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Abstract— The topological variety significantly affects the
platooning of multi-vehicle systems. This paper presents a
distributed sliding mode control (SMC) method for vehicular
platoons with positive definite topologies. The platoon model
is assumed to be homogeneous with strict-feedback nonlinear
node dynamics. The design of distributed SMC is divided into
two parts, i.e., topological sliding surface design and topological
reaching law design. In the former, the sliding surface is defined
by weighted summation of individual error, while in the latter,
a topologically structured reaching law is proposed to conform
with the type of information flow exchange. The Lyapunov
method is exploited to prove asymptotic stability of the multi-
vehicle system. The effectiveness of this method is validated by
numerical simulations.

I. INTRODUCTION

The platooning of multi-vehicle system attracts increasing
attentions due to its potential to benefit highway traffic,
e.g., improving traffic utility, enhancing driving safety, and
reducing fuel consumption [1]. The objective of platoon
control is to ensure all the vehicles in a platoon run at a
harmonized speed while maintaining the desired inter-vehicle
gaps [2], [3].

The earliest platoon control dates back to the well-known
PATH project, where linear control strategies were employed
for linearized vehicle models in a rigid formation [4]. Since
then, many issues on platoon control have been discussed,
including control architecture, platoon modeling, spacing
policy, controller synthesis, and performance requirements.
Nowadays, many researchers have begun to study platoon
control from the viewpoint of multi-agent consensus, which
is able to further enhance platoon performances in a sys-
tematic way [5]. Existing examples include the selection
of spacing policies [6], string stability [7], scalability [8],
direct consideration of powertrain dynamics [9], dynamic
homogeneity and heterogeneity [10], [11]. A recent review
on platoon control can be found in [12].

The information flow topology plays a key role to the
design of multi-agent consensus based platoon control [12].
Most of earlier literature on platoon control only used radar-
based sensing systems, where the type of topologies is quite
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limited [13]. However, the rapid deployment of vehicle-to-
vehicle (V2V) communications, such as DSRC [14], creates
the possibility of various topologies. New challenges natu-
rally arise due to this topological variety, in particular when
systematically considering node nonlinearity, communication
delay and topological switch, etc. In such cases, it is more
preferable to view the vehicular platoon as a multi-agent
system, and to employ a networked control perspective to
design distributed controllers [5], [8]. Nowadays, advanced
control methods have been introduced to platoon control.
For instance, Barooah et al. (2009) introduced a mistuning-
based control method to improve the stability margin of
vehicular platoons [15]. Ploeg et al. (2014) developed a
H∞ control method, in which the string stability was ex-
plicitly satisfied [16]. A general linear control method for
both fixed and switching topologies was discussed from a
network viewpoint in [17], and the impaction of connectivity
on performance was also analyzed. More recently, some
experiments of vehicular platoons have been demonstrated in
the real world, including Energy-ITS in Japan [18], SARTRE
in Europe [19], and GCDC in the Netherlands [20], etc.

The sliding mode control (SMC) is a promising method
for platooning of multiple vehicles to handle nonlinear
dynamics, actuator constraints, and topological variety. Swa-
roop and Hedrick (1996) proposed an adaptive SMC for
equilibrium-stable interconnected systems, which guaranteed
the string stability [7]. In this study, the applied topologies
are limited to unidirectional topologies, which means one
node can only obtain the information from its predecessors.
In [21], a linear SMC was applied to a linearized hetero-
geneous platoon with time delay and predecessor-following
topologies. For the sliding mode design, a posterior tuning
or adaptation is required to ensure practical string stability.
Also, the SMC was deployed in a predecessor-following
topology to cope with communication delay in [22]. String
stability is preserved if all vehicles have synchronized in-
formation update and the time delay is bounded to a small
value. Other examples can be found in [23], [24], and
[25]. The main shortcoming of aforementioned SMCs is that
they all focused on some specific topologies, for example,
unidirectional type in [7], predecessor-following types in [21]
and [22], bidirectional types in [26], etc.

