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A B S T R A C T

Crash probability estimation is an important method to predict the potential reduction of crash probability
contributed by forward collision avoidance technologies (FCATs). In this study, we propose a practical approach
to estimate crash probability, which combines a field operational test and numerical simulations of a typical
rear-end crash model. To consider driver hazard perception characteristics, we define a novel hazard perception
measure, called as driver risk response time, by considering both time-to-collision (TTC) and driver braking
response to impending collision risk in a near-crash scenario. Also, we establish a driving database under mixed
Chinese traffic conditions based on a CMBS (Collision Mitigation Braking Systems)-equipped vehicle. Applying
the crash probability estimation in this database, we estimate the potential decrease in crash probability owing
to use of CMBS. A comparison of the results with CMBS on and off shows a 13.7% reduction of crash probability
in a typical rear-end near-crash scenario with a one-second delay of driver’s braking response. These results
indicate that CMBS is positive in collision prevention, especially in the case of inattentive drivers or ole drivers.
The proposed crash probability estimation offers a practical way for evaluating the safety benefits in the design
and testing of FCATs.

1. Introduction

Road accidents currently pose a serious threat to our daily life.
Among these, rear-end crashes are the most common accident type
around the world (National Highway Traffic Safety Administration,
2014; Traffic Administration Bureau of the Ministry of Public Security
of PRC, 2012). Recently, many forward collision avoidance technolo-
gies (FCATs) have been developed and employed to avoid or mitigate
rear-end collisions by providing warning or automatic braking assis-
tance for drivers (Nodine et al., 2011; Zellner, 2012; Wang et al.,
2015a,b; Ruscio et al., 2015).

However, the effectiveness of FCATs in terms of crash avoidance
remains unknown for different traffic environments. This issue is cur-
rently attracting considerable attentions from both academia and in-
dustry (Distner et al., 2009; Kusano and Gabler, 2012; Fildes et al.,
2015). Traditionally, the crash avoidance effects of FCATs are evaluated
by comparing the crash probability with FCATs on and off. Previous
approaches can be roughly categorized into two groups: 1) crash data
simulation, which relies on in-depth crash databases (Georgi et al.,
2009; Zellner, 2012; Fildes et al., 2015); 2) Field Operational Test
(FOT), which aims to evaluate functions under normal operating con-
ditions (McLaughlin et al., 2008; Nodine et al., 2011; Benmimoun et al.,

2013). Naturalistic driving test is a special type of FOTs, which has been
considered one of the most valuable methodologies for traffic safety
analyses (Klauer et al., 2006; Wisch et al., 2013,b; Wang et al.,
2015a,b). Most of these methods consider only the objective data (i.e.,
crash data or naturalistic driving data), which relatively ignore the role
of drivers in the crash avoidance estimation (McLaughlin et al., 2008;
Fildes et al., 2015).

On the other hand, driver is one key link between FCATs and the
vehicle, which plays an important role in the collision avoidance per-
formance of FCATs. Driver is supposed to make appropriate responses if
FCATs initiates a warning or braking assistance. In general, the key
factor that influences drivers’ responses is driver’s hazard perception.
Driver hazard perception is a kind of driving ability that enables driver
to detect an impending collision risk and make braking or evasive
maneuvers to avoid collisions (Borowsky et al., 2012; Crundall et al.,
2012; Meir et al., 2014; Markkula et al., 2016). If the driver’s perceived
collision risk is consistent with activations (i.e., warning or braking) of
FCATs, the driver would accept FCATs and take avoidance maneuvers
to reduce the collision risk. Conversely, too early warnings or brakes for
drivers would decrease driver acceptance, thus weakening the potential
crash avoidance effect of FCATs. Therefore, driver hazard perception is
essential to crash avoidance effect of FCATs. However, to the best of the
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author’s knowledge, driver hazard perception is rarely considered in the
evaluation on the crash avoidance effect of FCATs in early stages of
testing (Zellner, 2012).

This paper proposes a practical crash probability estimation model
that takes driver hazard perception characteristics into account. The
proposed method is validated by a two-month field operational test
based on a Collision Mitigation Braking System (CMBS) equipped ve-
hicle. In the following, we give a literature review on recent researches
of both crash reduction estimation and driver hazard perception, and
also present an overview of the key results of this paper.

1.1. Crash reduction estimation

Over the past several decades, a considerable number of studies on
crash reduction estimation of FCATs have been conducted. Of these
studies, crash data simulation and field operational test are the two
most widely used approaches.

Crash data simulation relies on in-depth crash investigation data-
bases, such as the National Automotive Sampling System/
Crashworthiness Data System (NASS/CDS) (NHTSA, 2014), German In-
Depth Accident Study (GIDAS) (Otte et al., 2012). Crashes are re-
constructed and re-run with a FCAT functional algorithm in the MA-
TLAB/Simulink environment, to determine how many crashes could
have been avoided if an FCAT had been available. For example, NHTSA
initiated an Advanced Crash Avoidance Technologies (ACAT) program
to develop a safety impact approach (SIM) to estimate the crash re-
duction contributed by advanced crash avoidance technologies. Honda
and Dynamic Research Inc. (DRI), evaluated an advanced collision
mitigation braking system (A-CMBS) by using the NASS/CDS database
(Zellner, 2012). These studies have offered certain insights to evaluate
the effectiveness of FCATs in terms of accident prevention or mitiga-
tion. However, crash data simulation can only be conducted based on
in-depth accident databases, which are expensive to collect and main-
tain.

