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This paper presents a behavioral cooperation method for multiple connected vehicles with directed 

acyclic interactions. Our main idea is based on a novel feedforward-feedback control scheme, in 

which each vehicle takes the average of neighbors’ control inputs as a feedforward term and the 

average of neighbors’ state errors as a feedback term. In this way, the control inputs are mutually 

dependent in a group of connected vehicles. We show taht the control inputs can be calculated 

sequentially according to the topological ordering of the directed acyclic communication topology. 

Further, we prove that the proposed controller guarantees the asymptotic stability and is optimal 

with respect to a specific quadratic performance index, since it implicitly uses the leader’s 

information. Simulation results demonstrate the advantage of the proposed control method. 
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1. INTRODUCTION 

Road safety and fuel efficiency are two eternal 

themes for transportation systems. Nowadays, the 

behavioral cooperation of multiple connected vehicles 

has become an effective approach to meet these 

demands. In the one-dimensional case, the cooperation 

is referred to as the vehicle platooning or cooperative 

adaptive cruise control (CACC), of which the earliest 

research can be dated back to the well-known PATH 

program [1]. Up till now, many demonstrations of 

vehicle platoons have already been conducted in real 

world, including the Safe Road Trains for the 

Environment (SARTRE) [2] project in Europe, the 

Grand Cooperative Driving Challenge (GCDC) 

competition [3] in the Netherlands, and the Energy-ITS 

project [4] in Japan. An overview of recent advances in 

platoon control techniques can be found in [5]. 

In a platoon, multiple vehicles are coordinated to 

move at the same speed while maintaining a desired 

inter-vehicle distance [6]. One direct benefit is that 

thanks to cooperation among vehicles, the inter-vehicle 

distance may be decreased so as to reduce the 

aerodynamic drag, leading to a certain improvement on 

fuel economy [7]. Many advanced control methods, e.g., 

distributed sliding mode control (SMC) [8][9], 

distributed receding horizon control [10][11], 

distributed ℋ∞  control [12]-[14] and distributed 

periodic control [15][16], have been applied to achieve 

the global stability of platoons with desirable 

longitudinal control performance. The notion of string 

stability, i.e., the ability to attenuate the propagation of 

error along the platoon, plays a key role to guarantee the 

safety. In the literature, different range policies are 

discussed to achieve the string stability [17]. As 

demonstrated by [18], compared with adaptive cruise 

control (ACC) systems, cooperative ACC systems have 

the potential to further improve highway capacity and 

traffic flow stability. Even in a mixed traffic flow, 

where conventional, ACC, and communication-assisted 

vehicles exist at the same time, a similar technique 

called connected cruise control (CCC) can also help to 

maintain the smoothness of traffic flow [19][20]. The 

degradation from CACC to ACC when communication 

faults occur is also studied to partially maintain the 

string stability [21]. 

In the early stage, onboard sensors, such as radars, 

were used in platoons for environment perception, so 

vehicles could only use their own relative measurements 

for platoon control. Nowadays, V2V communication is 

applied to vehicle platoons for performance 

enhancement. Two main impacts of introducing 

communication to platoons are: 

First, communication makes it possible to transmit 

more information, such as the absolute acceleration and 

the control input, among vehicles for feedforward 

control design. Commonly used feedforward strategies 

include the input signal feedforward [6][13][18][21], 

acceleration feedforward [22], and predicted 

acceleration feedforward [23]. For example, an input 

signal feedforward-based ℋ∞  controller synthesis 

approach was proposed in [13] for CACC systems with 

predecessor following (PF) and two-predecessor 

following (TPF) topologies to achieve string stability. In 

[18], an input signal feedforward control strategy was 

also discussed for predecessor-leader following (PLF) 

communication topology. An acceleration feedforward 

controller was designed in [22] for heterogeneous 

vehicle platoons with PF topology, where a necessary 

and sufficient frequency-domain condition for string 
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stability was derived. A comparison study of the three 

types of feedforward strategies for vehicle platoons with 

PF topology is given in [23], where the range of vehicle 

model and controller parameters for string stability was 

numerically computed using a bisection method. 

