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Fast ADMM for Semidefinite Programs with Chordal Sparsity

Yang Zheng†,1, Giovanni Fantuzzi†,2, Antonis Papachristodoulou1, Paul Goulart1, Andrew Wynn2

Abstract— Many problems in control theory can be formu-
lated as semidefinite programs (SDPs). For large-scale SDPs, it
is important to exploit the inherent sparsity to improve the
scalability. This paper develops efficient first-order methods
to solve SDPs with chordal sparsity based on the alternating
direction method of multipliers (ADMM). We show that chorda l
decomposition can be applied to either the primal or the dual
standard form of a sparse SDP, resulting in scaled versions of
ADMM algorithms with the same computational cost. Each
iteration of our algorithms consists of a projection on the
product of small positive semidefinite cones, followed by a
projection on an affine set, both of which can be carried
out efficiently. Our techniques are implemented in CDCS, an
open source add-on to MATLAB. Numerical experiments on
large-scale sparse problems in SDPLIB and random SDPs with
block-arrow sparse patterns show speedups compared to some
common state-of-the-art software packages.

I. I NTRODUCTION

Semidefinite programs (SDPs) are a type of convex opti-
mization problems over the cone of positive semidefinite ma-
trices. Givenb ∈ R

m, C ∈ S
n, and matricesA1, . . . , Am ∈

S
n that define the operators

A(X) =







〈A1, X〉
...

〈Am, X〉






, A∗(y) =

m
∑

i=1

Aiyi,

SDPs are typically written in thestandard primal form

min
X

〈C,X〉

subject to A(X) = b,

X ∈ S
n
+,

(1)

or in thestandard dual form

max
y,Z

〈b, y〉

subject to A∗(y) + Z = C,

Z ∈ S
n
+.

(2)

In the above and throughout this work,Rm is the usual
m-dimensional Euclidean space,Sn is the space ofn × n
symmetric matrices,Sn+ is the subspace of positive semidef-
inite matrices, and〈·, ·〉 denotes the inner product in the
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appropriate space,i.e., 〈x, y〉 = xT y for x, y ∈ R
m and

〈X,Y 〉 = trace(XY ) for X,Y ∈ S
n.

SDPs have found applications in a wide range of fields,
including control theory, machine learning, combinatorics,
and operations research [1]. Moreover, other common types
of optimization problems,e.g., linear, quadratic, and second-
order-cone programs, are particular instances of SDPs [2].
Small and medium-sized SDPs can be solved up to any
arbitrary precision in polynomial time [3] using efficient
second-order interior-point methods [4], [5]. However, many
problems of practical interest are too large to be addressedby
the current state-of-the-art interior-point algorithms,largely
due to memory and CPU time constraints.

One of the main approaches to address this shortcoming is
to abandon interior-point methods, in favour of faster, first-
order methods with modest accuracy. For instance, Wenet
al. proposed an alternating direction augmented Lagrangian
method for large-scale SDPs in the dual standard form [6].
More recently, O’Donoghueet al. developed a first-order
operator-splitting method to solve the homogeneous self-dual
embedding of the primal-dual pair of a conic program, which
has the advantage of being able to provide primal or dual
certificates of infeasibility [7]. An implementation of this
method is available in the C package SCS [8].

The second major approach is based on the observation
that the large-scale SDPs encountered in applications are
often structured and/or sparse [1]. Exploiting sparsity in
SDPs is an active and challenging area of research [9], one
main difficulty being that the optimal solution is typically
dense despite the sparsity of the problem data. If, however,
the aggregate sparsity pattern of the data ischordal(or has ef-
ficient chordal extensions), Grone’s theorem [10] and Agler’s
theorem [11] allow us to replace the positive semidefinite
constraint with a set of smaller semidefinite constraints, plus
an additional set of equality constraints. Having reduced the
size of the semidefinite variables, the converted SDP can be
solved more efficiently than the original problem in some
cases. These ideas underly thedomain-spaceand therange-
spaceconversion techniques of [12], [13], implemented in
the MATLAB package SparseCoLO [14].

However, the addition of equality constraints to the SDP
often offsets the benefit of working with smaller semidefinite
cones. One possible solution is to exploit the properties of
chordal sparsity pattern directly in the interior-point methods:
Fukuda et al. used Grone’s positive definite completion
theorem [10] to develop a primal-dual path-following method
for SDPs [12]; Burer proposed a nonsymmetric primal-dual
interior-point method using Cholesky factors of the dual
variable and maximum determinant completion of the primal
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variable [15]; and Andersenet al. developed fast recursive
algorithms for SDP problems with chordal sparsity [16]. An-
other option is to solve the decomposable SDP via first-order
methods: Sunet al. proposed a first-order splitting algorithm
for decomposable conic programs, including SDPs with
chordal sparsity [17]; Kalbat & Lavaei applied the alternating
direction method of multipliers (ADMM) to solve a special
class of SDPs with fully decomposable constraints [18];
Madani et al. developed a highly-parallelizable ADMM
algorithm for sparse SDPs with inequality constraints with
optimal power flow applications [19].