Another important method is the Field Operational Test (FOT). FOT
is a large-scale testing project aiming at a comprehensive assessment of
the efficiency, quality, robustness and acceptance of intelligent trans-
portation technologies, such as advanced driver assistance systems
(Nodine et al., 2011; Benmimoun et al., 2013; Källhammer et al., 2016).
For instance, Intelligent Vehicle-based Safety System Field Operational
Test (IVBSS FOT) evaluated the safety effects of an integrated crash
warning system (Nodine et al., 2011). Also, the effects of eight different
Advanced Driver Assistance Systems (ADAS) were investigated within
the first large scale field operational test in Europe, namely euroFOT
(Benmimoun et al., 2013). Naturalistic driving test refers to studies
about unobtrusive observation of driving behavior taking place in its
naturalistic setting (Klauer et al., 2006; Dingus et al., 2006). Drivers are
expected to be unaware of the discreet data collection and preferably
use their own vehicles in the naturalistic driving tests. NDS has been
considered one of the most valuable methodologies for traffic safety
analyses (Neale et al., 2005; Wisch et al., 2013,b; Wang et al., 2015a,b).
However, as there usually occurred very few number of crash incidents
in naturalistic driving test, the direct evaluation of FCATs based on real-
world crashes is unavailable (Klauer et al., 2006). Instead, the exposure
to near-crash can serve as an alternative measure to estimate the po-
tential safety benefits in reducing the number of target crashes (Chin
and Quek, 1997; Guo, 2010; Nodine et al., 2011). Wu et al. (2014)
explored associations between near-crash (traffic safety-related events)
and crash risk at driver level based on naturalistic driving data. For
near-crash studies, it is essential to properly define near-crash in order
to better identify near-crashes from a naturalistic driving database. The
notion of near-crash is similar to a crash in terms of collision risk but
without real collision. Currently, there are no widely accepted agree-
ments concerning the definition, identification, and validation of near-
crash in traffic studies (Klauer et al., 2006; Guo, 2010; Wu et al., 2014;
Wang et al., 2015a,b). In general, a set of rules defined by kinematic

parameters (i.e., longitudinal/lateral acceleration and braking dura-
tion) have been applied to identify near-crash from a naturalistic
driving database (Nodine et al., 2011; Dozza, 2013). In our study, we
aim to propose a practical crash probability estimation method, and
then to evaluate the safety performance of Collision Mitigation and
Brake Systems (CMBS). Therefore, field operational test (FOT) is em-
ployed for our data collection.

1.2. Driver hazard perception

Driver hazard perception is regarded as an important driving ability
that enables drivers to detect impending collision risks in complicated
traffic environments (Borowsky et al., 2012; Crundall et al., 2012; Meir
et al., 2014). There are two predominant hazard perception measures:
1) driver response time to the perceived risk (Sagberg and Bjørnskau,
2006) and 2) the evaluation onthe degree of perceived hazard
(Borowsky et al., 2012). Sagberg and Bjørnskau (2006) conducted a
video-based hazard perception test to measure driver reaction time
toward 31 traffic scenes. Borowsky et al. (2012) required drivers to
identify hazardous situations while watching hazard perception movies.
Crundall et al. (2012) investigated the driver hazard perception by
employing video clips taken from the driver's perspective. Each video
clips include one or more hazardous cases, such as pedestrian steps into
the road from the behind of parked cars. Driver response time is easily
measured, but usually tested in limited conditions. The evaluation on
the degree of perceive hazard is easily affected by psychological status
of the participants and the environment conditions. Moreover, it is not
easy to incorporate these hazard perception measures into vehicle dy-
namic models for crash probability estimation of FCATs.To this end,
this study proposes an operational measure of hazard perception to
evaluate the crash probability reduction of FCATs, which is based on
Time to Collision (TTC) and driver’s braking response toward collision
risk in a near-crash scenario. This hazard perception is involved in rear-
end crash model and associated with crash probability. Thus, it can be
easily applied to evaluating the collision avoidance effect of FCATs.

1.3. Preview of key results

In this research, we establish a novel approach for crash probability
estimation, as shown in Fig. 1. We first define a novel hazard perception
measure which can be easily used in a rear-end crash model. Then, by
numerical simulations of the rear-end model, the crash probability is
associated with the driver hazard perception measure. To validate this
approach, we conduct a real-world field operational test based on one
CMBS-equipped vehicle. The field test recorded the normal driving
behavior of each driver without any interventions. Based on the re-
corded data, we established a two-month1 normal driving database.
Then, a crash probability reduction of CMBS is calculated by combining
numerical simulations and the normal driving database. Results shows
that this crash probability reduction effect contributed by CMBS can
achieve 13.7% with a one-second delay of driver’s braking response.

The remainder of this paper is organized as follows: Section 2 in-
troduces our driving database and data preparation works. In Section 3,
we propose the crash probability estimation approach based on nu-
merical simulations of a rear-end model. We validate the approach by
calculating the crash probability reduction effect of CMBS in Section 4.
We discuss an outline for future works in Section 5, followed by con-
cluding remarks in Section 6.

2. Driving database and preparation works

In this section, we first introduce the field operational test. Next, a

1 Two-month test: there were 20 drivers and each driver was in test for three days, so
the test lasted for 60 days (two months).
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novel hazard perception measure, i.e., driver risk response time, is in-
troduced. Then, we extract near-crash scenarios with CMBS on and off,
respectively, to compare driver risk response time.

