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Fast ADMM for Semidefinite Programs with Chordal Sparsity

Yang Zheng'!, Giovanni FantuzZi?, Antonis PapachristodoulduPaul Goulakt, Andrew Wynrt

Abstract— Many problems in control theory can be formu-  appropriate spacd,e., (z,y) = 2y for z,y € R™ and
lated as semidefinite programs (SDPs). For large-scale SDRs (X,Y) = trace(XY) for X,Y € S™.
is important to exploit the inherent sparsity to improve the SDPs have found applications in a wide range of fields,

scalability. This paper develops efficient first-order metlods . ludi trol th hi I . binatsri
to solve SDPs with chordal sparsity based on the alternating Including control theory, machine learning, combinatsyic

direction method of multipliers (ADMM). We show that chordal ~ @nd operations research [1]. Moreover, other common types
decomposition can be applied to either the primal or the dual of optimization problemse.g, linear, quadratic, and second-

standard form of a sparse SDP, resulting in scaled versionsfo order-cone programs, are particular instances of SDPs [2].
ADMM algorithms with the same computational cost. Each Small and medium-sized SDPs can be solved up to any

iteration of our algorithms consists of a projection on the . . . o . -
product of small positive semidefinite cones, followed by a arbitrary precision in polynomial time [3] using efficient

projection on an affine set, both of which can be carried Second-order interior-point methods [4], [5]. Howeveripa
out efficiently. Our techniques are implemented in CDCS, an problems of practical interest are too large to be addrdsged
open source add-on to MATLAB. Numerical experiments on the current state-of-the-art interior-point algorithrtesgely
large-scale sparse problems in SDPLIB and random SDPs with due to memory and CPU time constraints.
block-arrow sparse patterns show speedups compared to some o fth - h dd his sh .
common state-of-the-art software packages. ne of t e main approaches to a ! ress this s ortcom-mg is
to abandon interior-point methods, in favour of fastertfirs

|. INTRODUCTION order methods with modest accuracy. For instance, ¥en

al. proposed an alternating direction augmented Lagrangian

Semidefinite programs (SDPs) are a type of convex Op%ethod for large-scale SDPs in the dual standard form [6].

mization problems over the cone of positive semidefinite & ore recently, O'Donoghuet al. developed a first-order
tSr’IlC?r?étGd“(/a(feirr]\beethIi o’ irgtfré and matricesly, ..., Am € operator-splitting method to solve the homogeneous seidf-d
b embedding of the primal-dual pair of a conic program, which

(A1, X) m has the advantage of being able to provide primal or dual
A(X) = : L A(y) = Ay, certificates of infeasibility [7]. An implementation of #hi
(X) ' ) ; Y method is available in the C package SCS [8].
{Am, X) The second major approach is based on the observation
SDPs are typically written in thetandard primal form that the large-scale SDPs encountered in applications are
. often structured and/or sparse [1]. Exploiting sparsity in

o (¢, X) SDPs is an active and challenging area of research [9], one

subject to A(X) =b (1) main difficulty being that the optimal solution is typically

X esn dense despite the sparsity of the problem data. If, however,
+ the aggregate sparsity pattern of the dathisrdal(or has ef-
or in thestandard dual form ficientchordal extensior)s Grone’s theorem [10] and Agler’s
theorem [11] allow us to replace the positive semidefinite
constraint with a set of smaller semidefinite constrainiiss p
subject to A*(y) + Z = C, (2) an additional set of equality constraints. Having reduded t
n size of the semidefinite variables, the converted SDP can be
Z €5Y. solved more efficiently than the original problem in some

In the above and throughout this worR™ is the usual cases. These ideas underly themain-spacand therange-

m-dimensional Euclidean spacg? is the space of, x n  spaceconversion techniques of [12], [13], implemented in

symmetric matricesS” is the subspace of positive semidef-the MATLAB package SparseCoLO [14].

