tractable
in general, as one needs to solve a number of convex programs that is exponential in m and p,
that is, one convex program for each binary matrices T and R such that TRp−1 ≤ S. Even if we
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simplify the search above by fixing any T ≤ S and looking for the best performing choice of R,
we would still need to solve a number of convex programs that is exponential in p, that is, one
convex program for each binary matrix R such that TRp−1 ≤ S. To deal with this challenge, we
suggest a computationally efficient algorithm that generates an optimized binary matrix R given a
fixed T ≤ S. We build upon our past work [16], where we identified optimized separable Lyapunov
functions for designing static state-feedback controllers. A main difference is that here the binary
matrix R need not be symmetric and a Lyapunov interpretation is not relevant.

Our suggested approach is to design the binary matrix R⋆
T that yields the tightest convex

restriction PT,R⋆
T
of PK among all the PT,R’s where T ≤ S is fixed and R is any binary matrix

satisfying
TRp−1 ≤ T . (11)

Clearly, T ≤ S and (11) together imply (10). Such an R⋆
T can be computed as per Algorithm 1.

Algorithm 1 Generation of R⋆
T

1: Initialize R⋆
T = 1p×p

2: for each i = 1, . . . ,m, k = 1, . . . , p do
3: if Tik == 0 then
4: for each j = 1, . . . , p do
5: if Tij == 1 then
6: (R⋆

T )jk ← 0
7: end if
8: end for
9: end if

10: end for

The algorithm has polynomial complexity O(mp2) due to the three nested loops and is thus
computationally efficient. The idea behind Algorithm 1 is to only set an entry of R⋆

T to 0 if the
condition TR⋆

T ≤ T would be violated. We have the following result about R⋆
T .

Theorem 2 Consider a binary matrix T ∈ {0, 1}m×p, and define RT := {R ∈ {0, 1}p×p | R ≥
Ip, (11) holds}. Then,

1. There exists a unique R⋆
T ∈ RT such that R⋆

T ≥ Rp−1,∀R ∈ RT .

2. Such R⋆
T can be computed via Algorithm 1.

Proof Let R⋆
T be the unique binary matrix generated by Algorithm 1. It is easy to check that

TR⋆
T ≤ T by construction. It follows that T (R⋆

T )
p−1 ≤ · · · ≤ TR⋆

T ≤ T , so R⋆
T ∈ RT .

Next, consider any binary matrix R ∈ RT . By definition, we have that TRp−1 ≤ T and so
(Rp−1)jk = 0 whenever Tij = 1 and Tik = 0. Then, Rp−1 ≤ R⋆

T since (R⋆
T )jk is set to 0 by

Algorithm 1 if and only if Tik = 0 and Tij = 1. Therefore, we have Rp−1 ≤ R⋆
T , ∀R ∈ RT .

The relevance of the above result to distributed control is stated in the following Corollary.

Corollary 2 Given a binary matrix T ≤ S compute R⋆
T as per Algorithm 1. Then, for every fixed

invertible Γ ∈ Rp×p
p , PT,R⋆

T
is the tightest convex restriction of PK among those in the form PT,Rp−1

with R ∈ RT .
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Proof Fix an invertible Γ ∈ Rp×p
p and consider the problems PT,Rp−1 and PT,R⋆

T
, where R ∈

RT and R⋆
T is generated by Algorithm 1. By Theorem 2, we have Rp−1 ≤ R⋆

T , meaning that
Sparse(Rp−1) ⊂ Sparse(R⋆

T ).
The only difference between problem PT,Rp−1 and problem PT,R⋆

T
is: PT,Rp−1 requires XQΓ ∈

Sparse(Rp−1) while PT,R⋆
T
requires XQΓ ∈ Sparse(R⋆

T ). Therefore, we conclude that PT,R⋆
T
admits

the largest feasible region among all PT,Rp−1 with R ∈ RT . This completes our proof.

Given a fixed invertible Γ ∈ Rp×p
p and a binary matrix T ≤ S, we have provided an efficient

procedure to select a tight convex restriction for PK . However, optimally choosing Γ and T is also
a non-trivial task which we leave for future work. We remark that in the lack of any further insight,
one can always choose T = S and Γ = Ip and still obtain distributed controllers with tight sub-
optimality gaps, as will be shown experimentally in Section 5. Furthermore, as shown in Section 4,
the trivial choice T = S and Γ = Ip combined with Algorithm 1 for choosing R is sufficient to
recover and extend the optimality results of [7], [17] which are based on the Quadratic Invariance
(QI) notion. We conclude this section by providing an example to illustrate the SI approach.