2.1. Field operational test

We carried out a field operational test using one CMBS-equipped
vehicle to collect normal driving data. CMBS is one of FCATs which is
designed to avoid and mitigate the rear-end crash (Zellner, 2012).

The CMBS system configuration is shown in Fig. 2. A millimeter-
wave radar sensor continuously measures the speed and positions of
obstacles on the road ahead. A yaw rate sensor measures pose in-
formation of ego vehicle. An electronic control unit (ECU) continuously
predicts crash probability with obstacles on forward road. Once the
crash probability exceeds a certain safety threshold, a collision warning
sound and autonomous braking assistance would be activated to help
reduce the collision risk. Simultaneously, motorized safety seat belts
would be tightened to reduce occupant injuries. In this study, we focus
on safety effect assessment of CMBS contributed by warning function of
CMBS.

2.1.1. Data collection system
It is important to obtain high-quality driving data for a field op-

erational test. At least three conditions must be satisfied: (1) the radar
and vehicle sensors must be accurate and robust; (2) data collection

must be achieved in a low-intervention manner; (3) data collection
must span a long testing period to record normal driving behaviors.

To collect driving data that involves the driver, CMBS, vehicle, and
a real-world environment, we installed an integrated data collection
system in the experiment vehicle. The data collection system consists of
three driving recorders (DRs) and a set of Video VBOX, as shown in
Fig. 3. The DR recorded videos of driver’s operations and traffic scenes
on the forward road. Video VBOX is used to export vehicle data from
controller area network (CAN) bus. Also, Video VBOX is also a driving
analysis tool which can be used for data recording, conservation, and
playback (Vaiana et al., 2014).

With this data collection system, traffic videos, CAN data, radar
information, and system signals of CMBS can be recorded. The original
data include four types of signals: GPS signal (20 Hz), CMBS status
signal (10 Hz), CAN signal (10 Hz) and radar signal (10 Hz). As these
signals have different sampling frequency, a data synchronization
process need to be conducted first, which is completed by Video VBOX.
The detailed information of the four types of data are listed as follows.

• GPS signal mainly includes time, latitude, and longitude and
heading angle of the vehicle.

• CMBS status signal includes the CMBS option settings, CMBS switch
signal, CMBS warning status, CMBS automatic brake status, etc.

• CAN signal includes the vehicle velocity, longitudinal and lateral
acceleration, brake, acceleration pedal position, steering angle and
yaw rate, etc.

• The millimeter-wave radar selects four targets and measures the
relative distance and relative speed between ego vehicle and the
four targets.

Data collection is a continuous process (sampled in a high-fre-
quency), but data analysis is looked at in sequence. The data extracted
for analysis are interested scenarios (data sequences) which should
satisfy some requirements. The method of extracting interested sce-
narios from the normal driving database are discussed in the following
section.

2.1.2. Experiment design
We recruited 20 drivers to participate in the field operational test,

including 6 female drivers and 14 male drivers. The average age was 38
years (ranging from 26 to 53). Each driver held a valid driver’s licenses
for an average of 12.5 years (ranging from 3 to 33 years). The driving
test schedule is summarized in Table 1. Each participant drove the

Fig. 1. Flowchart of crash probability estimation approach.

Fig. 2. System configuration of CMBS.

Fig. 3. (a) DRs, (b) Video VBOX, (c) Digital screen, (d) Data recording.
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equipped vehicle for 6–7 h/day. Participants were suggested to have at
least one-hour break after two or three hours’ driving test during the
test period. Each driver participated the field test for three days. Within
such short time, the learning or adaptation effects is not significant on
the driver’s intrinsic braking response characteristics (Hjälmdahl and
Várhelyi, 2004). We have looked at each individual drive in sequence,
and find no significant progressive changes in maximum braking de-
celeration with CMBS on and off (see Fig. 4). On the first day of each
test, driver is required to get used to the vehicle, CMBS system and
experimental route as much as possible. Over the next two days, the
drivers experienced two test conditions—with CMBS off (deactivation)
and with CMBS on (activation).

The experimental route included four types of roads, i.e., highway
(with speed greater than 90 km/h), city ring road (mostly structured
with speed of 60–80 km/h, a slight congestion), inner-city road (speed
limited to under 60 km/h, mixed with pedestrians, bicycles, and mo-
torcycles, congestion), and national road (speed of 60–80 km/h, mixed
with pedestrians, bicycles, and motorcycles, some congestion), as
shown in Table 2.The entire experiment lasted for 60 days. The entire
field operational test covered approximately 300 h and 13,880 km in
total.

2.2. Quantification of driver hazard perception

Driver hazard perception enables drivers to detect collision risks in
complicated traffic environments. Thus, driver hazard perception

affects driver decision making in near-crash scenarios. It is shown that
driver braking behavior in near-crash scenarios is highly related to the
notion of TTC (Kaempchen et al., 2009; Montgomery et al., 2014).
Usually, TTC drops below 10 s level shortly before a severe braking is
activated (Lee and Peng, 2005), as shown in Fig. 5. Also, we analyzed
the TTC distribution for the braking cases in our normal driving data-
base (see Fig. 6). It is found that braking cases with TTC that is smaller
than 10 s account for 95% of braking cases in which there exists a
potential collision risk.

