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Abstract
Many optimal and robust control problems are nonconvex and potentially nonsmooth in their pol-
icy optimization forms. In this paper, we introduce the Extended Convex Lifting (ECL) framework,
which reveals hidden convexity in classical optimal and robust control problems from a modern
optimization perspective. Our ECL framework offers a bridge between nonconvex policy optimiza-
tion and convex reformulations. Despite non-convexity and non-smoothness, the existence of an
ECL for policy optimization not only reveals that the policy optimization problem is equivalent to a
convex problem, but also certifies a class of first-order non-degenerate stationary points to be glob-
ally optimal. We also show that this ECL framework can cover many benchmark control problems,
including LQR, state-feedback and output-feedback H∞ robust control. We believe that the ECL

framework will be of independent interest for analyzing nonconvex problems beyond control.

1. Introduction

The classical optimal and robust control problems, including linear quadratic regulator (LQR), lin-
ear quadratic Gaussian (LQG) control, and H∞ control, have been extensively studied (Kalman,
1963; Levine and Athans, 1970). It is well-known that almost all these problems are nonconvex in
the space of controller (i.e., policy) parameters. Nevertheless, classical techniques based on con-
troller re-parameterizations (Scherer and Weiland, 2015; Boyd et al., 1994) or Riccati equations
(Zhou et al., 1996) have been established to characterize optimal or suboptimal controllers. These
classical techniques do not optimize over the policy parameters directly, and often require an ex-
plicit system model. On the other hand, the optimization landscapes of optimal and robust control
problems can also offer fruitful results, in which we view the control costs as functions of the pol-
icy parameters and study their analytical and geometrical properties (Lewis, 2007; Hu et al., 2023;
Talebi et al., 2024). This perspective is naturally amenable for data-driven design paradigms such
as reinforcement learning and learning-based control (Recht, 2019).

However, this policy optimization perspective for control generally leads to nonconvex and po-
tentially nonsmooth problems. For example, the set of feedback gains K that stabilize the system
ẋ = Ax + Bu via u = Kx is already nonconvex; if we consider output-feedback controller syn-
thesis such as LQG, then the parameterized set of dynamic policies can even be disconnected (Tang
et al., 2023). Furthermore, the LQG cost function may have spurious stationary points (Zheng et al.,
2022), and there can be uncountably many globally optimal policies lying on a manifold induced
by similarity transformations (Zheng et al., 2022; Tang et al., 2023; Kraisler and Mesbahi, 2024).
In addition to non-convexity, non-smoothness may also arise when considering robust control prob-
lems. A typical performance measure for robust control is the H∞ norm of certain closed-loop
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transfer function (Zhou et al., 1996), which is known to be both nonconvex and nonsmooth in the
policy space (Apkarian and Noll, 2006; Lewis, 2007).

For nonconvex and nonsmooth optimization, it is generally very hard to derive theoretical guar-
antees for local search algorithms. On the other hand, a series of recent findings have revealed be-
nign nonconvex landscape properties in benchmark control problems, including LQR (Fazel et al.,
2018; Mohammadi et al., 2022; Fatkhullin and Polyak, 2021), risk-sensitive control (Zhang et al.,
2021), LQG (Tang et al., 2023; Zheng et al., 2022; Duan et al., 2024), dynamic filtering (Umen-
berger et al., 2022; Zhang et al., 2023), H∞ control (Hu and Zheng, 2022; Guo and Hu, 2022; Tang
and Zheng, 2023), and distributed control (Furieri et al., 2020a). Many of these works leveraged the
idea that the control problem under investigation admits suitable convex reformulations. However,
these existing works are mostly on a case-by-case basis. Our work aims to provide a unified frame-
work that explains the benign nonconvex landscape properties of these iconic control problems.

Our Contributions — Extended Convex Lifting (ECL)
We introduce a unified framework, called Extended Convex Lifting (ECL), to reveal hidden convexity
in classical optimal and robust control problems from a modern optimization perspective. The core
idea behind ECL stems from the existing results in control theory that, via a suitable change of
variables, many optimal and robust control problems admit “convex reformulations” (Scherer and
Weiland, 2015; Boyd et al., 1994). By fitting the change of variables into the ECL framework, we can
analyze the nonconvex landscape of the corresponding policy optimization problem by exploiting
its hidden convexity.
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Figure 1: A schematic illustration of ECL.