inite matrices, and-,-) denotes the inner product in the However, the addition of equality constraints to the SDP

often offsets the benefit of working with smaller semideénit
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variable [15]; and Anderseat al. developed fast recursive (v;,v;41) € € for i = 1,...,k — 1. A chord is an edge
algorithms for SDP problems with chordal sparsity [16]. Anjoining two non-adjacent vertices in a cycle. An undirected
other option is to solve the decomposable SDP via first-ordgraphg is calledchordalif every cycle of length greater than
methods: Suret al. proposed a first-order splitting algorithm or equal to four has at least one chord. Note thg{(i?, &) is

for decomposable conic programs, including SDPs withot chordal, it can behordal extended.e., we can construct
chordal sparsity [17]; Kalbat & Lavaei applied the alteingt a chordal graphg’(V,£’) by adding additional edges to
direction method of multipliers (ADMM) to solve a special £ such thatG’ is chordal. Although finding the chordal
class of SDPs with fully decomposable constraints [18]extension with the minimum number of additional edges is an
Madani et al. developed a highly-parallelizable ADMM NP-complete problem [21], good chordal extensions can be
algorithm for sparse SDPs with inequality constraints witltomputed efficiently using several heuristics; seg, [22].

optimal power flow applications [19]. - _ B. Sparse matrices defined by graphs
In this work, we adopt the strategy of exploiting sparsity Let G = (V,€) be an undirected graph, and assume that

using first-order algorithms in the spirit of [17], [18], [19 . .
and develop efficient ADMM algorithms to solve Iarge-scalél’l) € ¢, e, each pode has a.self—loqp. We say that
a sparse symmetric matrix defined &yif X;; = X;; =

sparse SDPs in either primal or dual standard form. Th'é whenever(i, j) ¢ £. The spaces of sparse and positive

contributions of this paper are three-fold: S ! . .
.. semidefinite sparse symmetric matrices defined;tare
1) We show that the ADMM and chordal decomposition L
Sn(g,()) :{X es” | Xij = X” =0if (Z7j) §é 5},

techniques can be combined to solve sparse SDPs
in either primal or dual standard form. The resulting S} (£,0) ={X € S"(£,0) | X = 0}.

primal and dual algorithms are scaled versions of eachimilarly, we say thai is a partial symmetric matrix defined
other. This provides a conversion framework suitabley G if X;; = X;; are given wher(i, j) € £, and arbitrary

for the application of first-order methods, analogous tetherwise. Moreover, we say thaf is a positive semidefinite
that of [12], [13] for interior-point methods. completion of the partial symmetric matri¥ if there exists

2) In each iteration, the positive semidefinite (PSD) conas = 0 such thatM;; = X;; when(i,j) € £. We can then
straint X € S? (or Z € §7) is enforced via parallel define the spaces

projections onto small PSD cones. The affine con- «» _ n T o
straints A(X) = b (or A*(y) + Z = C) are enforced Sn (£,7)={X € Sn | Xij = Xji givenif (i, j) € £},
via an equality-constrained quadratic program, and the SE(ET) =X eS|

corresponding KKT system matrix only depends on the IM = 0, M;; = X;;5,Y(i,j) € E}.
problem data. The preferred matrix factorization can Finally, given a cliqueCi of G, we let Ej, € RICtIxn pe
thus be cached before iterating the ADMM algorithmina matrix With(Ey);; = 1 if C(i) = j and zero otherwise,

3) We implement our techniques in the open SOUrCRhere €, (i) is the i-th vertex inCy, sorted in the natural

MATLAB solver CDCS (Cone Decomposition Conic orqering. Givenx € S”, the submatrix ofX defined by the
Solver). We ran numerical simulations on randorrb”qwclC is given by B, X ET € SlCkl.