As illustrated in Fig. 7, we consider a typical near-crash scenario
with a driver braking as an example. TTC−t plot falls steeply once TTC
is less than 10 s. About one second later, driver applies braking and
then TTC begins to rise to the safety level because of the timely braking.
We can see that the TTC−t plot reveals how driving risk varies with
time and how collision risk is reduced by driver braking. Based on the
TTC-t plot, we introduce the definition of driver hazard perception.

Definition 1. Driver hazard perception is defined as the time elapsed
between the moment when TTC = 10 s and the moment when the
driver starts to braking, as shown in (1)

= −t T Td b c (1)

where td denotes driver risk response time, Tb denotes the moment

Table 1
Driving test schedule.

Date Instructions

1st Day Be familiar with CMBS, vehicle and road
2nd Day Driving With CMBS off
3rd Day DrivingWith CMBS on

Fig. 4. Maximum deceleration with CMBS on and off.

Table 2
Total range and duration on four types of road of the FOT.

Road type R1 R2 R3 R4 Total

Duration (h) 78 47 159 16 300
Range (km) 6633 2460 4200 588 13880

Notation: R1 = Highway, R2 = City ring road, R3 = Inner city road, R4 = National
road.

Fig. 5. TTC and acceleration of a near-crash scenario.

Fig. 6. TTC distribution among all braking cases.
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when driver starts braking, and Tc denotes the moment when TTC
equals to 10 s (see Fig. 7).

The notion of driver risk response time proposed in this paper is
actually a quantitative index for the measure of driver’s ability of ha-
zard perception. It is defined using the TTC-t curve and driver braking
response in a near-crash scenario. As braking cases with TTC that is
smaller than 10 s account for nearly 95% of all braking cases (see
Fig. 6), driver risk response time is defined as the time elapsed from the
moment when TTC = 10 s to the moment when the driver brakes. The
slope of near-crash TTC curve reflects the change rate of driving risk.
Usually, if there is a high slope of TTC-t curve in the braking case,
driver would make braking response as soon as possible so as to reduce
the potential collision risk. From this perspective, the proposed driver
risk response time is able to reflect driver’s hazard perception.

2.2.1. Near-crash scenario extraction
In this study, the measure of driver hazard perception, namely

driver risk response time, is defined to quantify driver’s ability of de-
tecting potential collision risk. The ability of hazard perception is
usually related with the braking response when facing a potential col-
lisions risk. It has been shown that driver’s braking response is affected
by FCATs (Shutko, 1999; Wada et al., 2010; Wege et al., 2013; Ruscio
et al., 2015). Therefore, it is assumed that the proposed driver risk
response time would be influenced by CMBS. Then, by comparing the
driver risk response time with CMBS activation and deactivation, we
could analyze the safety effects of CMBS in terms of driver’s ability of
detecting potential collision risk. As driver risk response time is defined
in the special near-crash scenario, near-crash scenarios need to be ex-
tracted. It should be noted that not the number of near-crash scenarios
but the driver risk response time in near-crash scenarios is compared.
There are three steps for the extraction of interested near-crash sce-
narios.

Step 1: TTC-t plot
Since driver risk response time is defined based on a specified time

trajectory of TTC, the near-crash scenario is required to possess a TTC-t
plot that is similar to Figs. 4 and 7. It means, there should appear a
trough in TTC-t plot of the near-crash scenario. When TTC drops below
a level of 10 s, a strong braking is activated at some point to reduce the
potential collision risk, making TTC gradually rise to a safe level since
then.

Step 2: Effective Braking Maneuver
For an effective braking response, the driver risk response time

should be less than 5 s. In addition, near-crashes with moderate-risk
level have an average deceleration of 0.17 g (). Thus, to extract more
near-crashes with potential collision risk beyond moderate level, we set
the threshold as 0.15 g. This is described using (2):

⎧
⎨⎩

≤ ≤
≥
t s

a g
0 5

0.15
d

m (2)

where am denotes the maximum deceleration.
Step 3: Critical Scenario
To figure out the safety effects of CMBS in near-crash scenario, near-

crash scenarios with CMBS on and off are extracted for comparative
analysis. Thus, those near-crash scenarios which are critical enough to
trigger the CMBS waning signal are needed. For the near-crash scenario
with CMBS on, if CMBS has triggered a warning signal, then the near-
crash scenario can be determined to be the critical scenario. However,
for near-crash scenario that occurred in condition under which CMBS
was deactivated, whether it was critical enough to trigger a CMBS
warning cannot easily to determine. Instead, in this study, we adopted a
TTC-based CMBS warning logic for screening the critical near-crash
scenarios with CMBS off. The TTC-based CMBS warning logic has been
discussed in our previous conference paper (Li et al., 2016).

In all, there are three steps for the extraction of interested near-
crash scenarios: (1) TTC-t plot, (2) effective braking maneuver and 3)
critical scenario. In our analysis, not all the cases with TTC lower than
10 s are considered. Also, there are no requirements on the minimum
TTC or the rate of change of TTC. The interested near-crash scenario is
required to possess a TTC-t plot with specified characteristics. An ef-
fective braking (with maximum deceleration more than 0.15 g) is re-
quired to be applied within 5 s after TTC is lower than 10 s. Further, the
near-crash scenario is required to be critical enough to trigger the CMBS
warning. According to the three steps above, near-crash scenarios with
CMBS on and off are extracted respectively from the driving database.