Example 1 Motivated by the numerical example in [7], let us consider the unstable plant

G =













1
s+1 0 0 0 0
1

s+1
1

s−1 0 0 0
1

s+1
1

s−1
1

s+1 0 0
1

s+1
1

s−1
1

s+1
1

s+1 0
1

s+1
1

s−1
1

s+1
1

s+1
1

s−1













,

with

P11 =

[

G 05×5

05×5 05×5

]

, P12 =

[

G
I5

]

, P21 =
[

G I5
]

.

Our goal is to design a stabilizing controller K which minimizes ‖f(K)‖H2
and satisfies the sparsity

pattern below:

S =













1 0 0 0 0
1 1 0 0 0
0 1 0 0 0
0 1 0 0 0
0 1 0 0 1













.

This information structure is depicted in Figure 2.
Here, we apply the proposed SI approach and Algorithm 1 for sparsity design in order to obtain

a convex restriction of PK . For this instance, we choose to fix T = S and Γ = Ip. According to
Theorem 2 and Corollary 2, the tightest convex restriction of PK such that TRp−1 = SRp−1 ≤ S

is PS,R⋆
S
, where R⋆

S

R⋆
S =













1 0 0 0 0
0 1 0 0 0
1 1 1 1 1
1 1 1 1 1
0 1 0 0 1













,

is generated via Algorithm 1. Given a doubly coprime factorization of G, any solution of PS,R⋆
S
is

in the form K = YQ(XQ)
−1 ∈ Cstab ∩ Sparse(S), where YQ ∈ Sparse(T ), XQ ∈ Sparse(R⋆

S) and
(XQ)

−1 ∈ Sparse(R⋆
S).

10



❧y5

❧y4

❧y3

❧y2

❧y1

K5,:

K4,:

K3,:

K2,:

K1,:
✲

❅
❅❅❘✲

❅
❅❅❘

❆
❆
❆
❆❆❯

❇
❇
❇
❇
❇
❇❇◆✲

✲

✲

✲

✲

✲ ❧u5

❧u4

❧u3

❧u2

❧u1

❧y5

❧y4

❧y3

❧y2

❧y1

X−1

5,:

X−1

4,:

X−1

3,:

X−1

2,:

X−1

1,:
✲

❆
❆
❆
❆❆❯

❇
❇
❇
❇
❇
❇❇◆

✲
❅
❅❅❘

❆
❆
❆
❆❆❯

❇
❇
❇
❇
❇
❇❇◆

✲
❅
❅❅❘✲�
��✒

✲�
��✒

✁
✁
✁
✁✁✕

✲
❅
❅❅❘✲

❅
❅❅❘

❆
❆
❆
❆❆❯

❇
❇
❇
❇
❇
❇❇◆✲Y5,:

Y4,:

Y3,:

Y2,:

Y1,:
✲

✲

✲

✲

✲ ❧u5

❧u4

❧u3

❧u2

❧u1

Figure 2: In the figure, we denote as Ki,:, Yj,:, X
−1
k,: the ith, jth and kth row of K, YQ and X−1

Q

respectively. For every non-zero entry of Ki,:, Yj,: or X
−1
k,: the corresponding signal enters the

block with an arrow, thus representing the information flow from measured outputs to control
signals. The scheme on the left represents the desired sparsity pattern S for controller K. The
scheme on the right represents the sparsity pattern of controllers that are feasible for PS,R⋆

S
, i.e.

those in the form YQ(XQ)
−1 with YQ ∈ Sparse(S) and XQ ∈ Sparse(R⋆

S).

Remark 3 (Performance improvement) Note that allowing off-diagonal entries of XQ to be
non-zero through the optimized choice of R⋆

S is beneficial for performance improvement. Indeed,
XQ = Ip +GYQ by (8) and YQ ∈ Sparse(S), implies that (GYQ)3,2 and (GYQ)4,2 can be non-
zero. By letting XQ ∈ Sparse(R⋆

S) we thus allow for more freedom and to a larger feasible region in
optimization compared to the immediate idea XQ ∈ Sparse(I5) as per [14, 15, 21]. This additional
freedom can be seen graphically on the right side of Figure 2; the information flow from outputs
to control inputs remains the same as the one encoded by S, but we allow for as many arrows as
possible in the first stage from outputs to the rows of X−1, thus maximizing the degrees of freedom
in the optimization. In Section 5 we will numerically solve PS,R⋆

S
for this example and show that

performance improvement over the method of [17] is obtained.

4 Beyond Quadratic Invariance

We start by recalling the well-known notion of Quadratic Invariance (QI) [7] in Subsection 4.1,
and its application to the design of globally optimal [7] and sub-optimal [17] distributed dynamic
output-feedback controllers in Subsection 4.2. In Subsections 4.3, 4.4 we show that the suggested
SI notion strictly goes beyond that of QI: 1) the controllers obtained within the SI framework
perform at least as well as those obtained by [7] and [17]; 2) we show through examples that using
the SI notion we can recover globally optimal controllers even when QI does not hold, and that
strict performance improvements over [17] can be obtained in general. Last, in Subsection 4.5 we
discuss applicability of SI to computing distributed static controllers, whereas the QI notion is not
applicable.

