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Abstract: We propose an efficient first-order method, based on the alternating direction method
of multipliers (ADMM), to solve the homogeneous self-dual embedding problem for a primal-dual
pair of semidefinite programs (SDPs) with chordal sparsity. Using a series of block eliminations,
the per-iteration cost of our method is the same as applying a splitting method to the primal
or dual alone. Moreover, our approach is more efficient than other first-order methods for
generic sparse conic programs since we work with smaller semidefinite cones. In contrast to
previous first-order methods that exploit chordal sparsity, our algorithm returns both primal
and dual solutions when available, and it provides a certificate of infeasibility otherwise. Our
techniques are implemented in the open-source MATLAB solver CDCS. Numerical experiments
on three sets of benchmark problems from the library SDPLIB show speed-ups compared to
some common state-of-the-art software packages.
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1. INTRODUCTION

Semidefinite programs (SDPs) are a type of convex opti-
mization problems commonly used in control theory, ma-
chine learning, signal processing, and many other areas. It
is well-known that although small and medium-sized SDPs
can be efficiently solved in polynomial time using second-
order interior-point methods (IPMs), these methods be-
come less practical for large-scale SDPs due to memory
and time constraints (Helmberg et al., 1996; Alizadeh
et al., 1998). As noted by Andersen et al. (2011), exploiting
sparsity in SDPs has been one of the main approaches to
improve the scalability of semidefinite programming, and
it is still an active and challenging area of research.

In this paper, we present an efficient first-order algorithm
to solve the homogeneous self-dual embedding formula-
tion of large-scale SDPs characterized by chordal sparsity,
meaning that the graph representing their aggregate spar-
sity pattern is chordal (or has a sparse chordal extension).
Chordal graphs—undirected graphs with the property that
every cycle of length greater than three has a chord—
are very well studied objects in graph theory (Blair and
Peyton, 1993; Vandenberghe and Andersen, 2014). Their
connection to SDPs relies on two fundamental theorems
due to Grone et al. (1984) and Agler et al. (1988): pro-
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vided that its sparsity pattern is chordal, a large positive
semidefinite (PSD) cone can be equivalently replaced with
a set of coupled smaller PSD cones.

For this reason, chordal sparsity is a key feature of
SDPs (De Klerk, 2010), and recent years have seen in-
creasing efforts to exploit it in order to increase the com-
putational efficiency of SDP solvers. For instance, Fukuda
et al. (2001) and Kim et al. (2011) proposed the domain-
space and the range-space conversion techniques to reduce
the computational burden of existing IPMs for SDPs with
large matrix inequality constraints. These techniques, im-
plemented in the MATLAB package SparseCoLO (Fuji-
sawa et al., 2009), rely on the introduction of additional
equality constraints to decouple the smaller PSD cones
obtained from Grone’s and Agler’s theorems. However, the
addition of equality constraints often offsets the benefit of
working with smaller semidefinite cones.

One possible solution to this problem is to exploit the
properties of chordal sparsity directly in IPMs (Fukuda
et al., 2001; Burer, 2003; Andersen et al., 2010). Another
promising direction is to solve decomposable SDPs via
first-order methods. For instance, Sun et al. (2014) pro-
posed a first-order splitting algorithm for conic optimiza-
tion with partially separable structure, including SDPs
with chordal sparsity. Kalbat and Lavaei (2015) applied
the alternating direction method of multipliers (ADMM)
to solve a special class of SDPs with fully decompos-
able constraints. Madani et al. (2015) developed a highly-
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parallelizable ADMM algorithm for sparse SDPs with in-
equality constraints with applications to optimal power
flow problems. More recently, the authors have combined
ADMM and chordal decomposition to solve sparse SDPs in
either primal or dual standard forms (Zheng et al., 2016b),
providing a conversion framework which is suitable for
the application of first-order methods and parallels that
of Fukuda et al. (2001) and Kim et al. (2011) for IPMs.

However, none of the aforementioned first-order methods
can handle infeasible or unbounded problems. Solving the
homogeneous self-dual embedding of the primal-dual pair
of optimization problems (Ye et al., 1994) provides an ele-
gant solution to this issue. The essence of this method is to
search for a non-zero point in the non-empty intersection
of a convex cone and an affine space. Using this point,
one can then either recover an optimal solution of the
original primal-dual pair of SDPs, or construct a certificate
of primal or dual infeasibility. Homogeneous self-dual em-
beddings have been widely used in IPMs (Sturm, 1999; Ye,
2011); more recently, O’Donoghue et al. (2016b) have pro-
posed an operator-splitting method for the homogeneous
self-dual embedding of general conic programs that scales
well with problem size. This algorithm consists in alter-
nating projections onto a convex cone and an affine space,
and is implemented in the C package SCS (O’Donoghue
et al., 2016a).