SDPs with block-arrow sparse patterns, and on four . . L .
large-scale sparse problems in SDPLIB [20]. Thé: Chordal decomposition of positive semidefinite matrices
results demonstrate the efficiency of our algorithms Given any undirected grapfi(V, £), the spaces§ (¢,7?)
compared to other commonly used software package®ldS’; (£,0) are cones, and they are dual to each other [16],

The rest of this paper is organized as follows. Section i22l- If G is chordal, therS’; (€,7) and S (£,0) can be
reviews some key notions regarding chordal sparsity and d&XPressed in terms of several coupled smaller convex cones
composition techniques. We show how to apply the ADMNACCOTding to the following theorems:
to primal and dual standard-form SDPs in Sections Il Theorem 1 (Grone’s theorem [10]ket G(V,&) be a
and IV, respectively, and report some numerical experimenthordal graph, and Ie{Cl,Ci,...,C,_,} be the set of its
in Section V. Finally, Section VI offers concluding remarks Maximal cliques. ThenX' € §%(£,7) if and only if

e T [Ch|
1. PRELIMINARIES: CHORDAL DECOMPOSITION AND Xio = ExXEjp €54
THE ADMM A LGORITHM forallk=1,...,p.
Theorem 2 (Agler's theorem [11]))tet G(V,£) be a
chordal graph, and le{Cy,Cs,...,Cp} be the set of its
Let G(V,&) be an undirected graph with verticés = maximal cliques. ThenZ € S’ (€,0) if and only if there

A. Chordal graphs

{1,2,...,n} and edges C V x V. A subset of vertices exist matricesZ; € S'°*! for k=1, ..., p such that

C C V such that(i, j) € & for any distinct vertices, j € C »

is called aclique, and the number of vertices ihis denoted 7 — Z EL 7, Ey.

by |C|. If C is not a subset of any other clique, then it is Pt

referred to as anaximal clique Note that these results can be proven individually, but can

A cycle of lengthk in G is a set of pairwise distinct also can be derived from each other using the duality of the
vertices {v1, vz,...,vx} C V such that(vg,v1) € £ and conesS’} (£,7) andS'; (£,0) [22].



D. ADMM algorithm the vectorized variables

The ADMM algorithm solves the optimization problem
. x := vec(X),
min  f(z) + 9(y) ap=veday), k=1,...,p,
subject to Az + By = c,

where f andg are convex functionsg; € R"= ¢y € R"v A € and the matrices

R™*" B € R™*™ and ¢ € R". Given a penalty Hy, = E), @ E, (5)
parametep > 0 and a dual multipliez € R™<, the ADMM

algorithm minimizes the augmented Lagrangian such that
1 |12 xy = vec(Xy) = vec(Ex X EF) = Hy.
Ly(e,0,2) = £(2) + oy HAx+By—c+ L
. In other words, the matrices;, ..., H, are “entry-selector”
with respect to the variablesandy separately, followed by matrices of1’s and 0's, whose rows are orthonormal, that
a dual variable update: project z onto the subvectors, ..., x,, respectively. If
2" = argmin L, (z, y™, 2™), (3a) Wwe Qenote the constraints;, € S'f’“' by z1, € Sk, we can
z rewrite (4) as
y(”+1) = argmin Lp(x(”+1),y, z(")), (3b)
Y min (¢, x)
Z(n+1) — Z(n) +p(Ax(n+1) +By(n+1) _ C). (30) w,wll,m,wp
subjectto Az = b, 6)

The superscrip{n) indicates that a variable is fixed to its
value at then-th iteration. ADMM is particularly suitable
when the minimization with respect to each of the variables ) € Sk, k=1,

x andy in (3a) and (3b) can be carried out efficiently througl’,3 The ADMM algorithm for primal SDPs

closed-form expressions.
We start by moving the constraintsr = b andxz, € Sk
Ill. ADMM FOR SPARSEPRIMAL -FORM SDPS in (6) to the objective using the indicator functiofis-) and
This section introduces the ADMM algorithm for thegsk(.), respectivelyj.e., we write
primal-standard-form SDP (1), in which Grone’s theorem is
used to decompose the PSD constraint. We assume that (1)

x, = Hya, k:l,...,p7

min (c,x) 4+ 6o (Az — b) + Z ds, (zk)

is sparse with amggregate sparsity patterdescribed by the T,21,. 0 Tp 7
graphG(V, ), meaning that(i, j) € £ if and only if the . B B
entryij of at least one of the data matric€s Ao, ..., A, subjectto z = Hyz, k=1,...,p.