2.2.2. Driver risk response time
Based on extracted near-crash scenarios with CMBS on and off, we

can calculate driver risk response time, as shown in Table 3. Driver risk
response time with CMBS off and on are denoted as t (2 )d

nd and t (3 )d
rd

respectively. Driver risk response time td varies greatly with the ego
vehicle speed, ranging between [15 km/h, 90 km/h]. Here, we divided
the ego vehicle speed into four ranges (see Table 3).

From Table 3, the average value of driver risk response time is re-
duced from 1.17 s to 0.82 s (30% reduction) due to the employment of
CMBS, comparing with 24% in the earlier research (Shutko, 1999).
Therefore, there exists an increase in driver hazard perception, which is
contributed by the usage of CMBS. The standard deviation of the driver
risk response time is reduced slightly from 0.14 s to 0.13 s. Thus, it can
be concluded that CMBS makes driver hazard perception faster and
more stable. More precisely, we illustrate the driver risk response time
using TTC−t plot in Fig. 8. In particular, the curves are cut from the
moment when TTC = 10 s. Driver braking points are average values of
all near-crashes. According to the definition of driver risk response
time, the abscissas of braking points exactly denote driver risk response
time. It is shown that driver braking with CMBS on is faster than that
with CMBS off. Moreover, the value of TTC at driver braking points (4 s)
is close to the value of TTC when CMBS initiated warning signals (4.5
s). That is, CMBS warning is relatively consistent with driver’s hazard
perception. This indicates that the CMBS warning timing implemented
in our experiment vehicle is effective.

Fig. 7. Illustration of driver risk response time in TTC-t plot.

Table 3
Driver risk response time in four speed ranges.

Si (i= 1, 2, 3,4)
[km/h]

td (2nd)[s]
CMBS off

td (3rd) [s]
CMBS on

[15,30] 0.87 0.53
[30,45] 1.11 0.83
[45,60] 1.18 0.75
[60,90] 1.53 1.15
Average 1.17 0.82
Standard Deviation 0.14 0.13
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3. Crash probability estimation approach

In this section, we propose a crash probability estimation approach
that considers driver risk response time, which involves three steps: 1)
build a typical rear-end crash model that considers driver risk response
time; 2) conduct numerical simulations on the rear-end crash model; 3)
establish a crash probability estimation model.

3.1. Typical rear-end crash model

For a typical rear-end crash scenario, there usually exists short
headway or distance between the leading vehicle and the following
vehicle under the initial condition. If the leading vehicle decelerates
immediately at a stronger deceleration, the following vehicle would
apply braking as well to prevent the rear-end collision after a short
response time. The typical rear-end crash model is illustrated in Fig. 11.
The parameters used in the rear-end crash model are listed in Table 4.

According to the comparison between driver risk response time and
the remaining collision time, the rear-end crash model can be divided
into two kinds of scenarios, no braking scenario and braking scenario,
as shown in Fig. 9.

• No braking scenario

If driver risk response time td is greater than the remaining collision
time tc, the ego vehicle driver would have no time to start braking
before collision occurs.

• Braking scenario

If driver risk response time td is less than the remaining collision
time tc, the ego vehicle driver would have extra time to apply braking
after driver risk response time td.

3.1.1. No braking scenario
As shown in Fig. 8(a), the leading vehicle decelerates at a constant

rate at and the ego vehicle maintains the initial speed vs during the
entire process. We describe this scenario using motion equation as
follows.

= + −v t D v t a t1
2s c t c t c0

2
(3)

The collision moment tc can be solved using Eq. (3). By substituting
tc into Eq. (4), we can calculate the relative speed vr at the moment of
collision.

= − −v v v a t( )r s t t c (4)

The condition that guarantees the existence of a real solution is
given below (5).

⎧
⎨
⎩

= − + ≥

= − <− −

Δ v v D a

t t

( ) 2 0t s t

c
v v

a d

2
0

( ) Δs t
t (5)

Eq. (5) guarantees the existence of a real solution.

3.1.2. Braking scenario
As shown in Fig. 8(b), the leading vehicle decelerates at a constant

rate at. The ego vehicle maintains a constant speed vs throughout the
response time td and then decelerates at a constant rate as until collision
occurs. We describe this scenario using motion equation as follows (6)

− − = + −v t a t t D v t a t1
2

( )s c s c d t c t c
2

0
2

(6)

The moment of collision tc can be determined by solving (6). By
substituting tc into (7), we can calculate the relative speed vr at the
moment of collision.

= − + − +v v a t a t v a tr s s c s d t t c (7)

The condition that guarantees the existence of a real solution is
given below (8).

Fig. 8. Comparison of driver risk response time with CMBS on and off.

Table 4
Parameters used in the rear-end crash model.

Parameters Definitions

v v,s t Velocity of the subject (ego) vehicle, leading vehicle.
D0 Initial distance (range) between two vehicles
as , at Deceleration of the ego vehicle, leading vehicle
vr Relative speed when collision occurs (vr = vs − vt)
vc Critical speed
td Driver risk response time
tc The moment when collision occurs.
THWinitial Initial time headway (THW)
TTCinitial Initial time to collision (TTC)

Fig. 9. Typical rear-end crash model, (a) no braking scenario and (b) braking scenario.
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⎧

⎨
⎪

⎩⎪

= − − − − + ≥

= >− − − +
−{ }

( )Δ v v a t a a D a t

t min t

( ) 2( ) 0t s s d s t s d

c
v v a t

a a d

2
0

1
2

2

( ) Δt s s d
s t

2

(8)

Then, relative speed vr can be expressed as a quadratic function of
host vehicle speed vs as

= − − − − +
−

+ + −v a a v v a t
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t s s d

s t
s s d t

2

(9)

3.2. Numerical simulation

Numerical simulations are used to study the behavior of systems
when the mathematical models are too complex to derive analytical
solutions. In this study, to explore the relationship between crash
probability and driver hazard perception, numerical simulations of the
rear-end crash model are employed.