Figure 1 provides a schematic illustration
of ECL. Specifically, we begin with the epi-
graph of the objective J(K), and lift certain
subset of its closure to a higher dimensional
set Llft by incorporating Lyapunov variables
in the change of variables. Then, we construct
a smooth bijection Φ that maps Llft to some
Fcvx×Gaux in which Fcvx is convex. This bi-
jection essentially encodes the change of vari-
ables for the corresponding control problem. In many control problems, Fcvx can be represented by
LMIs, while Gaux accounts for similarity transformations of output-feedback policies.

Despite non-convexity and non-smoothness, the existence of an ECL not only shows that the
policy optimization problem is equivalent to a convex problem (Theorem 2.1) but also identifies a
class of non-degenerate stationary points to be globally optimal (Theorem 3.1). Our ECL framework
covers many iconic control problems; many recent results on global optimality of (non-degenerate)
stationary points, such as LQR (Fazel et al., 2018; Mohammadi et al., 2022), LQG (Tang et al.,
2023), state-feedback H∞ control (Guo and Hu, 2022), output-feedback H∞ control (Tang and
Zheng, 2023), are special cases once the corresponding ECL is constructed.

We point out that our ECL framework is more general than Tang et al. (2023); Umenberger
et al. (2022); Guo and Hu (2022); Sun and Fazel (2021); Mohammadi et al. (2022), in the sense
that it can directly handle both state-feedback and output-feedback policies, as well as smooth and
nonsmooth cost functions. More importantly, our ECL framework naturally classifies degenerate and
non-degenerate policies, which reflects the subtleties between strict and non-strict LMIs in control.
Due to the page limit, we omit the proofs of most of the results in this paper. Detailed proofs,
relevant discussions, and examples can be found in our extended reports (Zheng et al., 2023, 2024).
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2. Extended Convex Lifting (ECL) for Benign Non-convexity

2.1. A Motivating Example

We first provide a motivating example. Consider an LTI system ẋ(t) = Ax(t)+Bu(t)+w(t) with

A =

[
−2 0
0 1

]
, B =

[
0
1

]
, where w(t) is a white Gaussian noise with E[w(t)w(τ)] = 4δ(t−τ)I . We

aim to design a state-feedback policy u(t) = Kx(t) with K =
[
k1 k2

]
∈ R1×2 to minimize the

LQR cost lim
T→∞

E
[
1
T

∫ T
0

(
x1(t)

2+x2(t)
2+u(t)2

)
dt
]
. Standard calculation shows the cost equals to

J(K) =
1− 2k2 + 3k2

2 − 2k3
2 − 2k2

1k2
k2
2 − 1

, k1 ∈ R, k2 < −1. (1)

Following the classical change of variables Y = KX where X solves the Lyapunov equation
(A+BK)X +X(A+BK)T + 4I2 = 0, we obtain the nonlinear mapping

Y =
[
y1 y2

]
=g(K) :=

[
k1

1−k2

2k2−k2
1−2k2

2

k2
2−1

]
, ∀ k1 ∈ R, k2 < −1.

One can check that g is invertible, and the cost function after applying this mapping becomes

h(Y ) = J(g−1(Y )) = −y2−1+Y

[
1 y1
y1 −y2−2

]−1

Y T, for Y such that

[
1 y1
y1 −y2−2

]
≻0.

By standard techniques in convex analysis, one can show that h(Y ) is convex. Thanks to the smooth
bijection g, minimizing J(K) is now equivalent to minimizing the convex function h(Y ), and any
stationary point of J(K) is globally optimal.

This motivating example demonstrates how one can utilize a proper change of variables to cer-
tify the global optimality of stationary points via convex analysis for policy optimization. In the
next subsection, we propose a general framework for nonconvex policy optimization that can cover
a much wider range of benchmark problems with convex reformulations.

2.2. The Extended Convex Lifting (ECL) Framework

Consider a policy optimization problem where the objective is f : D → R, with D ⊆ Rd being its
domain. To study the landscape of f , we resort to its strict and non-strict epigraphs defined by

epi>(f) := {(x, γ) ∈ D × R | γ > f(x)}, epi≥(f) := {(x, γ) ∈ D × R | γ ≥ f(x)}.