is nonzero. We also assume thatis chordal (otherwise,  This problem is in the standard form for the application of
it can be chordal extended), and that its maximal cliqueaDMM. Given a penalty parameter > 0 and a Lagrange
C1,...,Cp are small. multiplier A, for each constraint, = H,xz, we define the
A. Reformulation and decomposition of the PSD constraiRugmented Lagrangian

In (1), only the entries of the matrix variabl& cor-

responding to the graph edgésappear in the cost and £:={e;z) + 0o (Az =)

constraint functions, so the constraisf € S’ can be i 5 gl )\ 2 -
replaced byX € S7(&,7). Using Theorem 1, we can then C |75 (%) Tk kL kIl ]
reformulate (1) as =
min (C, X) and group the variables as
X, X1,..,X, ’
subject to A(X) = b, X = {z},
r ) Vi={x1, ..., zp}
Xk_EkXEk:O, k:l,...,p, ) s ApJy

X e 55 N Z= {0, A
In other words, we can decompose the original large semidefhen, according to (3), each iteration of the ADMM consists
inite cone into multiple smaller cones, at the expense obint Of an A-minimization step, ay/-minimization step and an
ducing a set of consensus constraints between the variablegdate of multipliersz.
To ease the exposition, we rewrite (4) in a vectorized form. 1) Minimization over X: Minimizing (8) over X is
Letting vec : S* — R™ be the usual operator mapping aequivalent to the equality-constrained quadratic program
matrix to the stack of its column, define the vectorized data

c:=vedC), mzin

A= [veqAy) ... veo(Am)]T,

n 1 n
x,(c)—Hkx—i—;)\,(g)

9)
subject to Az = b.



Letting py be the multiplier for the equality constraint, and P () (-1 ||2 1/2
ni X — T
defining Z H k k H
P o k=1
D= HlH,, (10) Ca=px » N
(Z BR )
the optimality conditions for (9) can be written as the KKT k=1

system are smaller than a specified toleraneg,; see [23] for

D AT)[«] »_HT (xlin) +p—1)\,(€")) o le more details on stoppmg conditions for a generic ADMM
A o]lyl” b algorithm. In conclusion, the decomposed primal-standard
(11) form SDP (6) can be solved using the steps summarized in

Note thatD is a diagonal matrix, because the rows of 90rithm 1.

each matrixH;, are orthonormal unit vectors dfs and0’s. _ _
Consequently, (11) can be solved efficientlyy, by block Algorithm 1 ADMM for decomposed primal form SDPs
elimination. Moreover, the coefficient matrix is the same at1: Given p > 0, ¢, > 0 and an initial guesst(©),

every iteration, which means its Cholesky (or LDL) factors (% . 2(0 A\ A\
can be pre-computed and cached before starting the ADMM: Data preprocessing: chordal extension, chordal decom-
iterations. position and factorizing the KKT system (11).

2) Minimization over ): Minimizing (8) over ) is 3: while max(ep, €q4) > €01 dO

equivalent to they independent problems 4: Computez™ with (11).
. (n11) | —1y(m)]? 5: fork=1,...,pdo
e ka — T A (12) © Computex{™ with (13).
subject to z, € Sy. 7. end for
8: fork=1,...,pdo
In terms of the original matrix variableX, ..., X, this o Compute)\,(cn) with (14).

amounts to a projection on the positive semidefinite cone.. end for
More precisely, ifl’, denotes the projection on@ifk‘ and 11 Update the residuals,, e4.

mat(-) = vec™'(-) we have 12: end while
x;n'ﬂ) = vec {]P’k {mat (Hka:("Jrl) — pflx\;n))] } . (13)
Since the projectiof*;, can be computed with an eigenvalue IV. ADMM FOR SPARSEDUAL -FORM SDPS
decomposition, and each coﬁE’“' is assumed to be small,
the new variablese!"™ ..., 2" can be computed We now develop a similar ADMM algorithm for the dual-

efficiently and in parallel. standard-form SDP (2), using Agler’s theorem to decompose