This paper presents a distributed sliding mode control
method for vehicular platoons with generic topologies, as
long as the associated matrices of such topologies are
positive definite. Here, the platoon is assumed to be ho-
mogeneous with strict-feedback nonlinear node dynamics.
The distributed SMC design is divided into two parts, i.e.,
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topological sliding surface design and topological reaching
law design. In the former, the sliding surface is designed
by multiple sliding surface control method, while in the
latter, a topologically structured reaching law is proposed
to conform with the type of information flow exchange.
Stability is proved by Lyapunov method. The relationship
between reaching time of SMC and information topology is
discussed analytically. The rest of this paper is organized as
follows. The platoon control problem is given in Section II.
In Section III, how to model the topology and node dynamics
is introduced. Design of distributed SMC is shown in Section
IV, followed by a stability proof in Section V, and simulation
verification in Section VI. Section VII concludes this paper.

II. PROBLEM DESCRIPTION

A vehicle platoon is a typical multi-agent system, as
shown in Fig. 1. As suggested by [5], [8] and [12], a
platoon can be decomposed into four main components from
the perspective of networked control, i.e., node dynamics,
distributed controller, information flow topology, and for-
mation geometry. The node dynamics describe the behavior
of each node; the information flow topology defines how
nodes exchange information with each other; the distributed
controller implements feedback control for each vehicle; and
the formation geometry dictates the desired distance between
any two successive nodes.

Fig. 1. Four components of a platoon : a) vehicle dynamics, b) information
flow topology, c) distributed controller, d) geometry formation [5], [8] and
[12]

This platoon contains a leader, denoted by 0, and N
followers, denoted by i ∈ N , {1, . . . , N}. The leader
is assumed to run with a constant speed v0. The position of
the leader is

x0(t) = x0(0) + v0 · t, (1)

where v0 is constant and x0(0) is initial position. In this
paper, the desired distance between two neighboring vehicles
is denoted to be a constant d. The desired position for each
vehicle in the platoon is

xi,des(t) = x0(t)− i · d. (2)

where xi,des is the desired position of i-th vehicle. The
purpose of platoon control is to ensure all the vehicles to
run at a harmonized speed while maintaining the desired
inter-vehicle spaces.

III. PLATOON MODEL

A. Model for Information Flow Topology

The information flow topology of a platoon can be mod-
eled by a directed graph G = {V, E}, in which V =
{0, 1, . . . , N} is the node set, and E ⊆ V × V is the edge
set. The following three matrices are used to represent the
connectivity in G:
• Adjacent matrix A
• Laplacian matrix L
• Pinning matrix P
The technique that uses matrices to study graphs is known

as algebraic graph theory [27], which has recently been used
to model the influence of different topologies on platoon
performance in [3] and [13]. The adjacent matrix is defined
as A = [aij ] ∈ RN×N and{

aij = 1, {j, i} ∈ E,
aij = 0, {j, i} /∈ E, i, j ∈ N , (3)

where {j, i} ∈ E means there is a directional edge from
node j to node i, i.e., node i receives the information of j.
It is assumed that there are no self-loops, i.e., aii = 0, i ∈ N .
The Laplacian matrix L = [lij ] ∈ RN×N is then defined as:

lij =


−aij , i 6= j,

N∑
k=1, k 6=i

aik, i = j,
i, j ∈ N . (4)

The pinning matrix P represents how each follower con-
nects to the leader, defined as

P = diag{p1, p2, . . . , pN}, (5)

where pi is used to indicate the existence of edge from leader
to node i, i.e., if pi = 1, node i can receive the leader’s
information; pi = 0, otherwise.

A directed path from node i1 to node ik is a sequence
of edges (i1, i2), (i2, i3), . . . , (ik−1, ik) with all of them
in E. For any (j, i) ∈ E, node j is called the parent of
node i, node i is called a child of node j. The neighbor
set of node i is denoted by Ni = {j|aij = 1, j ∈ N}.
A tree is a directed graph where a node has no parent and
other nodes have exactly one parent. Graph G is said to
contain a spanning tree if the tree contains every nodes of
the graph. If there is a path between any two nodes of a
graph G, then G is connected. We call that the information
flow between followers in the graph G is undirected if and
only if aij = aji,∀i, j ∈ N .

Assumption 1: This paper assumes that there exists a
spanning tree in G and the information flow between fol-
lowers is undirected.

Lemma 1: If G satisfies Assumption 1, L+P is positive
definite.