Definition 2.1 (Extended Convex Lifting) Suppose f : D → R is continuous. We say that the
tuple (Llft,Fcvx,Gaux,Φ) is an ECL of f , if the following conditions hold:

1. Llft ⊆ Rd × R × Rdξ is a lifted set with an extra variable ξ ∈ Rdξ , such that the canoni-
cal projection of Llft onto the first d + 1 coordinates, given by πx,γ(Llft) = {(x, γ) : ∃ξ ∈
Rdξ s.t. (x, γ, ξ) ∈ Llft}, satisfies

epi>(f) ⊆ πx,γ(Llft) ⊆ cl epi≥(f). (2a)
2. Fcvx ⊆ R× Rd1 is a convex set, Gaux ⊆ Rd2 is an auxiliary set, and Φ is a C2 diffeomorphism

from Llft to Fcvx × Gaux.1

1. We allow d2 = 0, in which case we adopt the convention Gaux = {0} and identify Fcvx × {0} with Fcvx.
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3. For any (x, γ, ξ) ∈ Llft, we have
Φ(x, γ, ξ) = (γ, ζ1, ζ2) and (γ, ζ1) ∈ Fcvx (2b)

for some ζ1 ∈ Rd1 and ζ2 ∈ Gaux (i.e., the mapping Φ directly outputs γ in the first component).

The notion of ECL gives extensive flexibility by 1) adding an extra variable to lift the epigraph
to a higher dimension, 2) relaxing the projection of the lifted set to sit between the strict epigraph
and the closure of the non-strict epigraph (chain of inclusion), and 3) introducing an auxiliary set
Gaux to extend the convex image under a diffeomorphism. The extra variable ξ often corresponds to
Lyapunov variables, and Gaux is often related to similarity transformations of dynamic policies.

The interested reader may wonder why we need such a peculiar chain of inclusion in (2a). A
simpler and more straightforward requirement for the lifting process might be

πx,γ(Llft) = epi≥(f). (3)

Evidently, (2a) includes (3) as a special case. In Section 4, we will present an ECL for output-
feedback H∞ control where the more general (2a) is necessary, which is largely due to the intricacy
between strict and non-strict LMIs in the convex reformulations of control problems. This intricacy
is important for global optimality, but has been less emphasized before since classical results often
focused on suboptimal controller design; see (Zheng et al., 2023, 2024) for details. An immediate
benefit of ECL is that we can reformulate the minimization of f(x) over x ∈ D as a convex problem.

Theorem 2.1 Let f : D → R be continuous and equipped with an ECL (Llft,Fcvx,Gaux,Φ). Then,
we have infx∈D f(x) = inf(γ,ζ1)∈Fcvx

γ.

Thanks to the diffeomorphism Φ, the proof is straightforward but requires careful reasoning
about (non-)strict epigraphs; see Zheng et al., 2024, Theorem 3.1 for a detailed proof. In Theo-
rem 2.1, the function f can be nonsmooth and nonconvex, but the existence of an ECL reveals its
hidden convexity in the sense that optimizing f(x) over x ∈ D is equivalent to a convex problem.
Theorem 2.1 provides the rationale behind convex re-parameterizations of many control problems
(Scherer and Weiland, 2015; Boyd et al., 1994). Note that we only guarantee an infimum instead of
a minimum in Theorem 2.1 (the infimum may not always be achieved in H∞ control).

3. Non-degenerate Policies and Global Optimality2

In addition to convex reformulation as shown in Theorem 2.1, the existence of an ECL can further
reveal global optimality of certain first-order stationary points for the potentially nonconvex and
nonsmooth function f . This allows us to optimize f(x) by direct local search without knowing the
particular form of the ECL, which is particularly important for learning-based model-free control.

Before proceeding, we re-emphasize that the chain of inclusion (2a) is critical to the construction
of ECL in many control problems. This chain of inclusion allows existence of points (x, f(x)) that
are not covered by πx,γ(Llft), as well as members of πx,γ(Llft) that are only accumulation points of
epi≥(f). We introduce the notion of (non-)degeneracy to characterize the former type of points.