Remark 1: The use of a global variable to enforce the the positive semidefinite cone. As in Section Ill, we assume
consensus constraints between the entries of the subsecthit the aggregate sparsity pattern of the problem data is
1,..., 1, (i.e, ), = Hyx) is fundamental because it allows described by the chordal graghV, £).
to separate the conic constraints from affine constraint)n (
which makes the minimization ovéf easy to compute and A. Reformulation of decomposition of the PSD constraint
parallelizable.

3) Updating the multipliers Z: The final step in thén +
1)-th ADMM iteration is to update the multipliers; ..., A,

The equality constraint in (2) implies that the semidefinite
variable Z has the same sparsity pattern as the aggregate
sparsity pattern of the problem dateg., Z < S (€,0).

with the usual gradient ascent rule: for edek=1, ..., p, Applying Theorem 2, we then rewrite (2) as
(n+1) _ y(n) ( (n+1) (n+1))
A Ay +plxy Hyx . (24) min b,y
. . . . y,Zl,...,Zp
This computation is cheap, and can be parallelized. »
H * T
C. Summary & Stopping conditions subjectto A*(y) + Y  E} ZyEy, = C, (15)
The ADMM algorithm is stopped after the-th iteration =t
- Ve ori ZpesSS, k=1
if the relative primal/dual error measures k + ooy P
P o\ /2 In (15), the original PSD constraint has been replaced by
<Z Hx,ﬁ") — Hyzx™ ) multiple smaller PSD constraints. However, it is not conve-
o — k=1 nient to apply ADMM to this problem directly, because the
P P 2\ /2 P ,\ /2]’ positive semidefinite variable&, ..., Z; in the equality
max (ZH:E,(C") ) ,(Z HHkx(m ) constraint are weighted by the matricés,. Instead, we
k=1 k=1 introduce a set of slack variablés, ..., V, such thatZ, =



Primal SDP (1)&, Dual SDP (2) Given a penalty parameter > 0 and a Lagrange multi-
plier \; for each of the constraintg, = v, k=1, ..., p,
Grone’s Agler's : ;
Theorem Theorem we define the augmented Lagrangian
Decomposed Duality Decomposed Ld
Primal SDP (4) > Dual SDP (16) L:=—(by)+d (c— ATy = Hlw
k=1
ADMM ADMM p p 1 2
! Scaling v =+ Z 5Sk (Zk) + 5 Zp — Vg + ;/\k ) (19)
Algorithm1 ——  Algorithm 2 k=1

and group the variables as

X ={y,v1,..., Up},

Fig. 1. Duality relationships between primal and dual SD&sj] the
decomposed primal and dual SDPs.

YVi={z, ..., 2},
Vi, k=1,...,p, and reformulate (15) as Z:={M, ..., \p}
y,zl,...f?pl,nvl,...,vp —{b,y) 1) Minimization over X’: Minimizing (19) over blockX
P is equivalent to the equality-constrained quadratic paoygr
subjectto A*(y) + >  E} ViEy =C, (16) » . )
min )+ 23 [ o
Zy—Vi=0, k=1,...,p, YU Up = P

ICrl _ p
Zr €5¢7, k=1...p subject to c—ATy—ZH,ka:O. (20)
k=1

Finally, we definez;, := ved Zy) and vy := vedV}) for
all k=1,...,p, and use the same vectorized notation as iet ,; be the multiplier for the equality constraint. After