In this work, we show that the conversion techniques for
primal and dual standard-form SDPs developed in Zheng
et al. (2016b) can be extended to the homogeneous
self-dual embedding. Also, we extend the algorithm
in O’Donoghue et al. (2016b) to take advantage of chordal
sparsity. Our main contributions are:

(1) We formulate the homogeneous self-dual embedding
of a primal-dual pair of SDPs whose conic constraints
are decomposed using Grone’s and Agler’s theorems.
This extends the conversion techniques for sparse
SDPs developed in our previous work (Zheng et al.,
2016b). To the best of our knowledge, it is the first
time that such a formulation is presented.

(2) We extend the ADMM algorithm of O’Donoghue
et al. (2016b) to take advantage of the special
structure of our homogeneous self-dual formulation,
thereby reducing its computational complexity. Our
algorithm is more efficient than a direct application of
the method of O’Donoghue et al. (2016b) to either the
original primal-dual pair (i.e., before chordal sparsity
is taken into account), or the decomposed problems:
in the former case, the chordal decomposition reduces
the cost of the conic projections; in the latter case, we
speed up the affine projection step using a series of
block-eliminations.

(3) We implement our techniques in the MATLAB solver
CDCS (Cone Decomposition Conic Solver). This is
the first open source first-order solver that exploits
chordal decomposition and is able to handle in-
feasible problems. Numerical simulations on three
sets of benchmark problems from the library SD-
PLIB (Borchers, 1999) demonstrate the efficiency of
our self-dual algorithm compared to other commonly
used software packages.

The rest of this paper is organized as follows. Section 2
reviews some background material. We present the homo-
geneous self-dual embedding of SDPs with chordal sparsity
in Section 3. Section 4 discusses our ADMM algorithm in
detail, and we report numerical experiments in Section 5.
Finally, Section 6 offers concluding remarks.

2. PRELIMINARIES

2.1 Chordal graphs

Let G(V , E) be an undirected graph with nodes V =
{1, 2, . . . , n} and edges E ⊆ V×V . A subset of nodes C ⊆ V
is called a clique if (i, j) ∈ E for any distinct nodes i, j ∈ C.
If C is not a subset of any other clique, then it is referred to
as a maximal clique. The number of nodes in C is denoted
by |C|, and C(i) indicates the i-th element of C, sorted in
the natural ordering.

An undirected graph G is called chordal if every cycle
of length greater than 3 has at least one chord (an edge
connecting two nonconsecutive nodes in the cycle). Note
that if G(V , E) is not chordal, it can be chordal extended,
i.e., we can construct a chordal graph G′(V , E ′) by adding
suitable edges to E (Yannakakis, 1981).

2.2 Sparse matrices defined by graphs

Let G = (V , E) be an undirected graph, and assume that
(i, i) ∈ E for any node i ∈ V . A partial symmetric matrix
is a symmetric matrix in which the entry Xij is specified
if and only if (i, j) ∈ E . In this work, we use the following
sets of symmetric matrices defined on E :
S
n(E , ?) = the space of n× n partial symmetric matrices

with elements defined on E ,
S
n
+(E , ?) ={X ∈ S

n(E , ?) | ∃M � 0,Mij = Xij , ∀(i, j) ∈ E},
S
n(E , 0) ={X ∈ S

n | Xij = 0, if (i, j) /∈ E},
S
n
+(E , 0) ={X ∈ S

n(E , 0) | X � 0}.

Note that S
n
+(E , ?) and S

n
+(E , 0) are two types of sparse

matrix cones, and that they are the dual of each other for
any (that is, chordal or not) sparsity pattern E (Vanden-
berghe and Andersen, 2014).

Finally, let C be a maximal clique of the graph G, and
let EC ∈ R

|C|×n be the matrix with entries (EC)ij = 1
if C(i) = j and (EC)ij = 0 otherwise. Then, given a
symmetric matrix X ∈ S

n, the submatrix of X defined
by the clique C can be represented as ECXET

C ∈ S
|C|.