Second, V2V communication brings various 

information topologies, for which the modeling and 

analyzing strategy remains a challenging topic. Fig. 1 

lists some commonly used topologies in vehicle 

platoons. The above-mentioned studies only considered 

specific communication topologies: for instance, [13] 

only considered the PF and TPF topologies, [18] only 

considered the PLF topology, and [22][23] only 

considered the PF topology, which may restrict the 

application range of the proposed control methods. A 

promising way to address this issue is to use consensus-

based methods [24], where the communication topology 

is characterized by algebraic graph theory to 

systematically study its effect on the whole system. For 

example, a separation principle was proposed in [25] to 

decompose the stability of a vehicle formation into two 

components: the stability of the information flow and 

the stability of individual vehicles, which highlights the 

significance of the communication topology. In [26], the 

consensus of multi-agent systems was cast into the 

stability of a set of low-dimension matrices to reduce 

the complexity of system analysis and synthesis. This 

method was further extended to the four-component 

framework for vehicle platoon control in [27], where a 

unified internal stability theorem was proved by using 

the algebraic graph theory and Routh–Hurwitz stability 

criterion. However, most of the current research on 

consensus-based platoon control mainly focuses on 

feedback control, which fails to take full use of V2V 

communication for feedforward design. 

In this paper, we propose a novel behavioral 

cooperation method that combines feedforward and 

feedback control together for multiple connected vehicle 

systems with directed acyclic interactions, which is also 

considered in our previous work [28]. The main 

contributions of this paper include: 1) the proposed 

method combines both feedforward and feedback in the 

consensus-based platoon control. Compared with 

previous studies, e.g., [25]-[27], which only consider 

feedback control, or [13][18][21]-[23], which only take 

into account specific communication topologies in 

feedforward control, our method builds a feedforward-

feedback framework for consensus-based platoon 

control that works for a large class of communication 

topologies; 2) the asymptotic stability and the optimality 

of the feedforward-feedback control are analyzed, and 

we prove that the proposed controller is optimal with 

respect to a specific quadratic performance index. This 

makes it possible for the explicit performance 

optimization in the platoon control design. 

The rest of the paper is organized as follows. 

Section 2 presents the system modeling and platoon 

control objective. Section 3 designs the distributed 

feedforward-feedback controller and proves the stability 

and optimality. Numerical simulation results are given 

in Section 4 and conclusions are drawn in Section 5. 

(a)

0 1 2 N-2 N... N-1

(b)

(c)
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0 1 2 N-2 NN-1

0 1 2 N-2 NN-1

0 1 2 N-2 NN-1
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...

...

Fig. 1 Commonly used communication topologies [27]. 

(a) predecessor following (PF), (b) predecessor-leader 

following (PLF), (c) two-predecessor following (TPF), (d) 

two-predecessor-leader following (TPLF). 

Notations: The fields of real numbers and 𝑚 × 𝑛 

real matrices are denoted by ℝ and ℝ𝑚×𝑛, respectively. 

A matrix 𝑀 ∈ ℝ𝑚×𝑛 is represented by its entry 𝑚𝑖𝑗, i.e., 

𝑀 = [𝑚𝑖𝑗] , and its transpose is denoted by 𝑀𝑇 . An 

𝑛 × 𝑛  diagonal matrix with entries 𝑚1, 𝑚2, . . , 𝑚𝑛 

starting from the upper left is denoted by 

diag{𝑚1, 𝑚2, . . , 𝑚𝑛}  for convenience. The 𝑛 × 𝑛 

identical matrix is denoted by 𝐼𝑛. A time-varying signal 

𝑥(𝑡) is denoted by 𝑥 for convenience. 

2. PROBLEM STATEMENT 

Considers a homogeneous platoon consisting of a 

leading vehicle indexed by 0 and multiple following 

vehicles indexed by 1,2, … , 𝑁, respectively. The details 

of the system modeling and control objective are given 

in the following subsections. 

2.1 Model of Vehicle Dynamics 

By neglecting the lateral vehicular motions, we 

consider the following longitudinal vehicle dynamics: 

𝑥̇𝑖 = 𝐴𝑥𝑖 + 𝐵𝑢𝑖 , 𝑖 = 0,1,2, . . , 𝑁, (1) 

where 

𝑥𝑖 = [

𝑝𝑖
𝑣𝑖
𝑎𝑖
] , 𝐴 = [

0 1 0
0 0 1

0 0 −
1

𝜏

] , 𝐵 = [

0
0
1

𝜏

], (2) 

𝑝𝑖 , 𝑣𝑖 , 𝑎𝑖  and 𝑢𝑖  denote the position, velocity, 

acceleration and control input (desired acceleration) of 

vehicle 𝑖, respectively; 𝜏 represents the inertial time lag 

in the driveline. 