Definition 3.1 (Non-degenerate points) Let f : D → R be a continuous function equipped with
an ECL (Llft,Fcvx,Gaux,Φ). A point x ∈ D is called non-degenerate if (x, f(x)) ∈ πx,γ(Llft),
otherwise degenerate. The set of non-degenerate points in D will be denoted by Dnd.

2. Some materials rely on the notion of Clarke subdifferential, which extends subdifferential to nonconvex nonsmooth
functions. We refer the readers to Clarke (1990) for details, or Zheng et al. (2023, Appendix B) for a brief review.
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In Section 4.1, we will show that all stabilizing state-feedback policies for LQR and H∞ control
are non-degenerate using standard ECL constructions. We will also see that for output-feedback H∞
control, the set of non-degenerate policies defined in our previous work (Tang and Zheng, 2023)
corresponds to the set of non-degenerate points per Definition 3.1 under the ECL framework.

We now present one main technical result of this paper, which provides global optimality cer-
tificates for stationary points that are non-degenerate.

Theorem 3.1 Let f : D → R be a subdifferentially regular3 function defined on an open domain
D ⊆ Rd, and let (Llft,Fcvx,Gaux,Φ) be an ECL of f . If x∗ ∈ Dnd is a Clarke stationary point, i.e.,
0 ∈ ∂f(x∗), then x∗ is a global minimizer of f(x) over D.

The proof of Theorem 3.1 has a strong geometric intuition, but the details are technically in-
volved, which are given in Zheng et al., 2024, Section 3.3. Theorem 3.1 guarantees that non-
degenerate stationarity implies global optimality for any subdifferentially regular function with an
ECL. Subdifferentially regular functions are a very large class of functions, covering all optimal and
robust control problems discussed in Section 4.

We now provide a corollary considering the case when (3) holds for the ECL.

Corollary 3.1 Let f : D → R be a subdifferentially regular function defined on an open domain
D ⊆ Rd, and let (Llft,Fcvx,Gaux,Φ) be an ECL of f . If (3) holds, then
1. All points x ∈ D are non-degenerate.
2. Any Clarke stationary point is a global minimizer of f(x) over x ∈ D.

As mentioned before, many state-feedback and full-order output-feedback controller synthesis
problems are nonconvex in their natural forms but admit “convex reformulations” in terms of LMIs
using a suitable change of variables. We argue that our notion of ECL presents a unified treatment
for many of these convex reformulations. In Section 4, we will present some ECL construction
details for benchmark optimal and robust control problems. We point out that, despite the wide use
of convex reformulations in control, exact constructions of ECL require special care, especially for
output-feedback control problems (since strict vs. non-strict inequalities are quite subtle).

Remark 3.1 (Degenerate points and saddles) By (2a), πx,γ(Llft) may not cover the whole non-
strict epigraph. As a result, Theorem 3.1 does not provide global optimality guarantees for de-
generate stationary points x ∈ D\Dnd since they cannot be covered by convex parameterization.4

Suboptimal saddle points for f might exist even when equipped with an ECL. Indeed, it has been
revealed that LQG policy optimization has strictly sub-optimal saddle points (Tang et al., 2023,
Thereom 5) (Zheng et al., 2022, Theorem 2), which are all degenerate per Definition 3.1.

4. Applications in Optimal and Robust Control

In this section, we present the ECL constructions for several benchmark optimal and robust control
problems; Theorems 2.1 and 3.1 can then be directly applied to their policy optimization formula-
tions. Due to page limit, we omit the mathematical justifications of these ECL constructions, and
refer interested readers to Zheng et al. (2023, 2024) for detailed proofs.

3. Subdifferential regularity allows us to relate the Clarke subdifferential with ordinary directional derivatives.
4. In this sense, some classical LMI formulations are not “equivalent” convex parameterizations for original control

problems, especially in output-feedback cases. This subtle point has been less emphasized in classical literature since
most of them focus on suboptimal policies (Scherer et al., 1997; Scherer and Weiland, 2015; Boyd et al., 1994).
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Table 1: ECL construction for LQR and state-feedback H∞ control.