4.1 Quadratic Invariance

The celebrated work of [7] characterized conditions on G and Sparse(S) under which PK admits
an exact convex reformulation in the Youla parameter Q, denoted as quadratic invariance (QI).

Definition 2 (Quadratic invariance [7]) A subspace K ⊆ Rm×p
p is QI with respect to G if

KGK ∈ K , ∀K ∈ K .
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It is shown that given a controller Knom ∈ Sparse(S) that stabilizes G and is itself stable, there
exists a parametrization such that K ∈ Sparse(S) ⇔ Q ∈ Sparse(S) [7]. Accordingly, a convex
optimization problem equivalent to PK is obtained. The requirement of a stable and stabilizing
controller Knom was removed in [22]. One main result from [22] is as follows:

Theorem 3 (Theorem IV.2 of [22]) Consider any doubly-coprime factorization of G and let
Sparse(S) be QI with respect to G. Then, the following two statements hold:

1. If Q ∈ RHm×p
∞ is such that YQ ∈ Sparse(S), then K = YQX

−1
Q is a stabilizing controller in

Sparse(S).

2. For any K ∈ Cstab ∩ Sparse(S) there exists Q ∈ RHm×p
∞ for which YQ ∈ Sparse(S) and

K = YQX
−1
Q .

According to Theorem 3, if Sparse(S) is QI with respect to G, then PK can be equivalently
reformulated as

minimize
Q∈RH

m×p
∞

‖T1 −T2QT3‖ (12)

subject to (5), (6), YQ ∈ Sparse(S) .

The optimal solution Q⋆ of (12) can be used to recover the globally optimal solution K⋆ of PK via
K⋆ = YQ⋆X−1

Q⋆ .

4.2 Convex restrictions for non-QI information structures

When Sparse(S) is not QI with respect to G, the authors of [17] proposed finding a binary matrix
TQI < S such that Sparse(TQI) is QI with respect to G. Then, the constraint YQX

−1
Q ∈ Sparse(S)

of problem PQ can be replaced by YQ ∈ Sparse(TQI), and any feasible Q for this convex program
will correspond to a feasible controller

K = YQX
−1
Q ∈ Cstab ∩ Sparse(TQI)

⊆ Cstab ∩ Sparse(S) .
(13)

This inclusion (13) directly follows from Theorem 3 and the fact that Sparse(TQI) ⊂ Sparse(S).
A challenge of this approach is to compute TQI such that Sparse(TQI) is QI and as close as

possible to S in order to reduce conservatism, in the sense that ‖S‖0 − ‖TQI‖0 is minimized. In
general, there might be multiple choices of TQI with the same cardinality. Furthermore, the QI
condition TQI∆TQI ≤ TQI of [7, Theorem 26], where ∆ = Struct(G), is nonlinear in TQI. For these
reasons, a procedure to compute a closest QI subset of S in polynomial time was not provided
in [17]. Instead, we have shown that the polynomial time Algorithm 1 can be used within the SI
framework to find a convex restriction for any given T ≤ S. In the next subsections, we show that
the recovered controllers perform at least as well as those based on the notion of QI by choosing
T ≤ S appropriately, and can be strictly more performing in general even with the trivial choice
T = S.

4.3 Connections of SI with QI

Here, we show that it is not necessary to check the QI property in order to obtain a globally optimal
solution. Note that checking the property of QI before solving PK was proposed in [7] and required
in many subsequent work. Indeed, the approach in [7] is guaranteed to yield feasible solutions for
PK only if QI holds. Instead, our technique can be directly applied given S without first checking
QI. This result is summarized in the following theorem and corollary.
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Theorem 4 Let ∆ = Struct(G) and let R⋆
S be the binary matrix generated by Algorithm 1 with

T = S. The following statements are equivalent.

i) Sparse(S) is QI with respect to G.

ii) R⋆
S ≥ Ip +∆S, where R⋆

S is generated by Algorithm 1 with T = S.

Proof i) ⇒ ii): Suppose that Sparse(S) is QI with respect to G. We have that S∆S ≤ S

by [7, Theorem 26], implying that S(Ip + ∆S) ≤ S and ultimately S(Ip + ∆S)p−1 ≤ S. We have
that R⋆

S ≥ Ip and SR⋆
S ≤ S by construction. It follows that S(R⋆

S)
p−1 ≤ . . . ≤ SR⋆

S ≤ S. Also,
according to Theorem 2, we have R⋆

S ≥ R, ∀R ≥ Ip such that SRp−1 ≤ S. By posing R = Ip+∆S,
we have shown above that SRp−1 ≤ S. Hence, R⋆

S ≥ R = (Ip +∆S).
ii) ⇒ i): Suppose that R⋆

S ≥ Ip +∆S, which implies (R⋆
S)

p−1 ≥ (Ip +∆S)p−1. By definition of
R⋆

S , we have observed that S(R⋆
S)

p−1 ≤ S. It follows that

S(Ip +∆S)p−1 ≤ S(R⋆
S)

p−1 ≤ S . (14)

Combining (14) with the fact that (Ip +∆S) ≥ Ip, we have

S(Ip +∆S) ≤ S(Ip +∆S)p−1 ≤ S .

