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Abstract— This paper considers the problem of designing
static feedback gains subject to a priori structural constraints,
which is in general a non-convex problem. By exploiting
the sparsity properties of the problem, and using chordal
decomposition, a scalable algorithm is proposed to compute
structured stabilizing feedback gains for large-scale systems
over directed graphs. Specifically, we first present a chordal
decomposition theorem for block-semidefinite matrices. A re-
laxation is then used to recast the design of structured feedback
gains into a convex problem. Combining the decomposition with
the relaxation, we propose a sequential design algorithm to
obtain structured feedback gains clique-by-clique over a clique
tree of the underlying chordal graph. Numerical simulations
demonstrate the efficiency of the proposed method.

I. INTRODUCTION

Controller synthesis for interconnected decentralized sys-
tems has recently received considerable attention [1]–[4].
This problem arises in a wide range of engineering applica-
tions, such as the smart grid [5] and automated highways [6].
One key challenge in decentralized systems is to design
structured control policies based on local information, aiming
to stabilize a large-scale system and further minimize a
certain quadratic performance measure, such as H2 or H∞.
In fact, it has been shown that the general problem of
designing feedback gains subject to structured constraints is
NP-hard [7]. Previous approaches to synthesize decentralized
controllers with information constraints can be roughly cate-
gorized into three groups: 1) finding exact solutions for spe-
cial structures, e.g., quadratically invariant [4] and partially
ordered sets [8]; 2) seeking tractable design approaches via
convex approximations [9], [10]; and 3) obtaining suboptimal
solutions by solving the non-convex problem directly, using,
e.g., augmented Lagrangian [11] and alternating direction
method of multipliers (ADMM) approaches [12].

Despite the aforementioned results that provide powerful
tools for controller synthesis of decentralized systems, there
is relatively less focus on the algorithmic aspects that could
make these methods practical and scalable for realistic large-
scale systems. As a result, most of the illustration examples
in the literature are small-scale systems. However, some
practical systems, such as the power grid and transportation
systems, could contain thousands of states and controls. The
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objective of this paper is to develop an efficient algorithm
to design static structured feedback gains for large-scale
systems, by utilizing the properties of positive semidefinite
matrices and chordal graphs.

Chordal graphs are very well studied objects in graph
theory [13]. Several important problems that are hard on
general graphs can be solved in polynomial time in the case
of chordal graphs, such as the graph colouring problem [14].
Grone et al. [15] and Agler et al. [16] introduced two
important results that connect positive sparse semidefinite
matrices and chordal graphs. Furthermore, Fukuda et al. [17]
and Kim et al. [18] showed that the results in [15], [16] can
be used to decompose the conic constraint in primal and dual
SDPs, respectively. Recently, these results have been applied
to the stability analysis of large-scale linear systems in [19],
[20], obtaining faster solutions than using standard methods.

In this paper, we introduce a scalable sequential design
algorithm to synthesize structured feedback gains for large-
scale systems using chordal decomposition. We use two
directed graphs to model the interconnected system: a plant
graph and a communication graph. This naturally leads
to block structured constraints in controller synthesis. The
design of structured controllers is first relaxed into a convex
problem using a block-diagonal matrix assumption, which
leads to a decomposition of coupled subsystems over the
maximal cliques of the underlying graph. Then, a sequential
algorithm is proposed to compute structured feedback gains
clique-by-clique over a clique tree. Illustrative examples are
used to show the efficiency of the proposed method.

II. PRELIMINARIES AND PROBLEM STATEMENT

We begin this section with a brief introduction on chordal
graphs (see [13] for more details). The last part of this section
presents the problem statement.

A. Chordal Graphs

A directed graph G is denoted by a set of vertices V =
{1, 2 . . . , N} and a set of edges E ⊆ V × V . We denote
(i, j) ∈ E if there is a directed edge from vertex i to vertex
j. We assume that graph G has no self-loops, i.e., (i, i) /∈ E .
For each vertex i ∈ V , the set of its neighbours is defined
as Ni = {j ∈ V | (j, i) ∈ E}. A cycle of length k is a
sequence of pairwise distinct vertices (v1, v2, . . . , vk) such
that (vk, v1) ∈ E and (vi, vi+1) ∈ E for i = 1, . . . , k − 1.
A chord is an edge joining two non-adjacent vertices in a
cycle. A graph G is undirected if (i, j) ∈ E ⇔ (j, i) ∈ E .