Note that the model (1) assumes that each vehicle is 

equipped with a low-level acceleration controller that 

regulates 𝑎𝑖  according to 𝑢𝑖 . In addition, the dynamics 

of the low-level acceleration controller can be modeled 

as a first-order lag system with the time constant 𝜏. That 

this model is widely used in the literature, e.g., 

[17][21][27]. 

2.2 Model of Communication Topology 

The communication topology among the following 

vehicles is modeled with a directed graph denoted 

by 𝒢 = {𝒱, ℰ,𝒜} , where 𝒱 = {𝑉1, 𝑉2, … , 𝑉𝑁} is the set 

of vertices (or vehicles), ℰ ⊆ 𝒱 × 𝒱 is the set of edges, 

and 𝒜 = [𝑎𝑖𝑗] ∈ ℝ
𝑁×𝑁  is the adjacency matrix, which 
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characterizes the interactions among the following 

vehicles. The entries of 𝒜 are defined as: 

𝑎𝑖𝑗 = {
1    if   {𝑉𝑗 , 𝑉𝑖} ∈ ℰ

0           otherwise
, (3) 

where {𝑉𝑗, 𝑉𝑖} ∈ ℰ  means vehicle 𝑖  can receive the 

information from vehicle 𝑗. We assume that there is no 

self-loop, i.e., 𝑎𝑖𝑖 = 0, ∀𝑖 = 1,2, … , 𝑁. 

The extended graph which incorporates the leading 

vehicle is denoted by 𝒢̅. The interactions between the 

leading vehicle and the following vehicles are modeled 

with the pinning matrix  𝒫 = diag{𝑏1, 𝑏2, … , 𝑏𝑁} ∈
ℝ𝑁×𝑁 , where 𝑏𝑖  equals 1 if vehicle 𝑖  can acquire the 

information of the leading vehicle, or 0 otherwise. 

For each following vehicle, we define three sets to 

represent the neighbor relationship: 

(a) A neighbor set ℕ𝑖 = {𝑗|𝑎𝑖𝑗 = 1, ∀𝑗 ∈ 𝒱} . 

(b) A leader accessibility set 

ℙ𝑖 = {
{0}    if   𝑝𝑖𝑖 = 1
∅       otherwise

. (4) 

(c) The union of the above two sets 𝕀𝑖 = ℕ𝑖 ∪ ℙ𝑖 , 
which contains all the information sources of vehicle 𝑖. 

In this study, we focus on a specific type of 

communication topologies by assuming that the graph 𝒢 

is a directed acyclic graph (DAG), i.e., a finite directed 

graph with no directed cycles. In addition, we assume 

that 𝒢̅  contains a spanning tree rooted at the leading 

vehicle, which means that there exists a directed path 

from the leading vehicle to each following vehicle. For 

this type of topologies, we have the following lemma. 

Lemma 1: For a DAG with a spanning tree, there 

exists at least one topological ordering, i.e., a sequence 

of the vertices such that every edge is directed from 

upstream to downstream in the sequence, starting from 

the root of the spanning tree. 

The proof of this lemma is straightforward, so we 

omit it here. To illustrate Lemma 1, some examples are 

given in Fig. 2: graph (a) is a DAG with a spanning tree 

rooted at vertex 0 while graph (b) is not, since vertices 

{0, 1, 2} and {0, 3, 2} form two directed cycles. In 

addition, graphs (c) and (d) are equivalent to graph (a), 

but the sequences of vertices are shifted so that each 

edge is directed from upstream (left) to downstream 

(right) in the sequences. Then, we refer to {0, 3, 1, 2} in 

(c) and {0, 1, 3, 2} in (d) as two topological orderings of 

{0, 1, 2, 3} in (a). Besides, both these two topological 

orderings start from vertex 0, i.e., the root of the 

spanning tree. Also, note that all the communication 

topologies in Fig. 1 are DAGs with a spanning tree 

rooted at the leading vehicle. 