2.3 Chordal decomposition

The problems of deciding if X ∈ S
n
+(E , ?) or Z ∈ S

n
+(E , 0)

can be posed as problems over several smaller (but cou-
pled) convex cones according to the following theorems:

Theorem 1. (Grone et al. (1984)). Let G(V , E) be a chordal
graph with maximal cliques {C1, C2, . . . , Cp}. Then, X ∈
S
n
+(E , ?) if and only if Xk := ECk

XET
Ck

∈ S
|Ck|
+ for all

k = 1, . . . , p.

Theorem 2. (Agler et al. (1988)). Let G(V , E) be a chordal
graph with maximal cliques {C1, C2, . . . , Cp}. Then, Z ∈
S
n
+(E , 0) if and only if there exist matrices Zk ∈ S

|Ck|
+ for

k = 1, . . . , p such that Z =
∑p

k=1
ET

Ck
ZkECk

.



Note that these two theorems can be proven individually,
but can also can be derived from each other using the
duality of the cones Sn+(E , ?) and S

n
+(E , 0) (Vandenberghe

and Andersen, 2014).

3. HOMOGENEOUS SELF-DUAL EMBEDDING OF
SPARSE SDPS

Consider the standard primal-dual pair of SDPs, i.e.,

min
X

〈C,X〉
subject to 〈Ai, X〉 = bi, i = 1, . . . ,m,

X ∈ S
n
+,

(1)

and
max
y,Z

〈b, y〉

subject to

m
∑

y=1

yiAi + Z = C,

Z ∈ S
n
+.

(2)

The vector b ∈ R
m and the matrices C, A1, . . . , Am ∈ S

n

are the problem data; X is the primal variable, and y, Z
are the dual variables. We say that (1) and (2) have the
aggregate sparsity pattern G = (V , E) if C,A1, . . . , Am ∈
S
n(E , 0). Throughout this work, we will assume that G is

chordal (otherwise, it can be chordal extended), and that
its maximal cliques C1, . . . , Cp are small.

3.1 Sparse SDPs with Chordal Decomposition

Aggregate sparsity implies that the dual variable Z in
(2) must have the sparsity pattern defined by E , i.e.,
Z ∈ S

n(E , 0). Similarly, although the primal variable X
in (1) is usually dense, the cost function and the equality
constraints only depend on the entries Xij in the sparsity
pattern E , while the remaining entries only guarantee that
X is positive semidefinite. This means that it suffices to
consider X ∈ S

n
+(E , ?). Then, according to Theorems 1-2,

we can rewrite (1) and (2), respectively, as

min
X,X1,...,Xp

〈C,X〉

subject to 〈Ai, X〉 = bi, i = 1, . . . ,m,

Xk = ECk
XET

Ck
, k = 1, . . . , p,

Xk ∈ S
|Ck|
+ , k = 1, . . . , p,

(3)

and
max

y,Z1,...,Zp,V1,...,Vp

〈b, y〉

subject to

m
∑

i=1

yiAi +

p
∑

k=1

ET
Ck
VkECk

= C,

Zk = Vk, k = 1, . . . , p,

Zk ∈ S
|Ck|
+ , k = 1, . . . , p.

(4)

It is not difficult to check that the decomposed problems
(3) and (4) are also the dual of each other by virtue of the
duality between Grone’s and Agler’s theorems.

To ease the exposition, let vec : Sn → R
n2

be the usual
operator mapping a matrix to the stack of its column, and
define the vectorized data

c := vec(C), A := [vec(A0) . . . vec(Am)]
T
,

the vectorized variables

x := vec(X), xk := vec(Xk),

zk := vec(Zk), vk := vec(Vk), k = 1, . . . , p,

and the matrices

Hk := ECk
⊗ ECk

, k = 1, . . . , p, (5)

such that

xk = vec(Xk) = vec(EkXET
k ) = Hkx.

Note that H1, . . . , Hp are “entry-selector” matrices of
1’s and 0’s, whose rows are orthonormal. These matrices
project x onto the subvectors x1, . . . , xp, respectively.
Also, we notice that HT

k Hk is diagonal.

If we denote the constraints Xk ∈ S
|Ck|
+ by xk ∈ Sk, we can

rewrite (3) and (4) as

min
x,x1,...,xp

〈c, x〉

subject to Ax = b,

xk = Hkx, k = 1, . . . , p,

xk ∈ Sk, k = 1, . . . , p,

(6)

and
max

y,z1,...,zp,v1,...,vp
〈b, y〉

subject to AT y +

p
∑

k=1

HT
k vk = c,

zk − vk = 0, k = 1, . . . , p,

zk ∈ Sk, k = 1, . . . , p.