Proof: When information flow between followers is
undirected and connected, L is positive semi-definite, and the
algebraic multiplicity of zero eigenvalue is one. Eigenvector
corresponding to zero eigenvalue is 1 , [1, 1, . . . , 1]> ∈
RN [27]. Define eigenvalues of L to be λ1 = 0 <
λ2 < . . . < λN , and corresponding eigenvectors are
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η1, η2, . . . , ηN , where η1 = 1. The whole space RN is the
composition of eigenspace and nullspace, so any vectors x ∈
RN could be written as a linear composition of eigenvectors,
x =

∑N
i=1 ciηi, where ci, i ∈ N are constants.

Since G contains a spanning tree, P 6= 0, and η>1 Pη1 > 0.
For any x 6= 0, there is

x>(L+ P)x =

N∑
i=2

λic
2
i η
>
i ηi + x>Px > 0. (6)

Remark 1: Information flow topology is said to be pos-
itive definite if L+ P is positive definite. Similar proof of
Lemma 1 could be found in [28].

B. Nonlinear Model for Node Dynamics

The vehicle longitudinal dynamics are nonlinear systems,
which are composed of engine, drive line, brake systems,
aerodynamics drag, tire friction, rolling resistance, gravita-
tional forces, etc. To strike a balance between accuracy and
conciseness, it is assumed that: (1) the vehicle body is rigid
and left-right symmetric; (2) the platoon is on flat and dry-
asphalt road, and the tire slip in the longitudinal direction
is neglected; (3) the powertrain dynamics are lumped to be
a first-order inertial transfer function; (4) the driving and
braking torques are integrated into one control input [29][30].
For a homogeneous vehicle platoon, the i-th node dynamics
are described as

ẋi(t) =vi(t), (7)

v̇i(t) =
1

m

(
ηT
Ti(t)

R
− CAv2i (t)−mgf

)
, (8)

Ṫi(t) =
ui(t)− Ti(t)

τ
, (9)

where xi(t), vi(t), Ti(t) are distance, velocity and drive
torque; ui(t) represents the desired driving/braking torque;
m is the mass of vehicle; ηT is the mechanical efficiency
of the driveline; R is radius of wheel; CA is the coefficient
of aerodynamic drag; g is gravitational constant; f is the
coefficient of rolling resistance; and τ is inertial lag of
longitudinal dynamics.

To design a distributed SMC, the tracking problem de-
scribed by section II needs to be transformed to a regulation
problem. In this paper, the leader’s velocity is assumed to
be a constant value, which is a standard assumption in the
literature [3], [12], [13], [15]. Then, we further assume the
velocity of the leader can be broadcasted to all nodes via
multi-hopping, since there exists a spanning tree rooting from
the leader in graph G.

The equilibrium of each node is calculated by

veq =v0, (10)

Teq =
R

ηT
(CAv

2
eq +mgf). (11)

Then by defining

∆xi(t) ,xi(t)− veq · t, (12)

∆vi(t) ,vi(t)− veq, (13)

∆Ti(t) ,Ti(t)− Teq, (14)

the tracking was converted to a regulation problem with the
control objective ∆xi(t)→ (i · d− x0(0)).

After removing the equilibrium, the dynamics becomes

∆ẋi(t) =∆vi(t), (15)

∆v̇i(t) =
1

m
(ηT

∆Ti(t) + Teq
R

− CA(∆vi(t) + veq)
2 −mgf), (16)

∆Ṫi(t) =
ui(t)−∆Ti(t)− Teq

τ
. (17)

IV. DISTRIBUTED SMC FOR NONLINEAR PLATOON

The distributed SMC design is divided into two parts, i.e.,
topological sliding surface design and topological reaching
law design. In the topological sliding surface design, the
dynamics of each node falls into the category of strict-
feedback systems. Synthetic control techniques, such as
multiple sliding surface control, backstepping control and
dynamic surface control, can be used to design the sliding
surface. In this paper, the multiple sliding surface control is
firstly applied to each individual node dynamics, (15)-(17), to
generate desired torque, which is a synthetic control. Then,
the errors between each ∆Ti and ∆Ti,des, which are defined
as intermediate errors, are used to construct the topological
sliding surface. In the reaching law design, a topologically
structured reaching law is proposed by using the elements
of L+ P as the weighting coefficients for sliding errors.
Such design leads to a distributed SMC which implements
physical control only using the information from neighbor
set.