This implies S∆S ≤ S which is equivalent to QI by [7, Theorem 26].

Corollary 3 The following statements are equivalent.

i) Sparse(S) is QI with respect to G.

ii) PK is equivalent to PS,R⋆
S
with Γ = Ip, where R⋆

S is the binary matrix generated by Algorithm 1
with T = S.

Proof It is well-known [22] that (12) is equivalent to PK if and only QI holds. It remains to show
that PS,R⋆

S
is equivalent to (12) if and only if QI holds.

We first show that XQ lies in Sparse(Ip+∆S) for every Q ∈ RHm×p
∞ such that YQ ∈ Sparse(S).

Indeed, by (8) we have XQ = Ip +GYQ for every Q ∈ RHm×p
∞ and thus XQ ∈ Sparse(Ip +∆S).

We have shown in Theorem 4 that QI is equivalent to R⋆
S ≥ Ip + ∆S, where R⋆

S is generated
by Algorithm 1. It follows that the constraint YQΓ = YQ ∈ Sparse(S) makes the constraint
XQΓ = XQ ∈ Sparse(R⋆

S) redundant and thus PS,R⋆
S
with Γ = Ip is equivalent to (12). This

concludes the proof.

Essentially, Theorem 4 shows that QI is equivalent to R⋆
S ≥ Ip+∆S. SinceXQ ∈ Sparse(Ip+∆S)

by (8) when YQ ∈ Sparse(S), the constraint XQ ∈ Sparse(R⋆
S) becomes redundant if and only if

QI holds and the convex program we obtain with SI, namely PS,R⋆
S
with Γ = Ip, is equivalent to

PK due to the results of [7].
Theorems 1, 2 and 4, and Corollaries 1–3 can be summarized as follows. Given any distributed

control problem PK , one can always cast and solve its convex restriction PS,R⋆
S
, where R⋆

S is
generated by Algorithm 1. If PS,R⋆

S
is feasible, its optimal solution is also feasible for PK , and is

certified to be globally optimal if Sparse(S) is QI with respect to G. We remark that verifying
QI is optional and can be done a-posteriori to check global optimality of the solution, but QI is
not part of the controller design procedure in the SI framework. Hence, Theorem 4 expands the
applicability of convex programming to compute distributed controllers for arbitrary systems and
information structures, while maintaining previous global optimality results.
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Example 2 Consider the unstable system and the sparsity pattern S of Example 1. We can verify
that S∆S 6≤ S, where ∆ = Sparse(G), and hence Sparse(S) is not QI with respect to G. Instead,
let us consider the new sparsity pattern

S2 =













0 0 0 0 0
0 1 0 0 0
0 1 0 0 0
0 1 0 0 0
0 1 0 0 1













. (15)

We can verify that S2∆S2 ≤ S2. Hence, Sparse(S2) is QI with respect to G. By applying Algo-
rithm 1 we obtain

R⋆
S2
=













1 1 1 1 1
0 1 0 0 0
1 1 1 1 1
1 1 1 1 1
0 1 0 0 1













, Ip +∆S2=













1 0 0 0 0
0 1 0 0 0
0 1 1 0 0
0 1 0 1 0
0 1 0 0 1













,

R⋆
S=













1 0 0 0 0
0 1 0 0 0
1 1 1 1 1
1 1 1 1 1
0 1 0 0 1













, Ip +∆S=













1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 0 1 0
1 1 0 0 1













.

In accordance with Theorem 4 we have that R⋆
S2
≥ Ip + ∆S2, but R

⋆
S 6≥ Ip +∆S (see the entries

highlighted in red). By Corollary 3, we conclude that the convex program PS2,R
⋆
S2

with Γ = Ip is

equivalent to PK , while PS,R⋆
S
is a convex restriction of PK for every invertible Γ ∈ Rp×p

p .

Next, we show that SI generalizes the class of restrictions of [17], based on finding QI subsets of
Sparse(S) which are nearest to Sparse(S). The result is a straightforward corollary of Theorem 4.