2.3 Objective of Platoon Control 

The control objective is to keep the desired platoon 

velocity while maintaining the desired inter-vehicle 

distance. For all the following vehicles, the tracking 

error with respect to the leading vehicle is defined as: 

𝑥̃𝑖 = [

𝑝𝑖
𝑣̃𝑖
𝑎̃𝑖

] = [
𝑝𝑖 − 𝑝0 − 𝑑𝑖,0
𝑣𝑖 − 𝑣0
𝑎𝑖 − 𝑎0

] , 𝑖 = 1,2, … , 𝑁, (5) 

where 𝑑𝑖,0 is the desired inter-vehicle distance between 

vehicle 𝑖  and 0 . Here, we use the constant spacing 

policy (CSP) [12][27], i.e., 𝑑𝑖,0 = 𝑖 × 𝑑0, where 𝑑0 is  

0 1 2 3

0 3 1 2 0 1 3 2

30 1 2

(a) (b)

(c) (d)

 
Fig. 2 Examples of DAGs and topological orderings: graphs 

(a), (c) and (d) are DAGs but graph (b) is not. 

the standstill gap. Then, the control objective becomes: 

lim
𝑡→+∞

𝑥̃𝑖(𝑡) = 0, 𝑖 = 1,2, … , 𝑁. (6) 

Note that in (5), the values of 𝑝𝑖 , 𝑣̃𝑖 and 𝑎̃𝑖 are available 

for vehicle 𝑖 only if the leading vehicle is accessible for 

vehicle 𝑖. 

3. CONTROLLER DESIGN 

In this paper, we assume that the communication 

between vehicles is perfect without time delay and 

package loss, as considered in [11][12][14] and [27]. 

Then, we propose a new feedforward-feedback control 

scheme as follows: 

𝑢𝑖 = 𝐾ff,𝑖
1

|𝕝𝑖|
∑𝑢𝑗
𝑗∈𝕝𝑖⏟        

feedforward

− 𝐾fb,𝑖
1

|𝕝𝑖|
∑(𝑥̃𝑖 − 𝑥̃𝑗)

𝑗∈𝕝𝑖⏟            
feedback

, 
(7) 

where |𝕀𝑖| is the cardinality (number of elements) of 𝕀𝑖; 
𝐾ff,𝑖 and 𝐾fb,𝑖 denote the feedforward and feedback gain, 

respectively. 

In (7), the feedforward term 
1

|𝕝𝑖|
∑ 𝑢𝑗𝑗∈𝕝𝑖

 is the 

average of neighbors’ control inputs, and the feedback 

term 
1

|𝕝𝑖|
∑ (𝑥̃𝑖 − 𝑥̃𝑗)𝑗∈𝕝𝑖

 is the average of neighbors’ 

relative state errors. We note that the calculation of 

𝑥̃𝑖 − 𝑥̃𝑗  does not require the leader’s information. 

Compared with [12][14][27], which only take 

∑ (𝑥̃𝑖 − 𝑥̃𝑗)𝑗∈𝕝𝑖
 for feedback, the control law (7) makes 

full use of neighbors’ control inputs for feedforward. 

Compared with [6][18][21][13], which only take 𝑢0 , 

𝑢𝑖−1  or ∑ 𝑢𝑖−𝑗
𝑘
𝑗=1  ( 1 ≤ 𝑘 ≤ 𝑖 ) for feedforward, the 

control law (7) generalizes the feedforward design by 

considering general communication topologies. 

Remark 1: In (7), vehicles’ control inputs are 

mutually dependent. Here we note that (7) can be 

calculated sequentially according to the topological 

ordering of the DAG given in Lemma 1, since the 

downstream vehicles in the ordering only need the 

control inputs of the upstream ones. This idea is similar 

to that in [11], where the control inputs of vehicles can 

be calculated using the distributed model predictive 

control (DMPC) according to the ordering of vehicles in 

the unidirectional communication topology. 