Section 1l to rewrite (16) in the vectorized form some algebra, the optimality conditions for (20) can be
min — (b, ) written as the KKT system
Y3215-++32p,V15---,Up
r D AT} m = S0 HE (2 4 07 AY)
1 T T _ = - R
subjectto A"y + ZHk Vg =, (17) [A 0|y —p b
=t (21)
zk—vp =0, k=1 ...,p, plus a set ofp uncoupled equations for the variableg
zk € Sk, k=1,...,p. (n) 1 (n)
Remark 2: Similar to the primal case, the use of a set of Ve =2 ;/\k +Hgr, k=1, p (22)

consensus equality constraintg ¢ v, = 0) is also essential The KKT system (21) is the same as (11) after rescaling
to the development of dual algorithm, so that the update %f — —a, y — —y, ¢ — p~lc andb — pb. Consequently

the conic v_ariablgs i_n our ADMM algorithm are reduced Qhe numerical cost of these operation is the same as in

simple cokmc. plr(;]Jectlcr)]ns. h derived b i Section IlI-B.1, plus the cost of (22), which is cheap and can
hRemar 3At oug (;Nf? i"we ir'vi k(117) yb?pp YINg pe parallelized. Moreover, as in Section 11I-B.1, the fastof

Theorem 2, it is not difficult to check that problem (17)the coefficient matrix required to solve the KKT system (21)

is exactly the dual of the dec_omposed primal__SDP (6)can be pre-computed and cached before iterating the ADMM
Consequently, our analysis provides a decomposition ﬂramglgorithm

work suitable for the application of first-order methods 2) Minimization over J: Similarly to Section I11-B.2

analogous of the conversion techniques for interior-poi%e variablesz ' -

methods of [12], [13]. This elegant picture, in which the . . b
) . o ) projections,

duality between the primal and dual SDP is inherited by

the decomposed problems by virtue of the duality between Z](C”“) = vec {]P’k [mat (v](e"“) — p*l/\gj))} } . (23)

Grone’s and Agler’s theorems, is shown in Figure 1.

..., zp are updated withp independent

. Again, these projections can be computed efficiently and in
B. The ADMM algorithm for dual SDPs parallel.

As in Section Ill, we start by moving all but the consensus 3) Updating the multipliers Z: The multipliers\;, k =
equality constraints, = v, k =1, ..., p, to the objective 1, ..., p, are updated with the usual gradient ascent rule

using indicator functions. This leads to . N N .
M= A p (A oY) (24

p p
: T T
min —(b,y) + do <c_ Ay - ZHk “’C) +Z‘55k (1) Remark 4:Since the computational cost of (22) is the
_ k=1 k=1 same as (14), all ADMM iterations for the decomposed
subjectto zp = vy, k=1,...,p. (18)  dual-standard-form SDP (16) have the same cost as the



ADMM iterations for the decomposed primal-standard-form d h

SDP (6), plus the cost of (24). However, if one minimizes d[
the dual augmented Lagrangian (19) ower ..., z, before
minimizing it overy, v, ..., vp, then (22) can be used to
simplify the multiplier update equations to
)\](:H) — pHpe™D, k=1,....p. (25) l blocké-_-
Given that the producté/;z, ..., H,z have already been h]
computed to Updatefla <oy Ups uDdat'ng the multlphers Fig. 2. Block-arrow sparsity pattern: the number of blodkshlock size,

A1, ..., Ap requires only a scaling operation. Consequentlys; the size of the arrow head,.

if one swaps the order of the minimization, the ADMM

algorithms for the primal and dual standard form SDPs can

be considered as scaled versions to each other, which have V. NUMERICAL SIMULATIONS

the same leading-order computational cost at each itexatio we have implemented our techniques in CDCS (Cone
Decomposition Conic Solver), an open source MATLAB

C. Summary & Stopping conditions solver for partially decomposable conic programs. CDCS

supports cartesian products of the following con&g:,

non-negative orthant, second-order cone, and the positive

semidefinite cone. Currently, only chordal decomposition

Similarly to Section IlI-C, we stop our ADMM algorithm
after the n-th iteration if the relative primal/dual error

measures techniques for semidefinite cones are implemented, whie th
P o\ /2 other supported cone types are not decomposed. Although

(Z Hz,g") —v,(c") ) some steps in Algorithms 1 and 2 are parallelizable, our

._ k=1 current implementation is sequential. Moreover, we do not
L / /2Y’ use the cliqgue combination techniques suggested in [12],