Definition 1: An undirected graph is chordal if every cycle
of length greater than or equal to 4 has a chord.
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Fig. 1: Example of chordal extension and clique tree: (a) nonchordal graph,
(b) chordal graph, (c) clique tree.

A clique of graph G = (V, E) is a subset of vertices C ⊆ V
such that (i, j) ∈ E for any distinct vertices i, j ∈ C. The
clique is called maximal if it is not a subset of another clique.
Let G = (V, E) be a chordal graph with a set of maximal
cliques Γ = {C1, C2, . . . , Cp}. These cliques can be further
rearranged in a clique tree T = (Γ,Ξ) with Ξ ⊆ Γ×Γ, which
satisfies the running intersection property, i.e., Ci ∩ Cj ⊆ Ck
if clique Ck lies on the path between cliques Ci and Cj in the
tree [13]. Note that some maximal cliques have overlapping
vertices. Let C be an arbitrary subset of V and define a set
J(C) = {(i, j) ∈ C × C | i ≤ j}. Then, given a clique
tree T = (Γ,Ξ), we denote the minimal set of overlapping
elements by Λ = {(i, j, k, l) | (i, j) ∈ J(Ck ∩ Cl), (Ck, Cl) ∈
Ξ}.

Nonchordal graphs G = (V, E) can be chordal extended,
i.e., we can add additional edges to E to construct a chordal
graph Gc = (V, E ′). Several heuristics, such as the minimum
degree ordering followed by a symbolic Cholesky factor-
ization, are known to construct a good chordal extension
efficiently [13]. Fig. 1 illustrates some of these notions.

B. Sparsity Structures and Chordal Decomposition

Given a directed graph G = (V, E) with no self-loops, we
define Ê = E ∪ {(i, i), i = 1, . . . , N}. The set of matrices
with a sparsity structure characterized by G is defined as:

RNm,n(E , 0) = {X ∈ RmN×nN | Xij = 0 if (j, i) /∈ Ê},

where Xij is a block of size m × n. When each block
is square, we simplify RNn,n(E , 0) to RNn (E , 0). If G is
undirected, we further define the following sets:

SNn (E , 0) = {X ∈ SnN | Xij = 0 if (j, i) /∈ Ê},
SNn,+(E , 0) = {X ∈ SNn (E , 0) | X � 0},
SCn = {X ∈ SnN | Xij = 0 if (i, j) /∈ C × C} for C ⊆ V,
SCn,+ = {X ∈ SCn | X � 0}.

It is also convenient to define (block) submatrices based on
the subsets of V . Given a block matrix X ∈ RmN×nN and
two subsets C1, C2 ⊆ V , we define

X(C1, C2) =

{
X̂ ∈ RmN×nN | X̂ij = Xij if (i, j) ∈ C1 × C2,

otherwise, X̂ij = 0

}
.

Here, we introduce the first result of this paper.
Theorem 1: Let G = (V, E) be a chordal graph with a

set of maximal cliques Γ = {C1, C2, . . . , Cp}. Then, X =
[Xij ]N×N ∈ SNn (E , 0) is positive semidefinite if and only if

Fig. 2: Illustration of Theorem 1 for the graph in Fig. 1(b). X ∈ SNn,+(E, 0)
can be decomposed as a sum of Xi , where Xi ∈ SCin,+, i = 1, 2.

there exists a set of matrices Xk, which decomposes X as
X =

∑p
k=1Xk, where Xk ∈ SCkn,+, k = 1, . . . , p.

The proof is omitted here for brevity, and will be reported
elsewhere. This result is referred to as the chordal decom-
position theorem in this paper. Note that Theorem 1 does
not impose any restrictions on the size of each block, i.e., n
can be any integer. When n = 1, Theorem 1 is reduced to
Agler’s theorem [15]. Fig. 2 gives an illustration of Theorem
1 for the chordal graph shown in Fig. 1(b).

Note also that this theorem presents an attractive connec-
tion between chordal graphs and block positive semidefinite
matrices, which will be used to improve the computational
efficiency of structured feedback gains for large-scale sys-
tems in Section IV.