(7)

3.2 Homogeneous Self-Dual Embedding

For notational simplicity, let S := S1× · · ·×Sp and define

s :=







x1

...
xp






, z :=







z1
...
zp






, v :=







v1
...
vp






, H :=







H1

...
Hp






.

When strong duality holds for (6) and (7), the following
KKT conditions are necessary and sufficient for optimality
of the tuple (x∗, r∗, w∗, s∗, h∗, y∗, v∗, z∗):

• (x∗, r∗, w∗, s∗) is primal feasible, i.e.

Ax∗ − r∗ = b, r∗ = 0,

s∗ + w∗ = Hx∗, w∗ = 0, s∗ ∈ S. (8)

• (h∗, y∗, v∗, z∗) is dual feasible, i.e.

AT y∗ +HT v∗ + h∗ = c, h∗ = 0,

z∗ − v∗ = 0, z∗ ∈ S. (9)

• The duality gap is zero, i.e.

cTx∗ − bT y∗ = 0. (10)

The idea behind the homogeneous self-dual embedding (Ye
et al., 1994) is to introduce two non-negative and comple-
mentary variables τ and κ and embed the KKT conditions
(8), (9) and (10) into the linear system











h
z
r
w
κ











=











0 0 −AT −HT c
0 0 0 I 0
A 0 0 0 −b
H −I 0 0 0
−cT 0 bT 0 0





















x
s
y
v
τ











. (11)

Any solution of this embedding can be used to recover
an optimal solution for (6)-(7), or provide a certificate for



primal or dual infeasibility; see O’Donoghue et al. (2016b)
for details.

Letting nd =
∑p

k=1
|Ck|2, defining

K := R
n2 × S × R

m × R
nd × R+,

and writing

u :=











x
s
y
v
τ











, v :=











h
z
r
w
κ











, Q :=











0 0 −AT −HT c
0 0 0 I 0
A 0 0 0 −b
H −I 0 0 0
−cT 0 bT 0 0











to further ease the notation, the decomposed primal-dual
pair of SDPs (6)-(7) can be recast as the feasibility problem

find (u, v)

subject to v = Qu,

(u, v) ∈ K ×K∗,

(12)

where K∗ denotes the dual of the cone K.

4. ADMM FOR THE HOMOGENEOUS SELF-DUAL
EMBEDDING

4.1 Basic algorithm

Problem (12) is in the same form considered by O’Donoghue
et al. (2016b), so we can directly apply their ADMM
algorithm. The k-th iteration of the algorithm consists the
following three steps, where ΠK denotes projection on the
cone K:

ûk+1 = (I +Q)−1(uk + vk), (13a)

uk+1 = ΠK(û
k+1 − vk), (13b)

vk+1 = vk − ûk+1 + uk+1. (13c)

Note that (13b) is inexpensive, since K is the cartesian
product of simple cones (zero, free and non-negative cones)
and small PSD cones, and can be efficiently carried out in
parallel. The third step is also computationally inexpensive
and parallelizable. On the contrary, although the preferred
factorization of I +Q (or its inverse) can be cached before
starting the iterations, a direct implementation of (13a)
can be computationally intensive since Q is a very large
matrix. Yet, Q is highly structured and sparse; in the next
sections, we show how its special structure can be exploited
to speed up the affine projection in (13a) by using a series
of block-eliminations.

4.2 Solving the linear system

The affine projection step (13a) requires solving a linear
system in the form





I ÂT ĉ

−Â I b̂

−ĉT −b̂T 1





[

û1

û2

û3

]

=

[

ω1

ω2

ω3

]

, (14)

where

Â =

[

−A 0
−H I

]

, ĉ =

[

c
0

]

, b̂ =

[

−b
0

]

.