A. Design of sliding surface via multiple surface control

For the longitudinal tracking task of a single vehicle, three-
layer multiple sliding surface control design (i.e., position-
layer, velocity-layer, and torque-layer) is often used to derive
its control law. In this paper, only first two layers are used,
and the third layer is replaced by distributed sliding surface
constructed from torque tracking errors. The distributed
sliding surface is the summation of torque tracking errors
from neighboring nodes weighted by the elements of L+ P .

1) First layer design: For the first layer of (15), ∆vi,des
is regarded as synthetic control input for position tracking.
With desired position defined as

∆xi,des , i · d− x0(0). (18)

The position error is defined as,

ei,1(t) , ∆xi(t)−∆xi,des(t). (19)

By Lyapunov design,

ėi,1(t) = −λ1ei,1(t), (20)
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where λ1 is a tuning parameter denoting the converging rate
of tracking error. Substituting (18), (15) and (19) to (20), we
get

∆vi,des(t) =− λ1ei,1(t), (21)

where ∆vi,des is the synthetic control. Eq. (21) means that if
∆vi is equal to the right hand side of the equation, tracking
objective can be achieved.

2) Second layer design: For the second layer, the goal
is to let ∆vi track ∆vi,des. According to dynamics (16),
synthetic control is ∆Ti,des. The velocity tracking error is
defined as

ei,2(t) , ∆vi(t)−∆vi,des(t). (22)

By Lyapunov design,

ėi,2(t) = −λ2ei,2(t), (23)

where λ2 is also a tuning parameter denoting the converging
rate of velocity error. Substituting (16) and (22) to (23),
desired torque can be obtained

∆Ti,des(t) =
R

ηT
(mfg + CA(veq + ∆vi(t))

2

−mλ1∆vi −mλ2ei,2(t))− Teq.
(24)

3) Design of distributed topological sliding surface:
Define the error between actual torque and desired torque
as

∆i(t) , ∆Ti(t)−∆Ti,des(t). (25)

The individual sliding error is defined as the weighted
summation of ∆i, for i = 1, . . . , N ,

si(t) ,
N∑

j=1,j 6=i

aij(∆i(t)−∆j(t)) + pi∆i(t), (26)

where aij and pi are elements from adjacent matrix and
pining matrix. The sliding surface of the whole system is
topologically structured by L+ P ,

S(t) =


s1(t)
s2(t)

...
sN (t)

 = (L+ P)


∆1(t)
∆2(t)

...
∆N (t)

 . (27)

Remark 2: Each individual sliding error si(t) only con-
tains node states allowed by self-measurement and commu-
nication among neighboring nodes because of the use of aij
and pi as weighting coefficients, which means that si(t) is
designed in a locally distributed way. Note that ∆i(t)−∆j(t)
does not contain any information from the leader since

∆i(t)−∆j(t) =∆Ti(t)−∆Tj(t)

+
R

ηT
(λ1λ2m(∆xi(t)−∆xj(t)

− (i− j)d))

− R

ηT
CA(∆vi −∆vj)(∆vi + ∆vj

+ 2veq −mλ2)

(28)

Remark 3: The collective sliding error S(t) then becomes
a linear transform of torque error vector related to L+P in
(27). Because L + P is invertible according to Assumption
1, this linear transform is one-to-one unique mapping.

B. Design of topologically structured reaching law

To obtain distributed SMC, which only uses the states
from self-node and neighboring nodes, the reaching law have
to conform with afore-designed collective sliding error. A
similar weighting fashion is adopted in this paper, which
yields a newly proposed topologically structured reaching
law.

The individual topological reaching law is designed as

ṡi(t) =− ψ(

N∑
j=1,j 6=i

aij(si(t)− sj(t)) + pisi(t))

− φ(

N∑
j=1,j 6=i

aij(sgn(si(t))− sgn(sj(t)))

+ pi sgn(si(t))),

(29)

where ψ > 0 and φ > 0 are tuning parameters.
Write in array form, we obtain the collective topological

reaching law

Ṡ(t) =


ṡ1(t)
ṡ(t)

...
ṡN (t)


=− (L+ P)(ψS(t) + φ sgn(S(t))),

(30)

where sgn(S(t)) , [sgn(s1(t)), . . . , sgn(sN (t))]> ∈ RN .
Compare the derivative of (27) and the designed reaching

law (30),

(L+ P)


∆̇1(t)

∆̇2(t)
...