Remark 2: If there exists time delay in the 

calculation of control inputs, then the vehicle 𝑖 cannot 

obtain its neighbors’ control input 𝑢𝑗(𝑡) at the time 𝑡. In 

this case, we replace 𝑢𝑗(𝑡) with 𝑢𝑗(𝑡 − 𝛿) in (7), where 

𝛿 is the time delay in the calculation. 
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We then consider the following feedforward and 

feedback gains: 

𝐾ff,𝑖 = 1, (8) 

𝐾fb,𝑖 =
1

𝑟𝑖
𝐵𝑇𝑃𝑖 , (9) 

where 𝑟𝑖 > 0  is a constant, 𝑃𝑖 ∈ ℝ
𝑁×𝑁  is the unique 

non-negative definite solution to the following algebraic 

Riccatti equation 

𝑃𝑖𝐴 + 𝐴
𝑇𝑃𝑖 +

1

𝑟𝑖
𝑃𝑖𝐵𝐵

𝑇𝑃𝑖 + 𝑄𝑖 = 0, (10) 

where 𝑄𝑖 = 𝐷𝑖
𝑇𝐷𝑖 ∈ ℝ

𝑁×𝑁 is a positive definite matrix, 

and the pair (𝐴, 𝐷𝑖) is detectable. 

Theorem 1: Suppose that 𝒢̅  contains a directed 

spanning tree rooted at the leading vehicle and 𝒢 is a 

DAG. The controller (7) with the feedforward gain (8) 

and the feedback gain (9) guarantees the asymptotic 

stability of the system (1). In addition, the feedback gain 

(9) is optimal with respect to the following performance 

index: 

min
𝐾fb,𝑖

𝐽𝑖 =
1

2
∫ (𝑥̂𝑖(𝑡)

𝑇𝑄𝑖 𝑥̂𝑖(𝑡) + 𝑟𝑖𝑢̂𝑖(𝑡)
2)

+∞

𝑡0

d𝑡, (11) 

where 

𝑥̂𝑖 =
1

|𝕝𝑖|
∑(𝑥̃𝑖 − 𝑥̃𝑗)

𝑗∈𝕝𝑖

, (12) 

𝑢̂𝑖 =
1

|𝕝𝑖|
∑(𝑢𝑖 − 𝑢𝑗)

𝑗∈𝕝𝑖

. (13) 

Proof: Combine (1) with (5), then we have: 

𝑥̇̃𝑖 = 𝐴𝑥̃𝑖 + 𝐵(𝑢𝑖 − 𝑢0). (14) 
Combine (12) and (13) with (14), then we have: 

𝑥̇̂𝑖 = 𝐴𝑥̂𝑖 + 𝐵𝑢̂𝑖 . (15) 
For the system (15) and the performance index (11), 

since 𝑄𝑖 = 𝑄𝑖
𝑇 > 0  and 𝑟𝑖 > 0 , according to the LQR 

theory [29], the optimal linear feedback controller is: 

𝑢̂𝑖 = −
1

𝑟𝑖
𝐵𝑇𝑃𝑖 𝑥̂𝑖 . (16) 

According to (13), we have: 

𝑢̂𝑖 = 𝑢𝑖 −
1

|𝕝𝑖|
∑𝑢𝑗
𝑗∈𝕝𝑖

. (17) 

Substitute (12) and (16) into (17), then we have: 

𝑢𝑖 =
1

|𝕝𝑖|
∑𝑢𝑗
𝑗∈𝕝𝑖

−
1

𝑟𝑖
𝐵𝑇𝑃𝑖

1

|𝕝𝑖|
∑(𝑥̃𝑖 − 𝑥̃𝑗)

𝑗∈𝕝𝑖

. (18) 

By comparing (18) with (7), the optimality is proved. 

Since the pair (𝐴, 𝐵)  is controllable and the pair 

(𝐴, 𝐷𝑖) is detectable, we know that the system (15) is 

asymtotically stable, which means  lim𝑡→+∞ 𝑥̂𝑖(𝑡) =
0, ∀𝑖 = 1,2, … , 𝑁.  Denote the topological ordering by 
{0, 𝑠1, 𝑠2, … , 𝑠𝑁}, where 𝑠1, 𝑠2, … , 𝑠𝑁 is a permutation of 

1,2, … , 𝑁. Then we use the mathematical induction to 

prove the asymptotic stability of the system (1). 

(a) For the vehicle 𝑠1 , since 𝕝𝑠1 = {0} , we have 

lim𝑡→+∞ 𝑥̂𝑠1(𝑡) = lim𝑡→+∞ 𝑥̃𝑠1(𝑡) = 0. 

(b) Suppose that lim𝑡→+∞ 𝑥̃𝑠𝑘(𝑡) = 0, then for the 

vehicle 𝑠𝑘+1 , since 𝕝𝑠𝑘+1 ⊆ {0, 𝑠1, 𝑠2, … , 𝑠𝑘} , we also 

have lim𝑡→+∞ 𝑥̂𝑠𝑘+1(𝑡) = lim𝑡→+∞ 𝑥̃𝑠𝑘+1(𝑡) = 0. 