Note that û3 and ω3 are scalars. Letting

M :=

[

I ÂT

−Â I

]

, ζ :=

[

ĉ

b̂

]

,

and carrying out block elimination on (14), we obtain

(M + ζζT )

[

û1

û2

]

=

[

ω1

ω2

]

− ω3ζ. (15)

û3 = ω3 + ĉT û1 + b̂T û2. (16)

Moreover, the matrix inversion lemma (Boyd and Vanden-
berghe, 2004) allows us to write the solution of (15) as
[

û1

û2

]

=

[

M−1 − (M−1ζ)ζTM−1

1 + ζT (M−1ζ)

]([

ω1

ω2

]

− ω3ζ

)

. (17)

Note that the vector M−1ζ only depends on the problem
data, and can be cached before starting the ADMM
iterations. The scalar 1 + ζT (M−1ζ) can also be cached.
Consequently, updating û1, û2 and û3 at each iteration
requires:

(1) the solution of the “inner” linear system to compute

M−1

([

ω1

ω2

]

− ω3ζ

)

.

(2) a series of inexpensive vector inner products and
scalar-vector operations in (16) and (17).

4.3 Solving the “inner” linear system

Recalling the definition of M , computing (17) requires the
solution of a linear system of the form

[

I ÂT

−Â I

](

û1

û2

)

=

(

ω̂1

ω̂2

)

. (18)

Block elimination leads to

û1 = ω̂1 − ÂT û2, (19)

(I + ÂÂT )û2 = Âω̂1 + ω̂2. (20)

Recalling the definition of Â and recognizing that

D := HTH =

p
∑

k=1

HT
k Hk

is a diagonal matrix, we also have

I + ÂÂT =

[

I +D +ATA −HT

−H 2I

]

. (21)

Given the special structure of this matrix, block elimi-
nation can be used again to solve (20). Simple algebraic
manipulations show that the only matrix to be factorized
before starting the ADMM iterations is

I +
1

2
D +ATA. (22)

Note that the matrix of (22) is in “diagonal plus low rank”
form, so the matrix inversion lemma can be used to reduce
the size of the matrix to invert even further.

4.4 Summary of computational gains

The algorithm outlined in the previous sections is clearly
more efficient than a direct application of the ADMM
algorithm of O’Donoghue et al. (2016b) to the decom-
posed primal-dual pair of SDPs (6)-(7). In fact, the cost
of the conic projection (13b) will be the same for both
algorithms, but the sequence of block eliminations and ap-
plications of the matrix inversion lemma we have described
greatly reduces the cost of the affine projection step.

Furthermore, it can be checked that when we exploit
the special structure of the matrix I + Q, the overall



Table 1. Details of the SDPLIB problems considered in this work.

Small and medium-size (n ≤ 100) Large-scale and sparse (n ≥ 800) Infeasible
theta1 theta2 qap5 qap9 maxG11 maxG32 qpG11 qpG51 infp1 infd1

Original cone size, n 50 100 26 82 800 2000 1600 2000 30 30
Affine constraints, m 104 498 136 748 800 2000 800 1000 10 10
Number of cliques, p 1 1 1 1 598 1499 1405 1675 1 1
Maximum clique size 50 100 26 82 24 60 24 304 30 30
Minimum clique size 50 100 26 82 5 5 1 1 30 30

Table 2. Results for some small and medium-sized SDPs in SDPLIB.

SeDuMi
SparseCoLO+

SeDuMi
SCS

CDCS
(primal)

CDCS
(dual)

Self-dual

theta1

Total time (s) 0.262 0.279 0.145 0.751 0.707 0.534
Pre- time (s) 0 0.005 0.011 0.013 0.010 0.012

Iterations 14 14 240 317 320 230
Objective 2.300 ×101 2.300×101 2.300×101 2.299×101 2.299×101 2.303×101

theta2

Total time (s) 1.45 1.55 0.92 1.45 1.30 0.60
Pre- time (s) 0 0.014 0.018 0.046 0.036 0.031

Iterations 15 15 500 287 277 110
Objective 3.288 ×101 3.288×101 3.288×101 3.288×101 3.288×101 3.287×101

qap5

Total time (s) 0.365 0.386 0.412 0.879 0.748 1.465
Pre- time (s) 0 0.006 0.026 0.011 0.009 0.009

Iterations 12 12 320 334 332 783
Objective -4.360×102 -4.360×102 -4.359×102 -4.360×102 -4.364×102 -4.362×102

qap9

Total time (s) 6.291 6.751 3.261 7.520 7.397 1.173
Pre- time (s) 0 0.012 0.010 0.064 0.036 0.032

Iterations 25 25 2000 2000 2000 261
Objective -1.410×103 -1.410×103 -1.409×103 -1.407×103 -1.409×103 -1.410×103