LQR State-feedback H∞

Llft

LLQR =(K, γ,X)

∣∣∣∣∣∣
X≻0,AK,X+W =0

γ≥tr
(
(Q+KTRK)X

)
L∞ =

{
(K, γ, P )

∣∣ L∞ ⪯ 0, P ≻ 0
}
,

L∞ :=


At

K,P PBw Q1/2 KTR1/2

BT
wP −γI 0 0

Q1/2 0 −γI 0
R1/2K 0 0 −γI



Fcvx

FLQR =(γ, Y,X)

∣∣∣∣∣∣
X≻0, Y ∈Rm×n,AX,Y +W =0

γ≥tr
(
QX+X−1Y TRY

) 
F∞=

{
(γ, Y,X)

∣∣X≻0, Y ∈Rm×n,F∞⪯0
}
,

F∞ :=


AX,Y Bw XQ1/2 Y TR1/2

BT
w −γI 0 0

Q1/2X 0 −γI 0
R1/2Y 0 0 −γI


Φ ΦLQR(K, γ,X) = (γ,KX,X) Φ∞(K, γ, P ) = (γ,KP−1, P−1)

Notations: AK,X := (A+BK)X + P (A+BK)T; At
K,P := (A+BK)TP + P (A+BK);

AX,Y := AX +BY + (AX +BY )T.

4.1. State-Feedback Policy Optimization

Consider a continuous-time LTI system

ẋ(t) = Ax(t) +Bu(t) +Bww(t), z(t) =

[
Q1/2

0

]
x(t) +

[
0

R1/2

]
u(t), (4)

where x(t) ∈ Rn is the state variable, u(t) ∈ Rm is the control input, and w(t) ∈ Rn is the
disturbance on the system process. We introduce Bw ∈ Rn×n for a unified treatment of LQR and
H∞ control in this section. z(t) represents the performance signal, where Q ⪰ 0 and R ≻ 0. We
assume (A,B) is controllable and (Q1/2, A) is observable.

For both LQR and H∞ control, their cost values depend on Bw only via BwB
T
w. We thus define

W := BwB
T
w, and assume Bw = W 1/2 without loss of generality. We also assume that W ≻ 0. We

consider the class of state-feedback policies of the form u(t) = Kx(t), with K ∈ Rm×n, to regulate
z(t) under the influence of w(t). The set of stabilizing state-feedback policies, parameterized by
K, is then K :=

{
K ∈ Rm×n | maxiReλi(A+BK) < 0

}
.

4.1.1. LINEAR QUADRATIC REGULATOR (LQR)

In the LQR problem, w(t) is assumed to be white Gaussian noise with unit intensity. The policy
optimization formulation for LQR is then (see, e.g., Mohammadi et al. (2022)),

min
K∈Rm×n

JLQR(K) := tr
[
(Q+KTRK)XK

]
s.t. K ∈ K, (5)

where XK is the positive semidefinite solution to the Lyapunov equation (A+BK)XK +XK(A+
BK) + W = 0. It is known that JLQR(K) is smooth and nonconvex, but has a unique stationary
point (which is globally optimal) and is gradient dominated on any sublevel set (Mohammadi et al.,
2022). These nice landscape properties are closely related to the hidden convexity of (5).
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The ECL construction for LQR policy optimization is presented in the second column of Table 1.
Specifically, the construction consists of three steps:

Step 1: Lifting. We first define the lifted set LLQR, as delineated in the second row of Table 1. By
the theory of linear quadratic control, we have K ∈ K and γ ≥ JLQR(K) if and only if there exists
X such that (K, γ,X) ∈ LLQR. This further implies that πK,γ(LLQR) = epi≥(JLQR).

Step 2: Convex set. We define the convex set FLQR as given in the third row of Table 1, and let the
auxiliary set be GLQR = {0}. The first three constraints in the definition of FLQR are obviously con-
vex, and the convexity of the last inequality follows by the joint convexity of tr(QX+X−1Y TRY )
with respect to (X,Y ).

Step 3: Diffeomorphism. We employ the classical change of variables Y = KX and define
ΦLQR(K, γ,X) = (γ,KX,X), where (KX,X) represents the variable ζ1 in ECL. This mapping
naturally satisfies (2b). We do not need ζ2 here as no similarity transformation exists. One can check
by standard calculation that FLQR = ΦLQR(LLQR), and that ΦLQR admits an inverse on FLQR given by
Φ−1
LQR(γ, Y,X) = (Y X−1, γ,X). Also, ΦLQR is a C∞ diffeomorphism between LLQR and FLQR.