1/2 1/2
p 2 p 2
max <Z 2™ ) , <Z o{™ ) [24] for simplicity. Finally, CDCS scales the problem befor
— — the chordal decomposition step using the methods described
in [7] and implemented in SCS [8]. Our codes can be

» ) 1/2 downloaded from
(Z Hzlgm _ Zén—l)“ ) https://github. com gi of ant uzzi / CDCS .
1 We tested CDCS on four large-scale sparse problems (
€a:=px » 1/2 ’ 1000, m > 1000) in SDPLIB [20], as well as on a series
<Z H/\gﬂ 2) of randomly generated SDPs with the block-arrow sparse
1 pattern, used as a benchmark in [17]. The performance of

a our method is compared to that of the interior-point solver
are smaller than a specified toleraneg,. The complete sepymi[25] and of the first-order solver SCS [8]; both these
ADMM algorithm to solve the decomposed dual-standardsg|yers are used on the full problem (without decomposition

form SDP (16) is summarized in Algorithm 2. or the decomposed problem returned by SparseColO [14].
The comparison has two purposes: 1) the solution returned
Algorithm 2 ADMM for decomposed dual form SDPs by SeDuMi is of high accuracy, so we can use it to assess the
1: Given p > 0, e > 0 and an initial guesg/(®, quality of the solution computed by CDCS; 2) SCS is a high
Z§0)7 3 "ngO)’/\go)’ Ny _’/\20) performance first-order solver for general conic programs,
2. Data preprocessing: chordal extension, chordal decorfi® We can assess the unique features of our techniques in
position and factorizing the KKT system (21). terms of chordal decomposition. We remark that the CPU
3: while max(ep, €a) > €01 dO time required by SeDuMi should not be compared to the
4 for k=1,...,pdo other solvers, because the latter only aim to achieve mtelera
5 Computez,ﬁ") with (23). accuracy. In the experiments reported below, the terntinati
6 end for tolerance for CDCS and SCS was set@s= 10~2, and the
7. Computey™, z with (20). maximum number of iterations was set2ox< 103. All the
8 for k=1,...,pdo experiments were carried out on a computer with an Intel(R)
9 Computev,i”) with (22) Core(TM) i7 CPU, 2.8 GHz processor and 8GB of RAM.
10: Compute)|” with (25) (no cost). A. SDPs with block-arrow pattern

11: end for
12: Update the residuals, andeq.
13: end while

We consider randomly generated SDPs with block-arrow
patterns (see Figure 2), which is used as a benchmark case
in [17]. Such sparsity pattern is chordal, and its pararseter
are the number of blocksg; block size,d; the size of the
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Fig. 3. CPU time for SDPs with block-arrow patterns. Left ight: varying number of constraints; varying number of ldgicvarying block size.

TABLE |
PROBLEM STATISTICS FORSDPLIBPROBLEMS

maxG32 maxG51 thetaG51 qpG51

Affine constraints,m 2000 1000 6910 1000
Original cone sizen 2000 1000 1001 2000
Number of cliquesp 1499 674 674 1675
Maximum clique size 60 322 323 304
Minimum clique size 5 6 7 1

arrow head}; and the number of constraints;. Here, we
consider the following cases:

1) Fix1 =40, d =10, h = 20, vary m;
2) Fix m =1000, d = 10, h = 20, vary [;
3) Fix 1 =40, h =10, m = 1000, vary d.

The CPU t|m¢s for different Comb_lnatlons of SOIVerS’Fi . 4. Aggregate sparsity pattern of the SDPLIB problemssitered:
averaged over five random problem instances, are shovw%J maxG32 (b) maxG51 (c) thetaG51, (d) qpG51.
in Figure 3. CDCS is approximately 10 times faster than
SeDuMi and the combination SparseCoLO+SeDuMi, and
our implementation of Algorithm 2 is the fastest of alltially; CPU times are likely to reduce with a parallel imple-
methods we tested. Besides, the optimal value returned Imentation. Also note that although Algorithms 1 and 2 are
CDCS was always within 0.02% of the high-accuracy valugcaled versions of each other and have the same iteration
returned by SeDuMi. cost, they behave slightly differently; this could be expéc
since ADMM algorithms are sensitive to data scaling.