This proves the asymptotic stability. 

∎ 

In (9) and (10), the parameters 𝑄𝑖  and 𝑟𝑖  may be 

heterogeneous for each following vehicle. When it 

comes to homogeneous parameters, i.e.,  𝑄𝑖 = 𝑄, 𝑟𝑖 =
𝑟, ∀𝑖 = 1,2, . . , 𝑁, we further have the second theorem of 

this paper. 

Theorem 2: Suppose that 𝒢̅  contains a directed 

spanning tree rooted at the leading vehicle and 𝒢 is a 

DAG. If  𝑄𝑖 = 𝑄, 𝑟𝑖 = 𝑟, ∀𝑖 = 1,2, . . , 𝑁 , which implies 

that 𝐾fb,𝑖 = 𝐾fb , then the controller (7) with the 

feedforward gain (8) and the feedback gain (9) is 

equivalent to 

𝑢𝑖 = 𝑢0 − 𝐾fb𝑥̃𝑖 . (19) 
In addition, if 𝑢0 = 0, then 𝐾fb is optimal with respect 

to the following performance index: 

min
𝐾fb

𝐽𝑖 =
1

2
∫ (𝑥̃𝑖(𝑡)

𝑇𝑄𝑖 𝑥̃𝑖(𝑡) + 𝑟𝑖𝑢𝑖(𝑡)
2)

+∞

𝑡0

d𝑡. (20) 

Proof: According to the LQR theory [29], the 

optimality is obvious. Denote the topological ordering 

by {0, 𝑠1, 𝑠2, … , 𝑠𝑁}, where 𝑠1, 𝑠2, … , 𝑠𝑁 is a permutation 

of 1,2, … , 𝑁. We only prove the equivalence of (7) and 

(19) using the mathematical induction.  

(a) For the vehicle 𝑠1 , since 𝕝𝑠1 = {0} , we have 

𝑢𝑠1 = 𝑢0 − 𝐾fb𝑥̃𝑠1 . 

(b) Suppose that 𝑢𝑠𝑘 = 𝑢0 − 𝐾fb𝑥̃𝑠𝑘 , then for the 

vehicle 𝑠𝑘+1, since 𝕝𝑠𝑘+1 ⊆ {0, 𝑠1, 𝑠2, … , 𝑠𝑘}, we have 

𝑢𝑠𝑘+1 =
1

|𝕝𝑠𝑘+1|
∑ (𝑢𝑗 − 𝐾fb(𝑥̃𝑖 − 𝑥̃𝑗))

𝑗∈𝕝𝑠𝑘+1

 

=
1

|𝕝𝑠𝑘+1|
[𝑏𝑠𝑘+1(𝑢0 − 𝐾fb𝑥̃𝑠𝑘+1)

+∑𝑎𝑠𝑘+1,𝑗 (𝑢𝑗 − 𝐾fb(𝑥̃𝑖 − 𝑥̃𝑗))

𝑁

𝑗=1

] 

=
1

|𝕝𝑠𝑘+1|
[𝑏𝑠𝑘+1(𝑢0 − 𝐾fb𝑥̃𝑠𝑘+1)

+∑𝑎𝑠𝑘+1,𝑗(𝑢0 − 𝐾fb𝑥̃𝑠𝑘+1)

𝑁

𝑗=1

] 

= 𝑢0 − 𝐾fb𝑥̃𝑠𝑘+1 . 

This proves the equivalence. 

∎ 
Remark 3: According to (19), with homogeneous 

parameters, each following vehicle implicitly uses the 

leading vehicle’s control input for feedforward, and the 

relative tracking error with respect to the leading vehicle 

for feedback, even though not all of the following 

vehicles can acquire the information of the leader. This 

property is not affected by the concrete communication 

topologies used in the platoons. 

In the performance index (11), the average neighbor 

state error 𝑥̂𝑖  and the average neighbor control input 

error 𝑢̂𝑖 are penalized, which is not common in control 

design. Compared with (11), the performance index (20) 

is more practical in control design, considering that 

platoons are often operated at a preset constant velocity, 

which implies that 𝑢0 = 0. 