Consequently, (LLQR,FLQR, {0},ΦLQR) is an ECL of JLQR(K) in (5). One key step in the construc-
tion is the utilization of the classical change of variables Y = KX or equivalently K = Y X−1.
Our ECL framework then immediately implies the following well-known results:
1. Theorem 2.1 justifies that the LQR (5) can be reformulated as a convex program:5

min
K∈K

JLQR(K) = min
(γ,Y,X)∈FLQR

γ,

and their optimal solutions K∗ and (γ∗, Y ∗, X∗) are related by K∗ = Y ∗X∗−1 and γ∗ =
JLQR(K

∗). The policy optimization for LQR can be viewed as a convex problem in disguise.
2. Any stationary point K⋆ of JLQR is globally optimal, confirmed by πK,γ(LLQR) = epi≥(JLQR)

and Corollary 3.1.
We mention that existing literature has further proved that JLQR(K) has a unique stationary

point, is coercive, and is L-smooth and gradient dominated over any sublevel set (Mohammadi et al.,
2022). These properties are fundamental to establishing global convergence of direct policy search
and their model-free extensions for solving LQR (Malik et al., 2020; Mohammadi et al., 2022). It
would be interesting to investigate how to refine our ECL framework to cover these properties.

4.1.2. STATE-FEEDBACK H∞ CONTROL

In state-feedback H∞ control, we consider w(t) as adversarial disturbance with bounded energy,
and the goal is to minimize the maximum energy gain from the disturbance w(t) to the performance
signal z(t). It is a standard result in robust control that the state-feedback H∞ control problem can
be formulated as

inf
K∈Rm×n

J∞(K) := ∥Tzw(K, s)∥H∞ s.t. K ∈ K, (6)

where Tzw(K, s) is the transfer matrix from w(t) to z(t) when the policy u(t) = Kx(t) is applied,
and ∥ · ∥H∞ denotes the H∞ norm. Note that the infimum of (6) may not be attainable.

The H∞ policy optimization problem (6) is nonconvex and nonsmooth, but it admits a convex
reformulation (Scherer and Weiland, 2015). It has been recently revealed in Guo and Hu (2022) that

5. The infima for both the original policy optimization and the convex reformulation can be achieved, due to the coer-
civeness of JLQR(K) and the compactness of

{
(Y,X)

∣∣ (γ, Y,X) ∈ FLQR

}
for any given γ > 0.
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for the discrete-time version of (6), any Clarke stationary point is globally optimal. Our aim here
is to construct an ECL for (6), which then allows us to draw conclusions from Theorems 2.1 and
3.1 directly. The construction process is very similar to the LQR case, and is delineated in the third
column of Table 1. One key difference is that the H∞ case relies on the bounded real lemmas.

Specifically, our ECL construction consists of the following steps:

Step 1: Lifting. We define the lifted set L∞ =
{
(K, γ, P )

∣∣ L∞ ⪯ 0, P ≻ 0
}

, where P is an extra
Lyapunov variable, and the matrix L∞ is given in the second row of Table 1.

Step 2: Convex set. We define a convex set F∞ =
{
(γ, Y,X)

∣∣ X≻0, Y ∈Rm×n,F∞⪯0
}

, with
F∞ defined in the third row of Table 1. The auxiliary set is G∞ = {0}.

Step 3: Diffeomorphism. We employ the classical change of variables Y = KP−1, X = P−1

and introduce the mapping Φ∞(K, γ, P ) = (γ,KP−1, P−1), where (KP−1, P−1) represents the
variable ζ1. Similar to the LQR case, no auxiliary variable ζ2 is needed.

For the construction above, we have the following results.

Proposition 4.1 Consider the state-feedback H∞ policy optimization problem (6), where (A,B)
is controllable, Bw has full row rank, and Q ≻ 0, R ≻ 0.

1. For any K ∈ Rm×n and γ ∈ R, we have K ∈ K and γ ≥ J∞(K) if and only if there exists P
such that (K, γ, P ) ∈ L∞. This further implies πK,γ(L∞) = epi≥(J∞).