C. Problem Statement: Large-scale Systems over Graphs

This paper considers decentralized systems over directed
graphs with a vertex set V , in which each vertex represents a
subsystem and a corresponding controller. In reality, a large-
scale system consists of two underlying graphs: 1) a plant
graph Gp = (V, Ep), characterizing the dynamic coupling
of the plant; and 2) a communication graph Gc = (V, Ec),
indicating the allowable communication of the controllers.
See the example of hierarchical systems shown in Fig. 3.
Gp and Gc are in general different directed graphs. Some

previous work focused on special graph structures. For
instance, Shah and Parrilo assumed these graphs could be
modelled by partial order sets [8]. For dynamically decoupled
plants, such as in the platoon control problem [21], Gp
has no edges. Also, Gc would have no edges if there
exists no communication between subsystems (referred to as
fully decentralized systems). The existence of a stabilizing
controller for fully decentralized systems was investigated in
[22], and a generalized version was recently reported in [23].
In this paper, we do not restrict Gp or Gc.

For each subsystem i, the state xi(t) ∈ Rn evolves as

ẋi(t) = Aiixi(t) +
∑
j∈Np

i

Aijxj(t) +Biui(t),

where ui(t) ∈ Rm is the control input, and Npi denotes the
vertices that exert influence on the dynamics of vertex i in
Gp. The overall state-space system is then given by

ẋ(t) = Ax(t) +Bu(t), (1)

where x(t) = [x1(t)T , . . . , xN (t)T ]T and similarly for u(t).
Note that A ∈ RNn (Ep, 0), and B = diag{B1, . . . , BN}.

Our objective is to stabilize (1) by designing the control
input u(t) based on the local information defined by Gc. In
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Fig. 3: Example of hierarchical systems. (a) Graph Gp = (V, Ep); here,
only dynamics of subsystems in the upper layer have influence on those in
the lower layer. (b) Graph Gc = (V, Ec); here, only the nodes in the upper
layer can use the state information of nodes in the lower layer.

this paper, static state feedback is used, as in [12]. Addi-
tionally, we assume communication conditions are perfect in
terms of no time-delays or bandwidth restrictions. We are
looking for controllers of the form

ui(t) = kiixi(t) +
∑
j∈Nc

i

kijxj(t), (2)

where Nci denotes the vertices that send their state informa-
tion to vertex i in graph Gc. The compact form of the overall
controller is denoted by

u(t) = Kx(t), K ∈ RNm,n(Ec, 0), (3)

and the closed-loop system is

ẋ(t) = (A+BK)x(t),

A ∈ RNn (Ep, 0),K ∈ RNm,n(Ec, 0).
(4)

Concisely, the problem considered in this paper is as follows

Find K ∈ RNm,n(Ec, 0),

such that A+BK is asymptotically stable.
(5)

There exist many well-known methods to compute the
controller in (5) if there are no structural constraints on K.
However, sparsity constraints arise naturally in the design of
decentralized systems. In general, such seemingly mild and
natural requirements actually make the problem challenging
[7]. Previous work either imposed special structures or used
certain relaxation techniques to solve this problem, as well
as to minimize a certain performance measure (typically H2

or H∞ norm) [4], [8]–[11]. On the other hand, the sparsity in
matrices A,K has the potential to bring certain benefits from
the perspective of numerical computations. The speed and
accuracy of numerically computing a controller can actually
be improved if this sparsity is taken advantage of.

In this paper, we focus on the structured stabilization
problem (5), and propose a scalable algorithm for large-scale
decentralized systems by exploiting properties of chordal
graphs and sparse positive semidefinite matrices.

III. DESIGN OF STRUCTURED FEEDBACK GAINS USING
CONVEX RELAXATION

In this section, a relaxation technique is introduced to
convert problem (5) into a linear matrix inequality (LMI) that
inherits the problem’s sparsity pattern. The scalable design
algorithm that uses chordal decomposition will be developed
in the next section.

Recall that conditions for stability can be equivalently
expressed as the following inequalities:

QAT +AQ+RTBT +BR ≺ 0
RQ−1 ∈ RNm,n(Ec, 0)

Q � 0
. (6)

The steps to obtain condition (6) are well known, and in-
volve the use of a Lyapunov function V (x) = xTPx, where
P is a positive definite matrix of compatible dimensions;
Q = P−1, and R = KQ.