Corollary 4 Let Sparse(TQI) ⊆ Sparse(S) be QI with respect to G and let ‖S‖0 − ‖TQI‖0 be
minimal as proposed in [17]. Then, there exists T ≤ S such that J⋆ ≤ JQI, where J⋆ is the
minimum cost of PT,R⋆

T
with Γ = Ip, and JQI is the minimum cost of problem (12) with the

constraint YQ ∈ Sparse(S) replaced by YQ ∈ Sparse(TQI).

Proof Let T = TQI. Since Sparse(TQI) is QI with respect to G, we have R⋆
T ≥ Ip + ∆T by

Theorem 4. Hence, for every YQΓ = YQ ∈ Sparse(T ), the matrix XQ = Ip + GYQ belongs to
Sparse(Ip +∆T ) for every Q ∈ Rm×p

∞ and the constraint XQΓ = XQ ∈ Sparse(R⋆
T ) is redundant.

It follows that the choice T = TQI achieves J⋆ = JQI. Therefore, there exists a choice of T such
that the optimal solution of PT,R⋆

T
with Γ = Ip performs at least as well as that of the problem

obtained by considering a nearest QI subset as suggested in [17]. This completes our proof.

Corollary 4 proves that the class of convex restrictions considered in [17] is a special case in
the framework of SI, obtained by choosing T = TQI and computing R⋆

TQI
with our Algorithm 1.

Furthermore, it is possible to choose T ≤ S to obtain strictly more performing convex restrictions,
as we will show numerically in Section 5.
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4.4 Strictly Beyond QI

So far, we have shown that the SI framework naturally recovers the previous QI results of [7]
and [17] as specific cases by using Algorithm 1. Here and in Section 5, we show through examples
the stronger results that

1. SI can recover globally optimal solutions when QI does not hold,

2. strictly better performance than the approach of [17] can be obtained.

For point 2), we refer to the numerical results in Section 5. For point 1), we consider an example
taken from [12].

Example 3 Consider the optimal control problem:

minimize
K(z)

lim
T→∞

1

T

T
∑

t=0

E||x(t)||22

subject to x(t+ 1) = Ax(t) + u(t) + w(t) ,

u(z) = K(z)x(z) , K(z) ∈ Sparse(Abin) ,

where z ∈ ejR, A ∈ Rn×n, Abin = Struct(A) and w(t) denotes i.i.d. disturbances distributed
according to a normal distribution N (0n×1, In). The discrete-time transfer function of this system
is G(z) = (zIp − A)−1. This problem without the sparsity constraint on K is known as the LQR
problem. By adding the sparsity constraint, it is an instance of PK in discrete-time. Notice that QI
does not hold whenever the graph defined by A is strongly connected because ∆ = Struct(G(z)) =
Struct

(

(zIn −A)−1
)

is equal to 1n×n in general, and so Abin∆Abin 6≤ Abin thus violating QI.
The reason to consider a discrete-time instance of PK is that its optimal solution can be com-

puted by solving the corresponding discrete-time Riccati equation [23] analytically. Indeed, we ver-
ify that the globally optimal solution isK(z) = −A. Now, consider problem PT,R with Γ(z) = G(z),
T = Abin and R = R⋆

Abin. We can verify that a feasible solution for PT,R is YQ(z) = −
A
z
(zIn −A),

because

YQΓ = YQ(zIn −A)−1 = −
A

z
∈ Sparse(Abin) .

This impliesXQ(z) = In−
A
z
by (8). Hence, XQ(z)Γ(z) = XQ(z)(zIn−A)

−1 = In
z
. SinceR⋆

Abin ≥ In
by design (see Algorithm 1), we have XQ(z)Γ(z) ∈ Sparse(R⋆

Abin) as desired. It is immediate to
verify that the resulting controller is K(z) = YQ(z)XQ(z)

−1 = −A. We conclude that, despite a
lack of QI, a convex approximation which contains the global optimum of PK is found by using the
proposed SI approach.

Remark 4 The global optimality result for this example was also obtained using the system level
parametrization in [12]. The sparsities for the system level parameters in [12] were chosen empir-
ically, while we provide an explicit methodology based on the SI condition (10) and Algorithm 1.
Furthermore, we wish to clarify that obtaining global optimality certificates for PK for systems
with non-QI constraints is still an open problem, which is not addressed neither by the system level
approach [12] nor by our SI framework. Both our approach and that of [12] can certify optimality
of the solution because the optimal solution of this simple instance is already known analytically.
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4.5 SI for static controller design

We conclude this section by highlighting another advantage of the SI notion over the QI notion; SI
can be used to compute distributed static control policies in a convex way, that is policies in the
form u(t) = Ky(t) where K is a real matrix in Sparse(S). This topic has been thoroughly studied
in our earlier work [16], where we derived a primitive version of the SI notion only applicable to
the static controller case. Here, we highlight that in contrast to the QI notion, SI can be applied
both for static and dynamic distributed control design.