2. The mapping Φ∞ is a C∞ diffeomorphism between the lifted set L∞ and the convex set F∞.

The proof is not very difficult, but one needs to be careful about some technical subtleties in
(non)-strict Riccti inequalities. The details are provided in Zheng et al. (2024, Appendix C.4).
Proposition 4.1 guarantees that (L∞,F∞, {0},Φ∞) is an ECL of J∞(K) in (6). For this ECL, we
further have the following nice results, which are consequences of Theorem 2.1 and Corollary 3.1,
and the fact that J∞(K) is sudifferentially regular.

Theorem 4.1 Under the conditions of Proposition 4.1, the following statements hold.
1. Problem (6) is equivalent to the convex problem inf(γ,Y,X)∈F∞ γ.

2. All stabilizing policies K ∈ K are non-degenerate with respect to the ECL (L∞,F∞, {0},Φ∞).
3. Any Clarke stationary point of (6) is globally optimal.

We note that the global optimality of Clarke stationary points for (6) has not been reported
before. This is the continuous-time counterpart of the discrete-time result in Guo and Hu (2022).
We also note that the infimum of (6) may not be achieved, in which case the Clarke stationary point
does not exist. An explicit SISO example is provided in Zheng et al. (2024, Appendix C.2).

Remark 4.1 The diffeomorphisms ΦLQR and Φ∞ are essentially in the same form and follow from
the classical change of variable K = Y X−1 (Khargonekar and Rotea, 1991; Boyd et al., 1994;
Bernussou et al., 1989). This change of variable is able to linearize many bilinear matrix inequal-
ities that appear in state-feedback control problems, most of which are related to the Lyapunov
inequality (A + BK)X + X(A + BK)T ≺ 0 (see Boyd et al., 1994, Chapter 7 for a historical
perspective). As we will see in the next subsection, the linearization for dynamic output-feedback
policies turns out to be much more complicated, and we will utilize the techniques in Scherer et al.
(1997); Scherer and Weiland (2015) to construct ECLs for output-feedback H∞ control. □
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4.2. Output-Feedback Policy Optimization

In this subsection, we show that ECL is also applicable to policy optimization with dynamic output-
feedback policies. Due to space limitation, we only treat the output-feedback H∞ control; see
Zheng et al. (2023, 2024) for LQG control.

Consider an LTI system with partial observations,

ẋ(t) = Ax(t) +Bu(t) +Bww(t), y(t) = Cx(t) +Dvv(t),

where y(t) ∈ Rp is the vector of measured outputs available for feedback control, and w(t) ∈
Rn, v(t) ∈ Rp are the disturbances on the system process and measurement at time t. We define
W := BwB

T
w, V := DvD

T
v , and, without loss of generality, assume Bw = W 1/2 and Dv = V 1/2.

We adopt the same performance signal z(t) in (4). The following assumption is standard.

Assumption 4.1 (A,B) and (A,W 1/2) are controllable, and (C,A) and (Q1/2, A) are observ-
able. Moreover, Q ⪰ 0, R ≻ 0,W ⪰ 0, V ≻ 0.

To properly regulate z(t), we consider full-order dynamic output-feedback policies of the form

ξ̇(t) = AKξ(t) +BKy(t),

u(t) = CKξ(t) +DKy(t).
K =

[
DK CK
BK AK

]
∈ R(m+n)×(p+n), (7)

where ξ(t) ∈ Rn is the internal state, and AK, BK, CK and DK are matrices of proper dimensions
that specify the policy dynamics. We parameterize dynamic policies by K. By closing the feedback
loop, we can represent the transfer matrix from the disturbance d(t) =

[
wT(t) vT(t)

]T to the
performance signal z(t) in the following form:

Tzd(K, s) = Ccl(K)
(
sI −Acl(K)

)−1
Bcl(K) +Dcl(K),

where Acl(K), Bcl(K), Ccl(K) and Dcl(K) are certain matrix-valued functions that characterize the
state-space model of the closed-loop system (see Zheng et al., 2023, Appendix A.5 for details).