∆̇N (t)

 =− (L+ P)(ψS(t) + φ sgn(S(t))).

(31)

Since L+ P is invertible, L+ P can be canceled:
∆̇1(t)

∆̇2(t)
...

∆̇N (t)

 =− (ψS(t) + φ sgn(S(t))). (32)

The cancellation of L + P is the key stone of designing
distributed SMC for a broad range of topologies. By com-
paring each term in the array, each node corresponds to an
equation:

∆̇i(t) = −ψsi(t)− φ sgn(si(t)). (33)

Substituting (17) and (25) into (33), the control input is
equal to

ui(t) =τ(∆Ṫi,des(t)− ψsi(t)− φ sgn(si(t)))

+ ∆Ti(t) + Teq.
(34)
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To write (34) in an explicit control law, substituting (24)
to (34) yields

ui(t) =∆Ti(t) + Teq − τ(ψsi(t) + φ sgn(si(t)))

+ τ
R

ηT
(2CA∆v̇i(t)(∆vi(t) + veq)

−mλ1∆v̇i −mλ2(∆v̇i(t) + λ1∆vi(t))).

(35)

The control law (35) is distributed for each node in the
sense that its feedback only uses the states from self-node,
neighboring nodes and the leader if only pinning to the
leader.

V. STABILITY PROOF

The stability proof of distributed SMC is also divided
into two phases, i.e., reaching phase and sliding phase. The
stability of reaching phase is analyzed by Lyapunov method,
while that of sliding phase follows the procedure of multiple
sliding surface stability analysis.

A. Reaching Phase

Theorem 1: Consider a platoon with nonlinear node dy-
namics described by (15)-(17) and topologies under As-
sumption 1. With the distributed controller (35) and tuning
parameters φ > 0 and ψ > 0, then sliding surface S(t) = 0

could be reached in a finite time bounded by ‖S(0)‖2φσmin
, where

σmin is smallest eigenvalue of L+ P .
Proof: Choose Lyapunov candidate for the networked

system

V (t) =
1

2
S(t)>S(t). (36)

Taking the derivative of Lyapunov function,

V̇ (t) =S>(t)Ṡ(t)

=− S>(t)(L+ P)(ψS(t) + φ sgn(S(t))).
(37)

By the definition of sgn(S(t)), there is

sgn(S(t)) =[
s1(t)

|s1(t)|
, . . . ,

sN (t)

|sN (t)|
]>

≥ S(t)

‖S(t)‖2

(38)

From (37), we get

V̇ (t) =− S>(t)(L+ P)(ψS(t) + φ sgn(S(t)))

≤− φS>(t)(L+ P) sgn(S(t))

≤−φS
>(t)(L+ P)S(t)

‖S(t)‖2

(39)

Apply Rayleigh’s Quotient to (39)

V̇ (t) ≤−φS
>(t)(L+ P)S(t)

‖S(t)‖2
≤ −φσmin‖S(t)‖2,

(40)

where σmin > 0 is the smallest eigenvalue of L+ P .
Lyapunov candidate (36) could also be rewritten as

V (t) =
1

2
‖S(t)‖22. (41)

Fig. 2. Typical types of information flow topology [8]: (a) bidirectional
type; (b) bidirectional-leader type; (c) symmetric-double-nearest-neighbor
type; (d) symmetric-double-nearest-neighbor leader type.

The derivative of Lyapunov function is

V̇ (t) =‖S(t)‖2
d

dt
(‖S(t)‖2). (42)

Compare (40) to (42), we get

d

dt
(‖S(t)‖2) ≤ −φσmin (43)

From (40) and (43), one can conclude that the Lyapunov
function holds, and reaching time tr for ‖S(tr)‖2 = 0 is
bounded by tr ≤ ‖S(0)‖2φσmin

.
Remark 4: The upper bound of reaching time is largely

affected by the minimum eigenvalue of matrix L + P
associated with the topology, which also hints us to choose
a topology with a larger minimum eigenvalue to reduce the
reaching time. Interestingly, this result agrees with some
recent findings on stability margin analysis [3], [8], [31],
where the minimum eigenvalue also exerts greatly influences
on the scaling trend of stability margin.