The main observation is that the Youla parametrization cannot achieve a convexification of
the static controller design problem in general, because the constraint K = (Vr −MrQ)(Ur −
NrQ)−1 ∈ Rm×p is non-convex in Q. Consequently, a different parametrization must be used and
the QI property, tightly linked to the use of a Youla-like parametrization, will not be relevant
anymore. The most well-known techniques to convexify the H2 and H∞ norm-optimal state-
feedback static controller design problems are based on computing appropriate quadratic Lyapunov
functions through Linear Matrix Inequalities (LMI); see [24, 25] for a comprehensive review. The
more general case of static output-feedback is known to be NP-hard [5] and an exact convex
formulation does not exist.

As we illustrated in [16], when the distributed static control problem is formulated through
LMIs, the controller is recovered as K = Y X−1, where Y and X are real decision variables, X
is symmetric positive semidefinite and V (x) = xTX−1x is a quadratic Lyapunov function for the
closed-loop system. If the controller must lie in a sparsity subspace Sparse(S), the only source
of non-convexity stems from requiring that Y X−1 ∈ Sparse(S). This expression for the static
controller in terms of the decision variables matches that of K = YQX

−1
Q , which is valid for

dynamic controllers in terms of the Youla parameter. According to Theorem 1 and Corollary 1,
convex restrictions can be obtained by choosing binary matrices T and R as per (10) that satisfy
the SI condition (9), and requiring that Y Γ ∈ Sparse(T ) and XΓ ∈ Sparse(R) for any invertible
real matrix Γ ∈ Rn×n. We refer the interested reader to [16] for details.

5 Numerical Results

With the goal of providing insight into our proposed method and showing its potential benefits, we
continue here our Example 1, and present numerical results.

Example 1 (continued) Consider the optimal distributed controller design problem formulated in
Example 1. We have observed in Example 2 that Sparse(S) is not QI with respect to G. As we have
summarized in Section 4.2, [17] suggests identifying a binary matrix TQI < S such that Sparse(TQI)
is QI with respect to G ans ‖S‖0 − ‖TQI‖0 is minimized. In this case, we verify by inspection
that S2 in (15) is the only QI sparsity pattern TQI such that ‖S‖0 − ‖TQI‖0 ≤ 2. As suggested
in [17], we can thus substitute the constraint YQ(XQ)

−1 ∈ Sparse(S) with YQ ∈ Sparse(S2) and
the corresponding convex program is a restriction of PK . Our goal is to compare the minimal cost
of this convex restriction and that of PS,R⋆

S
with Γ = Ip obtained through SI.

Finite-dimensional approximation: Since the convex programs we have cast are infinite-dimensional,
due to the decision variables being transfer matrices whose order is not fixed, it is necessary to re-
sort to finite-dimensional approximation techniques. Here, we adapt the semidefinite programming
technique of [26] to the continuous-time case and to the H2 norm, by exploiting standard results
from [25, 27]. It is beyond the scope of this paper to compare this methodology with different
finite-dimensional approximation techniques available in the literature. The key idea behind the
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Table 1: Numerical results for Example 1 using the nearest QI subset approach [17] and the proposed SI approach
PS,R⋆

S
. N is the order of finite approximation, and the lowest cost for each N is marked by ∗.

Nearest QI subset PS,R⋆
S

N = 1 10.5885∗ 10.5885∗

N = 2 8.4031 8.3859∗

N = 3 8.2932 8.2689∗

N = 4 8.2056 8.1814∗

N = 5 8.1986 8.1748∗

N = 6 8.1972 8.1736∗

approach of [26] is summarized as follows. Consider the set

{

(s + a)−k
}N

k=0
, (16)

where N ∈ N and a > 0 is any real number. By [28], for every g′ ∈ RH∞ in continuous-time
there exists g in the subspace spanned by (16) with N →∞ such that ‖g−g′‖<ǫ for every ǫ > 0,
where ‖ · ‖ can be, for instance, the H2, H∞ or L1 norm [28]. Hence, optimizing over the subspace
spanned by (16) for N → ∞ yields the same results as optimizing over RH∞. Now if the Youla
parameter Q is parametrized as

Q =
N
∑

i=0

Q[i](s + a)−i , (17)

for some N ∈ N, and the real matrices Q[i] for all i are decision variables, we have that Q ∈ RHm×p
∞

and a finite-dimensional approximation of our convex program is obtained. The corresponding H2

norm of f(K) can be then encoded through semidefinite constraints as per the results of [25–27].
Numerical results: As outlined above, we solved finite-dimensional approximations of the

convex restriction proposed in [17] and of our convex restriction PS,R⋆
S

with Γ = Ip obtained
through SI. The doubly-coprime factorization for G is computed as per [7, Theorem 17] using the
stable and stabilizing controller Knom suggested in [7, Page 1995]. In (17), we chose a = 2, as it
was found to yield the lowest cost, and increased values of N until the improvement on the cost
was negligible. The semidefinite programs were solved with MOSEK [29], called through MATLAB
via YALMIP [30], on a standard laptop computer.