Now consider a standard output-feedback H∞ policy optimization problem,

inf
K

J∞,n(K) := ∥Tzd(K, s)∥H∞ s.t. K ∈ Cn, (8)

with Cn denoting the set of internally stabilizing dynamic policies Cn =
{
K
∣∣ Acl(K) is stable

}
. It

is known that the policy optimization problem (8) is nonsmooth and nonconvex, which has compli-
cated landscape properties. Our ECL construction for J∞,n(K) is based on the change of variables
given in Scherer et al. (1997); Scherer and Weiland (2015), and the details are as follows:
Step 1: Lifting. We first introduce the lifted set L∞,d by

L∞,d =

(K, γ, P )

∣∣∣∣∣∣∣∣∣
K ∈ R(m+n)×(p+n), γ ∈ R, P ≻ 0, detP12 ̸= 0,Acl(K)

TP+PAcl(K) PBcl(K) Ccl(K)
T

Bcl(K)
TP −γI Dcl(K)

T

Ccl(K) Dcl(K) −γI

 ⪯ 0

. (9)

where P12 denotes the n× n submatrix of P corresponding to the first n rows and last n columns.
The extra variable P plays the role of the lifting variable in ECL.

9



ZHENG PAI TANG

Step 2: Convex and auxiliary sets. We let the convex set be

F∞,d =

{
(γ,Λ, X, Y )

∣∣∣∣∣ γ ∈ R, Λ ∈ R(m+n)×(p+n),

[
X In
In Y

]
≻ 0,M (γ,Λ, X, Y ) ⪯ 0

}
,

where (Λ, X, Y ) corresponds to ζ1, and M (γ,Λ, X, Y ) is an affine operator whose definition is
omitted here due to space limitation. The auxiliary set is GLn =

{
T ∈ Rn×n

∣∣ detT ̸= 0
}

.
Step 3: Diffeomorphism. We define the mapping Φ∞,d by

Φ∞,d(K, γ, P )=

(
γ,

[
DK ΦF
ΦH ΦM

]
, (P−1)11, P11, P12

)
, (K, γ, P ) ∈ L∞,d,

where ΦM = P12BKC(P−1)11+P11BCK(P
−1)21+P11(A+BDKC)(P−1)11+P12AK(P

−1)21,
ΦH = P11BDK + P12BK, and ΦF = DKC(P−1)11 + CK(P

−1)21.
The following proposition justifies that (L∞,d,F∞,d,GLn,Φ∞,d) is an ECL for J∞,n(K). The

proof is technically involved and is given in the report Zheng et al., 2024, Appendix D; the main
difficulty lies in that (3) does not hold anymore, and we need to establish the chain of inclusion (2a).

Proposition 4.2 Under Assumption 4.1, we have i) epi>(J∞,n) ⊆ πK,γ(L∞,d) ⊆ cl epi≥(J∞,n).
ii) The mapping Φ∞,d is a C∞ diffeomorphism from L∞,d to F∞,d ×GLn.

Then, by Theorems 2.1 and 3.1, we get the following corollary.

Corollary 4.1 Under Assumption 4.1, the output-feedback H∞ policy optimization problem (8) is
equivalent to a convex problem in the sense that infK∈Cn J∞,n(K) = inf(γ,Λ,X,Y )∈F∞,d

γ. Further-
more, for a Clarke stationary point K ∈ Cn (i.e., 0 ∈ ∂J∞,n(K)), if K is non-degenerate in the sense
of Definition 3.1, then it is globally optimal for (8).

We can now see that our ECL framework covers the output-feedback H∞ policy optimization
problem as a special case, providing global optimality certificates for non-degenerate Clarke station-
ary points. Note that the equivalence to the convex reformulation is essentially the same as (Scherer
and Weiland, 2015, Chapter 4.2.3), but the global optimality of non-degenerate H∞ policies cannot
be derived from (Scherer and Weiland, 2015, Chapter 4.2.3) due to its use of strict LMIs. Finally,
we remark that our ECL can also cover a class of distributed control problems under the condition
of quadratic invariance (Furieri et al., 2020a,b); see Zheng et al., 2024, Section 4.4 for details.

5. Conclusion

This paper introduced the ECL framework to reveal hidden convexity in nonconvex and potentially
nonsmooth policy optimization for optimal and robust control. Particularly, we have shown that,
with the existence of an ECL for nonconvex policy optimization, all non-degenerate stationary poli-
cies are globally optimal. We have built explicit ECLs for LQR, state feedback H∞ control, and
dynamic output-feedback H∞ control. We hope the ECL framework will be useful for analyzing
nonconvex problems in other areas beyond control.
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