3.2.1. Simulation
Simulation parameters for the typical rear-end model are described

as follows:

• Initial time-to collision TTCinitial = 10 s. Driver risk response time is
defined as the time elapsed from the moment when TTC = 10 s to
the moment when driver starts braking. If we set TTCinitial = 10 s,
driver risk response time can be exactly represented with the brake
response time.

• Initial time headway THWinitial = 2 s. THW on condition that TTC
equals to 10 s of all near-crash scenarios is shown in Fig. 10. It can
be seen that near-crash scenarios with THW less than 2 s accounts
for 92% of all near-crash scenarios on condition that TTC = 10 s.
Thus, THW= 2 s on condition that TTC = 10 s could include about
92% of near-crash scenarios.

• Initial speed of ego vehicle vs = [0,100] km/h.

• Initial gap D0 = vs * THWinitial.

• Initial speed of leading vehicle = −v vt s
D

TTCinitial
0 .

• Longitudinal deceleration of ego vehicleas = 0.4 g and that of
leading vehicle at = 0.2 g.

The higher relative speed at collision moment usually results in
much more severe injuries (Otte et al., 2012). Thus, by studying how
the relative speed at the collision moment varies with driver risk re-
sponse time, we can establish a relationship between collision risk and
driver risk response time. We set the driver risk response times as
td = 1.5 s, 2.0 s, and 2.5 s, respectively. Fig. 11 shows the simulation
results. The horizontal axis denotes the ego vehicle speed vs and the
vertical axis denotes the relative speed vr at the collision moment. Re-
sults indicate that the relative speed at collision moments vr is the

quadratic function of host vehicle speed vs. These quadratic curves
between relative speed and host vehicle speed are exactly consistent
with Eq. (9), showing the validity of the numerical simulations.
Moreover, from Fig. 11, we have the following findings.

• If the ego vehicle does not apply braking during the entire process
(see dark curve), the relative speed at the collision moment would
increase monotonically with ego vehicle speed. In this case, collision
occurs all the time.

• If the ego vehicle brakes, the relative speed at the collision moment
would first increase to a maximum point and finally decrease to
zero, going into collision-free region.

• Comparing three curves (td = 1.5 s, 2.0 s and 2.5 s), it is clear that
relative speed at the collision moment increases with driver risk
response time, signifying that collision risk increases with driver risk
response time as well.

We define the cross points of the three curves with the horizontal
axis as critical speed, which is denotes as vc. As depicted in Fig. 11, if
ego vehicle speed is lower than critical speed, the collision always oc-
curs (the relative seed at collision moment is greater than zero). In
contrast, if ego vehicle speed is greater than critical speed, there is no
collision (the relative seed at collision moment is zero). Therefore,
critical speed could be considered as the boundary of collision and
collision-free region for a given ego vehicle speed. We arrived at the
following decision rules for collision:

• If vs < vc, the collision occurs

• If vs > vc, there is no collision

3.2.2. Critical speed
For each value of driver risk response time, we can calculate the

critical speed. Thus, to determine the relationship between critical
speed and driver risk response time, we conducted simulations with
driver risk response time ranging from 0.2 s to 2.5 s (simulation step is
0.1 s), as shown in Fig. 12(a). After that, we fitted the relationship
between driver risk response time and critical speed onto a quadratic
curve, as shown in Fig. 12(b). The curve equation can be expressed as
below (10):

= − +v t t12.6 13.9 4.5c d d
2 (10)

where vc denotes the critical speed and td denotes the driver risk re-
sponse time.

3.3. Crash probability estimation model

As discussed previously, collision risk can be connected with driver
risk response time based on the relationship between critical speed vc
and driver risk response time td (see Eq. (10)) Thus, the crashFig. 10. THW distribution on condition that TTC = 10 s for all near-crash scenarios.

Fig. 11. Simulation results with driver risk response times as td = 1.5 s, 2.0 s, and 2.5 s,
respectively.
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probability estimation model can be described in (10) as follows:
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where = ⋯S i N( 1,2, , )i denotes speed ranges, td
Si denotes driver risk

response time in speed range Si; vc
Si denotes the critical speed in each

speed range Si, which can be calculated using (10); P S( )i denotes the
probability of speed being distributed in the speed range Si;

<P v v S( | )c
S

ii denotes the probability (conditional crash probability) of
Si speed that is lower than critical speed in the speed range

According to the law of total probability (Schervish, 2012), we can
calculate the overall crash probability CPcrash.

In this model, P S( )i can be ascertained based on the driving data-
base from field operational test. If the host vehicle speed v is less than
the critical speed vc

Si for a given speed range Si, the collision occurs (i.e.,
conditional crash probability <P v v S( | )c

S
ii is 100%). Note that the pro-

posed crash probability estimation approach explicitly accounts for
driver hazard perception ability, which is able to predict the crash
probability of a near-crash scenario in a more practical way. Predicting
the crash probability is essential during the development and testing
stage of the collision avoidance technologies. The crash probability
estimation approach can predict the potential collision avoidance per-
formance of FCATs based on real-world driving with both driver and
collision avoidance system in the loop. Thus, it is helpful to employ this
approach to evaluate the practical crash reduction effects of the colli-
sion avoidance systems in the real-world driving environment.