B. Sliding Phase

Theorem 2: Consider a vehicle platoon with nonlinear
dynamics described by (15)-(17) and topologies under As-
sumption 1. During the sliding phase where S(t) = 0, the
platoon is asymptotically stable.

Proof: Since L+ P is positive definite, (27) shows

S = (L+ P)


∆1(t)
∆2(t)

...
∆N (t)

 = 0, (44)

thus,
∆i(t) = 0, ∀i ∈ N . (45)

5217



0 5 10 15 20
16
18
20
22
24

v i
[m

/s
]

0 5 10 15 20
−5

0

5

10

e i
,1

[m
]

0 5 10 15 20
−4
−2

0
2
4

t [s]

a
i

[m
/s
2
]

Fig. 3. Case (a): bidirectional topology
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Fig. 4. Case (b): bidirectional-leader topology

The former equation (45) implies ∆Ti(t) = ∆Ti,des(t).
Choose a Lyapunov candidate function for each vehicle

Vi =
e2i,1(t) + e2i,2(t)

2
. (46)

Take derivative of Lyapunov candidate, we get

V̇i =ei,1(t)ėi,1(t) + ei,2(t)ėi,2(t)

=− λ1e2i,1(t)− λ2e2i,2(t) + ei,1(t)ei,2(t).
(47)

If choose λ1 > 0.5, λ2 > 0.5, the derivative V̇2,i is negative
definite.

VI. SIMULATION RESULTS

The effectiveness of proposed distributed SMC is illus-
trated by numerical simulations in this section. A homoge-
neous platoon with one leader and five followers is simulated
under four different topologies. Specifically, as shown in
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Fig. 5. Case (c):symmetric-double-nearest-neighbor topology
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Fig. 6. Case (d):; symmetric-double-nearest-neighbor leader topology

Fig. 2, we consider 1) bidirectional, 2) bidirectional-leader,
3) symmetric-double-nearest-neighbor, and 4) symmetric-
double-nearest-neighbor leader topology [8].

As stated in section II, the leader vehicle is assumed to
be driving with a constant speed v0 = 20 m/s. The initial
position of leader was set to x0(0) = 10 m. Some key
vehicle parameters are listed: mass of vehicle, m = 1645 kg;
powertrain mechanical efficiency, ηT = 0.76; wheel radius,
R = 0.3 m; coefficient of aerodynamic drag, CA = 0.3;
gravitational constant, g = 9.8 m/s2; coefficient of rolling
resistance, f = 0.02, and inertial lag of powertrain dynamics,
τ = 0.3 s. The desired inter-vehicle distances are all set to
be 10 m. The initial inter-vehicle distances are randomly set
between 0 − 20 m. Simulation parameters are chosen that
λ1 = 1, λ2 = 1, ψ = 1, and φ = 1.

Simulation results for four different topologies are shown
by Fig. 3 - Fig. 6. Each figure contains 3 subplots, i.e.,
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position error ei,1, speed of each vehicle vi, and acceleration
of each vehicle ai. The 1st, 2nd, 3rd, 4th and 5th vehicle are
denoted by ( ), ( ), ( ), ( ), ( ), respectively.

We observe that asymptotic stability are achieved for all
four topologies. Moreover, for the case (b) and (d), for which
the smallest eigenvalues of L+ P are both 1, the converging
speed is faster than case (a) and (b), for which the smallest
eigenvalues of L+ P are 0.08 and 0.14, respectively, which
conforms to our discussions in Remark 4.

VII. CONCLUSION

The rapid deployment of vehicle-to-vehicle (V2V) com-
munications generates a variety of topological types for pla-
toon control. This paper proposed a distributed sliding mode
control (SMC) method for homogeneous vehicular platoons
with nonlinear dynamics and positive definite topologies.
The distributed SMC design is divided into two parts, i.e.,
topological sliding surface design and topological reaching
law design. In the former, the sliding surface is designed by
multiple sliding surface control method, while in the latter, a
topologically structured reaching law is proposed to conform
with the type of information flow exchange. The asymptotic
stability is proved by Lyapunov method, which also shows
that the minimum eigenvalue of L+ P has a large impact
to reaching time of distributed SMC. Numerical simulations
demonstrated its effectiveness to handle nonlinear node dy-
namics and different types of topologies.
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