As listed in Table 1, our SI method leads to a lower cost for all N compared with the nearest
QI subset approach. This improvement is possible because the entries (1, 1) and (2, 1) are allowed
to be non-zero in the controllers corresponding to solutions of PS,R⋆

S
, whereas they are forced to be

0 to comply with the sparsity of the nearest QI subset S2 as per [17]. For instance, let K⋆ be the
controller recovered by the solution of the finite-dimensional approximation of PS,R⋆

S
with a = 2

and N = 2, where N = 2 < 6 is chosen in the interest of a shorter expression for K⋆
1,1(s), which

is reported in the footnote2. Since K⋆
1,1(s) 6= 0, this controller K⋆(s) with lower cost could not be

computed with the method of [17], according to which K⋆
1,1(s) is forced to be zero.

For completeness, we additionally considered the nearest QI superset of S defined as the binary
matrix S3 ≥ S such that S3 is QI and ‖S3‖0 − ‖S‖0 is minimized [17]. The QI superset is unique

2K⋆
1,1(s) = − 5.3138+46.445s+189.96s2+484.78s3+867.85s4+1160.5s5+1203.1s6+989.09s7+652.73s8+347.26s9+148.47s10+50.451s11+

20.455+184.1s+778.84s2+2064.8s3+3857.2s4+5406.4s5+5904.8s6+5144.1s7+3623.8s8+2077.5s9+969.37s10+365.84s11+

+13.341s12+2.6488s13+0.3714s14+0.033s15+0.0014s16

+110.18s12+25.881s13+4.5687s14+0.5697s15+0.0447s16+0.0017s17
.
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and is computed with the algorithm (13)-(14) of [17]:

S3 =













1 0 0 0 0
1 1 0 0 0
1 1 0 0 0
1 1 0 0 0
1 1 0 0 1













.

By setting a = 2 and N = 6, the corresponding globally optimal controller K⋆
3 ∈ Sparse(S3) yields a

cost of 8.0833. Since K⋆
3 does not lie in Sparse(S), and Sparse(S3) is QI with respect to G, the value

8.0833 serves as a lower-bound on the optimal cost of PK . We conclude that, for a = 2 and N = 6,
our SI solution improves on that of [17] based on QI subsets by at least 8.1972−8.1736

8.1972−8.0833 = 20.7%.

6 Conclusions

We have proposed the framework of Sparsity Invariance (SI) for convex design of optimal and
near-optimal distributed controllers. One main insight is that the proposed SI framework offers
a direct generalization of previous design methods based on the notion of Quadratic Invariance
(QI). Indeed, SI can be directly applied to any systems and information structures. The recovered
solution is globally optimal when QI holds and performs at least as well as the nearest QI subset
when QI does not hold. We have shown the potential benefits of SI over previous methods through
examples, and remarked that SI is naturally applicable to distributed static controller design.

Since the condition (10) is necessary and sufficient for the SI property (9), our results approach
the limits in performance of convex restrictions of the distributed control problem which are based
on structural conditions for the Youla parameter. This opens up the question of whether different
and more performing design methodologies can be developed for this challenging problem. Another
direction for research is to further refine the SI approach, by developing tractable heuristics to
optimally design the binary matrices T and R and the parameter Γ simultaneously based on the
knowledge of the system P. This could potentially improve upon Algorithm 1. Finally, we note that
similar to QI, SI is an algebraic condition independent of the chosen parameterization of stabilizing
controllers. In this work, we solely focus on the Youla parameterization. A detailed comparison
when combining SI with the input-output [31] and the system-level [12] parametrizations is left for
future work.

Appendix

6.1 Proof of Theorem 1

The proof relies on two Lemmas. We report the proof of Lemma A1 in Appendix 6.2 and the proof
of Lemma A2 in Appendix 6.3.

Lemma A1 Let R ∈ {0, 1}p×p with R ≥ Ip. Then,

1. For any invertible transfer matrix X in Sparse (R), we have

Struct
(

X−1
)

≤ Rp−1 .

2. There exists an invertible transfer matrix X ∈ Sparse(R) such that

Struct
(

X−1
)

= Rp−1 .
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Lemma A2 Let T ∈ {0, 1}m×p and R ∈ {0, 1}p×p, and Struct(W) = R. Then, there exists
Z ∈ Sparse(T ) such that

Struct(ZW) = TR .

We are now ready to prove Theorem 1.
1) ⇒ 2): Let X ∈ Sparse(R) be invertible. By Lemma A1 we know that X−1 ∈ Sparse(Rp−1).