The structural constraint of communication graph Gc,
which is nonlinear, can be relaxed if we assume that Q (and
hence Q−1) is block diagonal with block sizes compatible
to those of the subsystems, which leads to:

RQ−1 ∈ RNm,n(Ec, 0)⇔ R ∈ RNm,n(Ec, 0). (7)

This assumption convexifies the problem (6) into
QAT +AQ+RTBT +BR ≺ 0

R ∈ RNm,n(Ec, 0)
Q � 0, Q is block diagonal

, (8)

but this is still centralized.
The assumption that the closed-loop system admits a block

diagonal Lyapunov function will introduce conservativeness
for general large-scale systems. However, many large-scale
systems, such as transportation networks and power systems,
are positive systems, whose stability is equivalent to the
existence of diagonal Lyapunov functions [24]. Moreover, it
is has been shown that this introduces no conservativeness for
computing theH∞ norm of positive systems in [25]. Besides,
if the system’s dynamics are in block lower triangular forms,
e.g., systems modeled by a poset, stability is also equivalent
to the existence of a block diagonal Lyapunov function
[8]. Therefore, the relaxation technique (7) is practical and
acceptable. More importantly, the resulting convex problem
(8) inherits the sparsity pattern of (5), which allows the use
of chordal decomposition in the next section.

Problem (8) is ready to be solved to obtain structured
feedback gains via convex optimization in a centralized way.
However, both the computational efficiency and quality of the
solution will become worse as the systems become larger,
since the size of resulting LMI scales as nN . In the next
section, we turn to establish a scalable algorithm based on
Theorem 1 to solve (8), when system (4) is large and sparse.

IV. THE SCALABLE SOLUTION VIA CHORDAL
DECOMPOSITION

This section proposes a scalable sequential method to
obtain structured feedback gains by applying Theorem 1 to
the convex relaxation (8). We first present a method to get
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a chordal characterization of the system data in (8), which
directly leads to decomposition of the positive semidefi-
nite constraints by applying Theorem 1. Then, a sequential
method is derived by a priori dividing the overlapping
elements equally in the decomposed subsystems.

A. Chordal Characterization of System Data

The matrices A,K in original problem (5) have sparsity
patterns characterized by the directed graphs Gp and Gc,
respectively. However, the sparsity pattern of the Lyapunov
condition (8) corresponds to an undirected super-graph cov-
ering both Gp and Gc. Considering the assumption of block
diagonal Q, we know

AQ ∈ RNn (Ep, 0), BR ∈ RNn (Ec, 0). (9)

To handle the symmetry in (8), we introduce the notion of
mirror graphs.

Definition 2: (Mirror Graph) Let G = (V, E) be a directed
graph. We define Em as a set of reverse edges of G obtained
by reversing the order of nodes in all the pairs in E . The
mirror of G denoted by Gm =M(G) is a directed graph in
the form Gm = (V, Em) with the same set of nodes V and
the set of reverse edges Em.

As an example, it is easy to know that the graphs in Fig.
3 (a) and (b) are mirror graphs of each other. Then, we have

QAT ∈ RNn (Epm, 0), RTBT ∈ RNn (Ecm, 0), (10)

where Gpm = (V, Epm),Gcm = (V, Ecm) are the mirror graphs
of Gpm, Gcm, respectively.

We further define an undirected super-graph Gs = (V, Es)
to include both the dynamical coupling of plants Gp and
communication connections of controllers Gc:

Gs = Gp ∪ Gpm ∪ Gc ∪ Gcm, (11)

where Es = Ep ∪ Epm ∪ Ec ∪ Ecm. Then, we have

QAT +AQ+RTBT +BR ∈ SNn (Es, 0).

Next, we build a chordal graph Gex = (V, Eex) by making
a chordal extension to graph Gs. Define a graph G0 = (V, E0)
which only contains nodes, but no edges. Then, (8) can be
equivalently rewritten into (12),
−(QAT +AQ+RTBT +BR+ εI) ∈ SNn,+(Eex, 0)

Q− εI ∈ SNn,+(E0, 0)

R ∈ RNm,n(Ec, 0)
(12)

where I is the identity matrix of appropriate dimension and
ε > 0. As an example, Fig. 4 (a) presents a chordal graph
Gex for the hierarchical system shown in Fig. 3.

B. Decomposition of the Positive Semidefinite Constraints

After establishing the chordal characterization, we are
now ready to apply Theorem 1 to decompose the positive
semidefinite constraints in (12).

Let Γ = {C1, C2, . . . , Cp} be the set of maximal cliques in
graph Gex, and T = (Γ,Ξ) with Ξ ⊆ Γ×Γ be a clique tree.
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    ={1,3,4}     ={2,5}    ={2,3,6}

    ={1,2,3}

    ={3,4,7}

    ={1,3,4}

Fig. 4: Chordal extension and clique tree for Fig. 3: (a) chordal graph Gex,
where two undirected edges (red ones) are added; (b) a clique tree.

The corresponding minimal set of overlapping elements is
denoted by Λ. In (12), for notational simplicity, define

JQ,R = −(QAT +AQ+RTBT +BR+ εI).