0 200 400 600 800

0

200

400

600

800

(a) maxG11
0 500 1000 1500 2000

0

500

1000

1500

2000

(b) maxG32

0 500 1000 1500

0

500

1000

1500

(c) qpG11
0 500 1000 1500 2000

0

500

1000

1500

2000

(d) qpG51

Fig. 1. Aggregate sparsity pattern of four large-scale SDPs.

computational cost of (13a) coincides (at least to leading
order) with the cost of the affine projection step when
the algorithm of O’Donoghue et al. (2016b) is applied
to the original primal-dual pair (1)-(2), before chordal
decomposition. This means that our algorithm should also
outperform the algorithm of O’Donoghue et al. (2016b)
applied to the original primal-dual pair of SDPs (1)-(2):
the cost of the affine projection is the same, but the conic
projection in our algorithm is more efficient since we work
with smaller semidefinite cones.

5. NUMERICAL SIMULATIONS

We have implemented our techniques in CDCS (Cone De-
composition Conic Solver) (Zheng et al., 2016a). The codes
are available from: https://github.com/giofantuzzi/
CDCS/tree/developer.

This is the first open-source first-order solver that ex-
ploits chordal decomposition with the ability to handle
infeasible problems. In addition to the homogeneous self-
dual embedding algorithm, CDCS also includes the primal
and dual methods of Zheng et al. (2016b). Currently,
CDCS supports cartesian products of the following cones:
R

n, non-negative orthant, second-order cone, and positive
semidefinite cone. We only implemented chordal decom-
position techniques for semidefinite cones, while the other
supported cone types are not decomposed.

CDCS was tested on three sets of benchmark problems in
SDPLIB (Borchers, 1999):

(1) Four small and medium-sized SDPs (two Lovász
ϑ number problems, theta1 and theta2, and two
quadratic assignment problems, qap5 and qap9);

(2) Four large-scale sparse SDPs (two max-cut problems,
maxG11 and maxG32, and two SDP relaxations of
box-constrained quadratic programming problems,
qpG11 and qpG51);

(3) Two infeasible SDPs (infp1 and infd1).

Table 1 reports the dimensions and some chordal decompo-
sition details of these problems, and Figure 1 illustrates the
aggregate sparsity patterns of the large-scale sparse SDPs.
The performance of our self-dual method is compared to



Table 3. Results for some large-scale sparse SDPs in SDPLIB.

SeDuMi
SparseCoLO+

SeDuMi
SCS

CDCS
(primal)

CDCS
(dual)

Self-dual

maxG11

Total time (s) 92.0 9.83 160.5 126.6 114.1 23.9
Pre- time (s) 0 2.39 0.07 3.33 4.28 2.45

Iterations 13 15 1860 1317 1306 279
Objective 6.292×102 6.292×102 6.292×102 6.292×102 6.292×102 6.295×102

maxG32

Total time (s) 1.385 ×103 577.4 2.487 ×103 520.0 273.8 87.4
Pre- time (s) 0 7.63 0.589 53.9 55.6 30.5

Iterations 14 15 2000 1796 943 272
Objective 1.568×103 1.568×103 1.568×103 1.568×103 1.568×103 1.568×103

qpG11

Total time (s) 675.3 27.3 1.115 ×103 273.6 92.5 32.1
Pre- time (s) 0 11.2 0.57 6.26 6.26 3.85

Iterations 14 15 2000 1355 656 304
Objective 2.449×103 2.449×103 2.449×103 2.449×103 2.449×103 2.450×103

qpG51

Total time (s) 1.984×103 – 2.290×103 1.627×103 1.635×103 538.1
Pre- time (s) 0 – 0.90 10.82 12.77 7.89

Iterations 22 – 2000 2000 2000 716
Objective 1.182×103 – 1.288×103 1.183×103 1.186×103 1.181×103

Table 4. Results for two infeasible SDPs in SDPLIB.