Now let Y ∈ Sparse(T ). Since TRp−1 ≤ S, we have YX−1 ∈ Sparse(S).
2)⇒ 1): We prove by contrapositive. First, suppose that TRp−1 6≤ S. By the second statement

of Lemma A1 it is possible to select X ∈ Sparse(R) such that Struct(X−1) = Rp−1. By the latter
and Lemma A2, we can select Y ∈ Sparse(T ) such that Struct

(

YX−1
)

= TRp−1, or equivalently
YX−1 6∈ Sparse(S). Next, suppose that T 6≤ S. Since R ≥ Ip by hypothesis, then TR 6≤ S and
TRp−1 6≤ S. Hence, the same reasoning applies.

6.2 Proof of Lemma A1

SupposeX ∈ Sparse(R) is invertible. By Cayley-Hamilton’s theorem
∑n

i=0 λiX
i = 0 where {λi}

p
i=0,

λi ∈ Rp for every i = 1, . . . , p are the coefficients of the characteristic polynomial of X and
λ0 = detX 6= 0. We remark that Cayley-Hamilton applies as it is valid over square matrices
defined over a commutative ring such as the commutative ring of proper transfer functions [32]. By
pre-multiplying by X−1 and rearranging the terms we obtain

X−1 = −λ−1
0 (λ1Ip + λ2X+ λ3X

2 + · · ·+ λpX
p−1) . (18)

Since R ≥ Ip we have that Ra ≥ Rb for every integer a ≥ b. Hence, λiX
i ∈ Sparse

(

Rp−1
)

for every
i and the first statement follows by (18).

For the second statement, we iteratively construct X starting from X = Ip. Let α ∈ Rp. Define

X̃ = X + αeie
T

j . Let X−1
:,i ∈ R

p×1
p and X−1

j,: ∈ R
1×p
p be the i-th column and the j-th row of X−1

respectively, and let X−1
ij be the entry (i, j) of X−1. Using the Sherman-Morrison identity [33], if

X̃ is invertible we obtain

X̃−1
i,: = X−1

i,: −
αX−1

ii

1 + αX−1
ji

X−1
j,: . (19)

Recall that each entry of a transfer matrix is a transfer function defined over s = jω. Hence, by
the definition of an invertible transfer matrix given in Section 2, (19) holds for almost every ω ∈ R.
From (19), it is easy to verify that, for any i and α ∈ Rp, if X

−1
ii 6= 0, then X̃−1

ii 6= 0. It follows
that by choosing α such that

αX−1
ji 6= −1 and α

(

X−1
ii X−1

jk −X−1
ji X

−1
ik

)

6= X−1
ik

for almost all ω ∈ R ,

∀k subject to X−1
jk and X−1

ik are not both null , (20)

we obtain that

Struct
(

X̃−1
i,:

)

= Struct
(

X−1
i,:

)

+ Struct
(

X−1
j,:

)

, (21)

for almost all ω ∈ R .

The condition (20) is derived by setting the right hand side of (19) to be different from 0 for every
k such that X−1

ik and X−1
jk are not both null for every ω ∈ R. Observe that α as per (20) always
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exists, because there is no k such that X−1
ik and X−1

jk are both null for every ω ∈ R, and hence

α
(

X−1
ii X−1

jk −X−1
ji X

−1
ik

)

6= X−1
ik always admits a solution in α ∈ Rp. The structural augmentation

(21) is exploited in the algorithm below.

1: Set X = Ip
2: repeat ⊲ max. (|R| − p)(p− 1) iterations
3: for each (i, j) such that i 6= j and Rij = 1 do
4: Choose α according to (20)
5: X← X+ αeie

T

j

6: end for
7: until Struct(X−1) = Rp−1

8: Return X

The algorithm returns a matrix X such that Struct(X−1) = Rp−1. Specifically, by exploiting
(21) we obtain that Struct(X−1) ≥ Rs at the end of the s-th iteration of the “repeat-until” cycle.

6.3 Proof of Lemma A2

Let Z be any transfer matrix in Sparse(T ). Assume that Struct(ZW) < TR. Then, for some
(i, j, k) we have that ZWij = 0 and Tik = Rkj = 1. We know by hypothesis that Wkj 6= 0. Since
∑p

l=1ZilWlj = 0, it is sufficient to update Zik with Zik +α for any α 6= 0 in Rp to guarantee that

ZWij 6= 0. Furthermore, by choosing α 6= −ZWit

Wkt
for all t such that ZWit 6= 0, we avoid that

adding α to Zik brings ZWit to 0 when ZWit 6= 0. Hence, it is always possible to choose k and
α such that ZW + αeie

T

k > ZW and Z ∈ Sparse(T ). By iterating the procedure for all (i, j) such
that Struct(ZW)ij < TRij, we converge to Struct(ZW) = TR.

References
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