According to Theorem 1, (12) is equivalent to

p∑
k=1

Jk = JQ,R,

Jk ∈ SCkn,+, k = 1, . . . , p

Q− εI ∈ SNn,+(E0, 0)

R ∈ RNm,n(Ec, 0)

. (13)

The key feature in (13) is that it only involves a set of
positive semidefinite constraints of small size (corresponding
to the size of maximal cliques in Gex) instead of one large
positive semidefinite constraint in (12). The price is that
a large number of extra equality constraints are added in
(13). In the next section, we further relax these constraints,
resulting in a sequential design method.

C. Sequential Design Method over a Clique Tree

In this paper, the sequential design involves solving the
feedback gains that only correspond to one maximal clique
in Gex each time. Both the order of this design sequence
and information passing route depend on a clique tree that
satisfies the running intersection property.

1) Basic ideas of the sequential design: The additional
equality constraints in (13) only have impacts on the set
of overlapping elements Λ in graph Gex. If Λ is empty,
indicating the maximal cliques are disjoined, then the design
of structured feedback gains for a large-scale system can be
naturally decomposed into multiple sub-problems of small
size. For the case in which there exist elements in Λ, our idea
to decompose (13) is that we partition the coupling dynamic
effect equally into several parts according to the maximal
cliques which contain those overlapping elements.

6912



2) Sequential design over a clique tree: Here, we intro-
duce a formal description of the aforementioned strategy for
decentralized systems over directed graphs.

Step 1: Get an averaging factor for overlapping elements
Given Γ = {C1, C2, . . . , Cp} as the set of maximal cliques

in graph Gex, we define γ ∈ SN to characterize the number
of repetitions of nodes and edges in Γ, i.e.,{

γii = the number of repetitions of node i in Γ

γij = the number of repetitions of edge (i, j) in Γ
.

Note that γ ∈ SN1 (Eex, 0). Correspondingly, we define an
averaging factor γ′ ∈ SN1 (Eex, 0) for graph Gex as follows: γ′ij =

1

γij
if γij 6= 0

γ′ij = 0 otherwise
.

Then, the averaging factor for the overlapping elements is
defined as

β = γ′ ⊗ 1n×n, (14)

where 1n×n is a matrix of dimension n× n with all entries
as 1, and ⊗ denotes the Kronecker product.

Step 2: Derive a set of LMIs over maximal cliques
In this step, we a priori choose Jk in (13) as

Jk = JQ,R(Ck, Ck) ◦ β(Ck, Ck), k = 1, . . . , p, (15)

where ◦ denotes the Hadamard product.
Based on this construction, we have

∑p
k=1 Jk = JQ,R.

Thus, (13) is reduced into a set of small-size LMIs Lk, k =
1, . . . , p over maximal cliques, in which each Lk is defined
as

Lk :


JQ,R(Ck, Ck) ◦ β(Ck, Ck) � 0,

Qj − εI � 0, j ∈ Ck,
R(Ck, Ck) ∈ RNm,n(Ec, 0),

. (16)

Step 3: Sequential solution over a clique tree
The dimension of each LMI Lk corresponds to the size

of maximal clique Ck. There may exist some common
design parameters among different Lk. Due to the running
intersection property of chordal graphs, we can sequentially
solve them clique-by-clique over a clique tree T .

Specifically, starting from the root clique in T , we perform
a tree traversal by embedding the overlapping parameters
from cliques on the layer above. Breadth-first strategy is used
in our simulation, which starts at the root, and explores the
neighbour nodes first before moving to the next level. Take
Fig. 4 as an example to demonstrate this idea. We first solve
the LMI L1 corresponding to root clique C1 = {1, 2, 3} to
obtain the feedback gains in nodes 1, 2, 3. Embedding these
gains to the cliques in the second layer of the clique tree, i.e.,
C2, C3, C4, we can obtain the feedback gains corresponding
to nodes 6, 4 and 5, respectively.

V. ILLUSTRATIVE EXAMPLES

In this section, two illustrative examples are used to
demonstrate the efficiency of the proposed sequential design
method. All simulations were run on a computer with an
Intel(R) Core(TM) i7 CPU, 2.8 GHz processor and 8GB of
RAM. SeDuMi [26] was used.

nz = 34
0 5 10 15

0

2

4

6

8

Fig. 5: Sparsity pattern of the structured feedback gains for the hierarchical
system shown in Fig. 3.