SeDuMi
SparseCoLO+

SeDuMi
SCS

CDCS
(primal)

CDCS
(dual)

Self-dual

infp1

Total time (s) 0.063 0.083 0.062 * * 0.18
Pre- time (s) 0 0.010 0.016 * * 0.010

Iterations 2 2 20 * * 104
Status Infeasible Infeasible Infeasible * * Infeasible

infd1
Total time (s) 0.125 0.140 0.050 * * 0.144
Pre- time (s) 0 0.009 0.013 * * 0.009

Iterations 4 4 40 * * 90
Status Infeasible Infeasible Infeasible * * Infeasible

that of the interior-point solver SeDuMi (Sturm, 1999), of
the first-order solver SCS (O’Donoghue et al., 2016a), and
of the primal and dual methods in CDCS (Zheng et al.,
2016b). We also used SparseCoLO (Fujisawa et al., 2009)
as a preprocessor for SeDuMi. The solution returned by
SeDuMi is of high accuracy, so we can use it to assess
the quality of the solution computed by CDCS. Also, SCS
is a high performance first-order solver for general conic
programs, so we can assess the unique features of our
techniques in terms of chordal decomposition.

In all experiments, we set the termination tolerance for
CDCS and SCS to ǫtol = 10−4, and the maximum number
of iterations to 2 × 103. All experiments were carried out
on a computer with an Intel(R) Core(TM) i7 CPU, 2.8
GHz processor and 8GB of RAM.

Our numerical results are summarized in Tables 2–5. In all
feasible cases, the objective value returned by our self-dual
algorithm was within 0.6% of the optimal value found by
SeDuMi. For the small and medium-sized dense SDPs, the
CPU time for our self-dual algorithm was approximately
the same as for SeDuMi, SCS, CDCS-primal and CDCS-
dual (Table 2). For the four large-scale sparse SDPs, our
self-dual method was faster than either SeDuMi or SCS
(Table 3). As expected, problems with smaller maximum
clique size, such as maxG11, maxG32, and qpG11, were
solved more efficiently (less than 100 s using our self-dual
algorithm). The conversion techniques in SparseCoLO can
give speedups in some cases, but the failure to solve the

Table 5. CPU time per iteration (s) for some
SDPs in SDPLIB

SCS
CDCS
(primal)

CDCS
(dual)

Self-dual

theta1 6× 10−4 2.3× 10−3 2.2× 10−3 2.3× 10−3

theta2 1.8× 10−3 5.1× 10−3 4.7× 10−3 5.5× 10−3

qap5 1.2× 10−3 2.6× 10−3 2.2× 10−3 1.9× 10−3

qap9 1.5× 10−3 3.6× 10−3 3.7× 10−3 4.2× 10−3

maxG11 0.086 0.094 0.084 0.077
maxG32 1.243 0.260 0.231 0.209
qpG11 0.557 0.198 0.132 0.093
qpG51 1.144 0.808 0.811 0.741

problem qpG51—due to memory overflow caused by the
large number of consensus constraints in the converted
problem—highlights their drawbacks.

As shown in Table 4, our self-dual algorithm successfully
detects infeasible problems, while our previous first-order
methods (CDCS-primal and CDCS-dual) do not have this
ability. Finally, Table 5 lists the average CPU time per
iteration for the first-order algorithms we tested. When
comparing the results, it should be kept in mind that our
codes are written in MATLAB, while SCS is implemented
in C. Yet, we still see that our self-dual algorithm is
faster than SCS for the large-scale sparse SDPs (maxG11,
maxG32, qpG11 and qpG51), which is expected since
the conic projection step is more efficient with smaller
semidefinite cones.



6. CONCLUSION

In this paper, we formulated the homogeneous self-dual
embedding of a primal-dual pair of sparse SDPs whose
conic constraints are decomposed using chordal decompo-
sition techniques, thereby extending the conversion meth-
ods developed in previous work by the authors (Zheng
et al., 2016b). We also showed how the special structure
of our homogeneous self-dual formulation can be exploited
to develop an efficient ADMM algorithm, which we imple-
mented in the conic solver CDCS.

Our numerical simulations on some benchmark problems
from the library SDPLIB (Borchers, 1999) show that
our self-dual algorithm can give speedups compared to
interior-point solvers such as SeDuMi (Sturm, 1999)—even
when chordal sparsity is exploited using SparseCoLO (Fu-
jisawa et al., 2009)—and also compared to the state-of-
the-art first-order solver SCS (O’Donoghue et al., 2016a).

Since the current implementation of our algorithms is
sequential, but many steps can be carried out in parallel,
further computational gains may be achieved by develop-
ing our solver CDCS to take full advantage of distributed
computing architectures. Whether and to which extent
chordal decomposition and first-order self-dual embedding
algorithms can be applied to sparse optimization problems
in other areas, such as sparse SDPs from sum-of-squares
programming, are also interesting open questions.
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