B. Sparse SDPs from SDPLIB Finally, we remark that the stopping objective value from
Our second experiment is based on a set of sparse SDEBCS is within 2% of the optimal value returned by SeDuMi
from SDPLIB [20]. We consider two max-cut problems(which is highly accurate, and can be considered exact) in
(maxG32 and maxG51), a Lovasz theta problem (thetaG538]] four cases, and within 0.08% for the max-cut problems
and a box-constrained quadratic problem (gpG51), all adhaxG32 and maxG51 — a negligible difference in applica-
which are large, sparse SDPs. Table | reports the dimensiaimns. Of course, the accuracy can be improved by setting

and some chordal decomposition details of these problentigghter stopping tolerances.
while Figure 4 illustrates their aggregate sparsity pater
Table Il summarizes our numerical results; problems VI. CONCLUSION
maxG51, thetaG51 and gpG51 could not be solved usingIn this paper, we proposed a conversion framework for
SeDuMi after being decomposed by SparseCoLO due targe SDPs characterized by chordal sparsity suitablenfor t
memory overflow caused by the large number of consensagplication of first-order methods, analogous to the cenver
constraints in the decomposed problem. For all four prolsion techniques for interior-point methods of [12], [13]eW
lems, CDCS (both primal and dual) is faster than SeDuMalso developed efficient ADMM algorithms for sparse SDPs
and can give speedups compared to either SCS and Spaiiseeither primal or dual standard form, which are imple-
CoLO+SCS in terms of CPU time and iterations. mented in the conic solver CDCS. Our numerical simulations
It should be kept in mind that the most time-consumingn random SDPs with block-arrow sparsity patterns and on
step in CDCS is the projection onto a large number ofarge sparse problemsin SDPLIB [20] show that our methods
semidefinite cones, which is currently implemented sequenan provide speedups compared to interior-point solvers

(© (d)



TABLE I
RESULTS FOR THE PROBLEM INSTANCES INDPLIB

. SparseCoLO+ SparseCoLO+ CDCS CDCs
SeDuMi SeDuMi SCS sCs (primal) (dual)
Total time (s) 974.6 355.2 2.558103 65.1 88.6 53.1
maxG32 Pre-processing time (s) 0 3.18 0.43 3.24 21.2 21.4
Objective value  1.568103 1.568x103 1.568x103 1.566x103 1.569x10%  1.568x103
Iterations 14 15 2000 960 238 127
Total time (s) 134.5 - 87.9 1.264103 110.9 75.9
maxG51 Pre-processing time (s) 0 - 0.11 2.87 3.30 3.20
Objective value  4.008103 - 4.006<103 3.977x 103 4.005<103  4.006x103
Iterations 16 - 540 2000 235 157
Total time (s)  2.218x103 - 424.2 1.346x103 471.2 735.1
thetaG51 Pre-processing time (s) 0 - 0.30 5.30 25.1 25.0
Objective value 349 - 350.6 341.3 354.5 355.9
Iterations 20 - 2000 2000 394 646
Total time (s)  1.40%103 - 2.330<103 985.8 727.1 606.2
G51 Pre-processing time (s) 0 - 0.47 190.2 12.3 12.3
ap Objective value  1.182103 - 1.288<103  1.174x10®  1.195¢103  1.194<103
Iterations 22 - 2000 2000 1287 1048

such as SeDuMi [25] — even when the chordal sparsity ig3]
exploited using SparseCoLO [14] — and also compared to
the state-of-the-art first-order solver SCS [8]. Lookingath,
it would be desirable to exploit chordal sparsity in a first{14]
order self-dual embedding formulation similar to that off, [7
because a self-dual embedding can detect infeasibilitg. Th
development of improved software packages that take full
advantage of parallel/distributed computer architectuse
also of interest.
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