4. Approach validation

To validate the proposed crash probability estimation approach, we
calculate the crash probability with CMBS on and off based on the
driving database from field operational test, which helps determine the
crash probability reduction contributed by CMBS. If crash probability is
reduced with the assistance of CMBS, which is consistent with the de-
signed CMBS function, the proposed crash probability estimation ap-
proach would be proved effective.

4.1. Preparations for crash probability estimation

Drivers were required to operate the experiment vehicle following
the traffic rules for safety concerns in our experiment test. Any traffic
violation behaviors, such as speeding and alcohol driving, are not al-
lowed in the field test. Therefore, driver risk response time that is
calculated from the normal driving database is usually enough to pre-
vent collisions. In other words, those near-crash scenarios which are
extracted from the driving database are not critical enough to show the
significant effects of CMBS.

Distraction has been identified as a primary contributor to rear-end
collisions (Wege et al., 2013). Usually, if a driver is distracted, the
driver risk response time would be delayed. Based on the public 100-car
and 8-truck naturalistic data from VTTI, it is shown that driver dis-
traction and inattention contribute to 80% of traffic accidents by de-
laying or hindering driver responses (Klauer et al., 2006). Research
shows that driver’s eye glances away from the road range from 0.7 s to
slightly over 1 s (Kircher, 2007). Therefore, we add one-second delay to
driver risk response time to calculate the potential safety effects of
CMBS. According to equation (10), we then recalculate the critical
speed with CMBS off and on if there exists a one-second delay of driver’s
braking response, which are denoted as vc2nd and vc3rd, as shown in
Table 5 below. After acquiring critical speed, we then calculate speed
distributions based on the field operational test to calculate the con-
ditional crash probability. The speed distribution frequency with CMBS
off and on, which are denoted as SP ( )nd

i
2 and SP ( )rd

i
3 , are summarized in

Table 6. Based on the speed distribution and critical speed, the condi-
tional crash probability with CMBS off and on can be represented with
cumulative frequency of critical speed in the corresponding speed
range, which are denoted as <v v SP( | )c

nd
i

2 and <v v SP( | )c
rd

i
3 respec-

tively. In the simulation, we add one-second time delay on driver risk
response time to calculate the potential safety effects of CMBS.

The conditional crash probability under normal condition and time-
delay condition are shown in Tables 7 and 8 respectively. Both the crash
probability with CMBS on and off under normal condition is nearly zero
in all speed ranges (see Table 7), which means drivers are usually able
to avoid crashes when they are not delayed. However, there is a sig-
nificant reduction in crash probability with CMBS on during the speed
range from 15 km/h to 45 km/h if there exists a one-second delay in
driver’s braking response (see Table 8). The response speed of radar of
CMBS is usually not fast enough for the real-time target detection at
high speed range. Thus, CMBS is mainly designed to address rear-end
accidents in low speed range on inner city road. This simulation result is
exactly consistent with the expectation of CMBS. It can be seen that the
CMBS is more effective in low speed under time-delay condition.

Fig. 12. (a) Numerical simulations with driver risk response time td ranging between 1.5 s
and 2.5 s. (b) Quadratic relationship between critical speed and risk response time.

Table 5
Critical speed in each speed range if there exists a one-second delay of driver’s braking
response.

Si (i= 1, 2, 3, 4)
[km/h]

vc2nd [km/h]
CMBS off

vc3rd [km/h]
CMBS on

[15,30] 22.6 12.7
[30,45] 31.3 21.3
[45,60] 34.1 18.8
[60,90] 50.0 32.9
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4.2. Crash probability reduction

Based on the speed probability and conditional crash probability in
each speed ranges, the overall crash probability with CMBS off and on,
which are denoted as CPcrash

nd2 and CPcrash
rd3 respectively, can be calculated.

According to Eq. (11), CPcrash
nd2 = 15.32%, CPcrash

rd3 = 0. That is, the crash
probability is reduced to zero with CMBS on. Considering that the si-
mulation scenario with THW < 2 s and TTC = 10 s accounts for
nearly 92% of all near-crashes. Also, nuisance alarms account for less
than 2% (3/152) of all alarms cases in this field operational test. Thus,
the overall crash probability reduction contributed by CMBS under the
condition that the driver has one-second delay of braking response is
written as: − =15.3%·92%·(1 2%) 13.7%. It is concluded that CMBS is
positive in collision avoidance for near-crashes characterized by dri-
ver’s braking response delay. This result indicates that the proposed
crash probability estimation approach is effective.

5. Discussion

In our study, we propose a practical crash probability estimation
method and evaluate the safety performance of CMBS based on a field
operational test. A few topics remain worth investigation to further
reinforce and validate the proposed crash probability estimation ap-
proach.

First, a CMBS-equipped vehicle is used to record the participants’
driving behavior on a specific routes for 6–7 h per day. During our data
collection, participants are suggested to have at least one-hour break
after 2 or 3 h’ driving during the test period. In fact, driving 6–7 h in
one day is unusual for normal drivers even for professional drivers. The
long-duration driving may lead to the drowsy driving which might
make the experimental data biased. Thus, to avoid the unexpected
behavior of drowsy driving, driving less than 3 h in one day may be
more appropriate for normal drivers.