TABLE I: Sequential solutions for the hierarchical system in Fig. 3

Seq. Cliques Computed gains Time (s)

1 C1


k11 = −

[
30.83 7.26

]
, k12 = −

[
1.64 1.30

]
k13 = −

[
1.19 0.98

]
, k22 = −

[
9.05 5.88

]
k33 = −

[
9.99 6.28

] 0.0339

2 C2

{
k66 = −

[
6.75 4.51

]
, k26 = −

[
0.08 0.13

]
k36 = −

[
0.06 0.25

] 0.0307

3 C3 k44 = −
[
9.15 5.77

]
0.0313

4 C4 k55 = −
[
6.64 4.41

]
, k25 = −

[
0.12 0.23

]
0.0310

5 C5

{
k77 = −

[
6.74 4.50

]
, k37 = −

[
0.03 0.13

]
k47 = −

[
0.04 0.29

] 0.0316

6 C6 k88 = −
[
6.57 4.32

]
, k48 = −

[
0.01 0.15

]
0.0302

A. Hierarchical Systems

We first consider the hierarchical system in Fig. 3. Moti-
vated by [12], we assume each node is an unstable second-
order system coupled with its neighbouring nodes as follows:

ẋi =

[
1 1
1 2

]
xi +

∑
j∈Np

i

e−α(i,j)xj +

[
0
1

]
ui, (17)

where, α(i, j) is chosen as 1
10 (i − j)2 in the simulations.

The feedback gains are in the form of (2). Fig. 5 shows the
sparsity pattern of this controller.

We first solve this problem in a centralized way (i.e.,
solving (8) directly) obtaining the following stabilizing con-
troller:
• node 1: k11 = −[22.3, 6.07], k12 = −[1.05, 1.09], k13 =

−[0.77, 0.81], k14 = −[0.46, 0.50],
• node 2: k22 = −[9.77, 4.88], k25 = −[0.25, 0.48], k26 =

−[0.09, 0.24],
• node 3: k33 = −[9.75, 4.84], k36 = −[0.23, 0.47], k37 =

−[0.10, 0.23],
• node 4: k44 = −[9.64, 4.79], k47 = −[0.23, 0.46], k48 =

−[0.11, 0.23],
• node 5: k55 = −[6.57, 4.32],
• node 6: k66 = −[6.58, 4.34],
• node 7: k77 = −[6.58, 4.34],
• node 8: k88 = −[6.55, 4.29].

Then, we used the proposed sequential design approach
to solve this problem (i.e., solving (16) sequentially). The
corresponding chordal extension and clique tree are shown
in Fig. 4. TABLE I lists the solving sequences, computed
gains and time consumed for each clique. We notice that
for this special small-size problem, computing the gains in
a centralized way was faster than that using the sequential
method. However, it took less time for solving each maximal
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Fig. 6: Time in seconds of Centralized way (i.e., solving (8)) versus
Sequential way (i.e., solving (16)) for solving a general decentralized control
design problem with fixed size of largest maximal clique in Gex.

clique, as listed in TABLE I. The sequential design method
would be beneficial for large-scale systems.

B. General Decentralized Systems
Here, we present simulation results for decentralized sys-

tems with general directed graphs. It is assumed that each
node has the dynamics shown in (17). In the simulations,
we first generate a random chordal graph G1 = (V, E1)
with a bound on the size of its largest maximal clique,
and then randomly remove some edges of G1 to form the
plant graph Gp. To improve the feasibility, we ensure that
the communication graph satisfies Ep ⊆ Ec ⊆ E1. This
way, Gp,Gc are general directed graphs such that the largest
maximal clique of their chordal extension Gex has limited
size. When this is set to five, Fig. 6 shows a comparison
between the performance of the centralized approach and
sequential approach for different graph sizes. Using our
sequential design approach, we could obtain stable structured
feedback gains for a network of 1000 nodes within 50 s.
However, using a centralized approach, we could not get a
solution within 1000 s if the network size is over 500.

VI. CONCLUSION

This paper proposed a sequential design approach for the
synthesis of static structured feedback gains by exploiting
the chordal decomposition of block structured semidefinite
matrices. We first presented a result on chordal decompo-
sition that extended a result by Agler et al. [16] to the
case of block matrices. Then, a simple relaxation technique
was used, leading to a convex formulation that preserves the
sparsity pattern of the original problem. Combining these two
results, and using the running intersection property of chordal
graphs, we further proposed a sequential design approach
to solve structured feedback gains clique-by-clique over a
clique tree. This method greatly improves the computational
efficiency, demonstrated by two illustrative examples.
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