AVEC’18 

4. NUMERICAL SIMULATION 

In this section, we present simulation results to 

demonstrate the effectiveness of the proposed control 

method. Consider a platoon consisting of one leading 

vehicle and seven following vehicles using four types of 

communication topologies, i.e., PF, PLF, TPF, and 

TPLF, which are shown in Fig. 1. Note that for all these 

topologies, it holds that 𝒢̅ contains a directed spanning 

tree rooted at the leading vehicle and 𝒢 is a DAG. 

4.1 Simulation Setup 

The initial states are  𝑝𝑖(0) = −𝑖 × 𝑑0 +
𝑑𝑟 ,  𝑣𝑖(0) = 𝑣0 + 𝑣𝑟 , 𝑎𝑖(0) = 0 , where 𝑑𝑟  and 𝑣𝑟  are 

initial errors following the standard normal distribution, 

i.e., 𝑑𝑟~𝑁(0, 1
2), 𝑣𝑟~𝑁(0, 1

2) . The control input (or 

the desired acceleration) of the leading vehicle is: 

𝑢0(𝑡) = {
0, 0𝑠 ≤ 𝑡 < 3𝑠   
1, 3𝑠 ≤ 𝑡 < 15𝑠
0, 𝑡 ≥ 15𝑠           

 , (𝑚/𝑠2). (21) 

The other simulation parameters are listed in Table 1. 

We compare the proposed feedforward-feedback 

controller (denoted by FFFB) with the feedback 

controller (denoted by FB) similar to the one designed 

in [27]: 

𝑢𝑖 = −𝐾fb,𝑖
1

|𝕝𝑖|
∑(𝑥̃𝑖 − 𝑥̃𝑗)

𝑗∈𝕝𝑖

, (22) 

which contains no feedforward term but shares the same 

feedback gain 𝐾fb,𝑖 . For the FFFB controller, we also 

consider the time delay in the calculation by replacing 

𝑢𝑗(𝑘) with 𝑢𝑗(𝑘 − 1) at the time 𝑘 (see Remark 2) in 

the discrete-time simulations. This delayed FFFB 

controller is denoted by dFFFB for convenience. The 

quantitative performance of these three controllers is 

measured with the practical performance index (20). 

4.2 Simulation Results 

The profiles of spacing error are shown in Fig. 3. It 

is clear that when the leading vehicle moves at a 

constant velocity, the platoons with three types of 

controllers are all asymptotically stable. However, when 

the leading vehicle accelerates with a constant non-zero 

control input, both the FFFB and dFFFB controllers can 

still guarantee the asymptotically tracking, while the FB 

controller cannot. This demonstrates the advantage of 

the feedforward design. 

The sums of performance indices of the seven 

following vehicles are listed in Table 2. It is obvious 

that the FFFB and dFFFB controllers outperform the FB 

controller for all the four types of communication 

topologies. It is also observed that the differences in the 

performance of the FFFB and dFFFB controllers are 

neglectable. 

Table 1 Simulation parameters 

parameter value 

𝑁 8 

𝜏 0.3 

𝑑0  20 (m)
 

𝑣0  10 (m/s) 

𝑄𝑖  diag{3,2,1} + 0.2 × 𝑖 × 𝐼3 

𝑟𝑖 1 + 0.2 × 𝑖 

Table 2 Performance index 

communication 

topology 

controller 

FFFB dFFFB FB 

PF 120.01 123.81 1899.28 

PLF 120.09 120.49 363.39 

TPF 120.02 120.86 974.64 

TPLF 120.06 120.41 456.40 

 
(a) PF 

 
(b) PLF 

 
(c) TPF 

 
(d) TPLF 

Fig. 3 Profiles of spacing error 

(left: FFFB; middle: dFFFB; right: FB) 

5. CONCLUSIONS 

This paper has introduced a behavioral cooperation 

method for multiple connected vehicle systems with 

directed acyclic interactions. A novel feedforward-

feedback control scheme has been designed for 

consensus-based platoon control. By using the LQR 

theory, it is proved that the proposed feedforward-

feedback controller guarantees the asymptotic stability 

of the system and is optimal with respect to a specific 

quadratic performance index, since it implicitly uses the 

leader’s information. The advantage of the proposed 

control method is validated through numerical 

simulations. 

Future work includes the study of other types of 

feedforward strategies. Besides, the time delay in 

communication and the string stability also deserve 

further consideration. 
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