Second, it is necessary for naturalistic driving tests to last enough
time for participants, such that they become unaware that their driving

behavior is being monitored and the learning or adaptation behavior
effects are reduced. This study proposes a crash probability estimation
model via quantifying driver’s hazard perception. To validate this
model, a two-month field operational test based on the CMBS-equipped
vehicle is conducted. Near-crash scenarios with and without CMBS are
extracted respectively for calculating driver hazard perception measure
(driver risk response time). CMBS effects on crash probability is finally
calculated based on comparison of driver’s risk response time in near-
crash scenarios with/without CMBS. In our experiment, each driver
participated the field test for three days. Within such short time, the
learning or adaptation effects is not significant on the driver’s intrinsic
braking response characteristics (Hjälmdahl and Várhelyi, 2004). In
addition, we have looked at each individual drive in sequence, and find
no significant progressive changes in maximum braking deceleration
(see Fig. 4). Therefore, our analysis results are valid for analyzing the
effects of CMBS. However, it is still necessary to check that the changes
in driver risk response time are actually due to the CMBS intervention
rather than learning or adaptation effects while performing CMBS on/
off experiments. It would be better to conduct a long-term field test
(e.g., one or two months) for each driver, such that they get used to the
experiment vehicle and road condition, meaning that the learning or
adaption of the driver become stable. Also, individual driving should be
looked at in sequence and analyzed for the learning or adaptation ef-
fects on driver’s behavior characteristics. Then, we start the controlled
experiment when the learning or adaptation effects is negligible, which
would make the results more reliable. Then, data on a greater number
of near-crashes could be collected by conducting longer driving tests.

Finally, further validation using near-crash scenarios in different
traffic environments will be helpful to strengthen accuracy of the pro-
posed approach. Real-world traffic environments actually involve dif-
ferent features in different driving contexts (Zheng et al., 2014). Also,
more robust and all-weather radar sensors contribute to generating
more available driving dataset. Finally, driver’s evasive steering re-
sponses to the warnings of collision avoidance technologies are also
essential (Keller et al., 2011). In our field operational test, as driver’s
evasive steering responses to CMBS warning account for less than 5% of
all warning cases, we ignored the crash reduction effect contributed by
driver steering response. In future, if a larger database becomes avail-
able, it is necessary to consider driver’s evasive steering responses to
system warnings. Moreover, as there was no case that triggered CMBS
braking function, the final effect results from CMBS warning function.

6. Conclusion

This paper proposed a practical approach to estimate crash prob-
ability of a typical rear-end scenario considering driver hazard per-
ception. The purposes of this study can be summarized in two aspects:
1) proposed a method to estimate the crash probability in the rear-end
collision scenario and 2) validating this method in evaluating the crash
avoidance effect of a forward collision avoidance technology through a
field operational test and numerical simulations.

The driver’s ability of hazard perception is viewed as an important
factor for crash avoidance. The proposed crash probability estimation
approach of this study has the potential to expand our understandings
of driver hazard perception ability and its effect on the crash avoidance
performance of collision avoidance technologies. First, a novel driver
hazard perception measure, namely, driver risk response time, was
quantified based on the time trajectory of TTC and the driver’s braking
response in a near-crash scenario. The average reduction of driver risk
response time with the assistance of the CMBS is as much as 30%, which
is consistent with the expected function of CMBS. Second, we consider
the driver hazard perception measure while establishing the typical
rear-end crash model. Through numerical simulations, we establish the
relationship between collision risk and driver hazard perception mea-
sure. Finally, by combining the numerical simulations and normal
driving database, we figure out the crash probability. Result shows with

Table 6
Speed distribution from the field operational test.

Si (i= 1, 2, 3, 4)
[km/h]

P2nd (Si)
CMBS off

P3rd (Si)
CMBS on

[15,30] 0.258 0.262
[30,45] 0.267 0.258
[45,60] 0.204 0.211
[60,90] 0.260 0.261

Table 7
Conditional crash probability in each speed range under normal condition.

Si (i= 1, 2, 3, 4)
[km/h]

P (v < vc2nd | Si)
CMBS off

P (v < vc3rd | Si)
CMBS on

[15,30] 0 0
[30,45] 0 0
[45,60] 0 0
[60,90] 0 0

Table 8
Conditional crash probability in each speed range under time-delay condition.

Si (i= 1, 2, 3, 4)
[km/h]

P (v < vc2nd | Si)
CMBS off

P (v < vc3rd | Si)
CMBS on

[15,30] 0.48 0
[30,45] 0.11 0
[45,60] 0 0
[60,90] 0 0

Y. Li et al. Accident Analysis and Prevention xxx (xxxx) xxx–xxx

9



a one-second delay of driver’s braking response, a 13.7% reduction in
rear-end crash probability was achieved with CMBS on. This reduction
in crash probability shows the considerable collision avoidance effect of
CMBS if there exists driver’s braking response delay, which is in line
with the design concept of CMBS.

By taking driver hazard perception into account, this crash prob-
ability estimation approach can predict the crash probability of a near-
crash scenario in a more practical way. Moreover, this approach is ef-
fective in safety effect evaluation of collision avoidance systems during
the design and testing stages. For instance, aging drivers or retarded
drivers with poor hazard perception ability, the warning timing of
collision avoidance systems can be adjusted to achieve the maximum
crash probability reduction effect.
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