In this work, we adopt the strategy of exploiting sparsity
using first-order algorithms in the spirit of [17], [18], [19],
and develop efficient ADMM algorithms to solve large-scale
sparse SDPs in either primal or dual standard form. The
contributions of this paper are three-fold:

1) We show that the ADMM and chordal decomposition
techniques can be combined to solve sparse SDPs
in either primal or dual standard form. The resulting
primal and dual algorithms are scaled versions of each
other. This provides a conversion framework suitable
for the application of first-order methods, analogous to
that of [12], [13] for interior-point methods.

2) In each iteration, the positive semidefinite (PSD) con-
straintX ∈ S

n
+ (or Z ∈ S

n
+) is enforced via parallel

projections onto small PSD cones. The affine con-
straintsA(X) = b (or A∗(y) + Z = C) are enforced
via an equality-constrained quadratic program, and the
corresponding KKT system matrix only depends on the
problem data. The preferred matrix factorization can
thus be cached before iterating the ADMM algorithm.

3) We implement our techniques in the open source
MATLAB solver CDCS (Cone Decomposition Conic
Solver). We ran numerical simulations on random
SDPs with block-arrow sparse patterns, and on four
large-scale sparse problems in SDPLIB [20]. The
results demonstrate the efficiency of our algorithms
compared to other commonly used software packages.

The rest of this paper is organized as follows. Section II
reviews some key notions regarding chordal sparsity and de-
composition techniques. We show how to apply the ADMM
to primal and dual standard-form SDPs in Sections III
and IV, respectively, and report some numerical experiments
in Section V. Finally, Section VI offers concluding remarks.

II. PRELIMINARIES: CHORDAL DECOMPOSITION AND

THE ADMM A LGORITHM

A. Chordal graphs

Let G(V , E) be an undirected graph with verticesV =
{1, 2, . . . , n} and edgesE ⊆ V × V . A subset of vertices
C ⊆ V such that(i, j) ∈ E for any distinct verticesi, j ∈ C
is called aclique, and the number of vertices inC is denoted
by |C|. If C is not a subset of any other clique, then it is
referred to as amaximal clique.

A cycle of lengthk in G is a set of pairwise distinct
vertices{v1, v2, . . . , vk} ⊂ V such that(vk, v1) ∈ E and

(vi, vi+1) ∈ E for i = 1, . . . , k − 1. A chord is an edge
joining two non-adjacent vertices in a cycle. An undirected
graphG is calledchordalif every cycle of length greater than
or equal to four has at least one chord. Note that ifG(V , E) is
not chordal, it can bechordal extended, i.e., we can construct
a chordal graphG′(V , E ′) by adding additional edges to
E such thatG′ is chordal. Although finding the chordal
extension with the minimum number of additional edges is an
NP-complete problem [21], good chordal extensions can be
computed efficiently using several heuristics; seee.g., [22].

B. Sparse matrices defined by graphs

Let G = (V , E) be an undirected graph, and assume that
(i, i) ∈ E , i.e., each node has a self-loop. We say thatX
is a sparse symmetric matrix defined byG if Xij = Xji =
0 whenever(i, j) /∈ E . The spaces of sparse and positive
semidefinite sparse symmetric matrices defined byG are

S
n(E , 0) ={X ∈ S

n | Xij = Xji = 0 if (i, j) /∈ E},

S
n
+(E , 0) ={X ∈ S

n(E , 0) | X � 0}.

Similarly, we say thatX is a partial symmetric matrix defined
by G if Xij = Xji are given when(i, j) ∈ E , and arbitrary
otherwise. Moreover, we say thatM is a positive semidefinite
completion of the partial symmetric matrixX if there exists
M � 0 such thatMij = Xij when (i, j) ∈ E . We can then
define the spaces

S
n(E , ?) ={X ∈ S

n | Xij = Xji given if (i, j) ∈ E},

S
n
+(E , ?) ={X ∈ S

n(E , ?) |

∃M � 0, Mij = Xij , ∀(i, j) ∈ E}.

Finally, given a cliqueCk of G, we letEk ∈ R
|Ck|×n be

the matrix with(Ek)ij = 1 if Ck(i) = j and zero otherwise,
whereCk(i) is the i-th vertex in Ck, sorted in the natural
ordering. GivenX ∈ S

n, the submatrix ofX defined by the
clique Ck is given byEkXET

k ∈ S
|Ck|.

C. Chordal decomposition of positive semidefinite matrices

Given any undirected graphG(V , E), the spacesSn+(E , ?)
andSn+(E , 0) are cones, and they are dual to each other [16],
[22]. If G is chordal, thenSn+(E , ?) and S

n
+(E , 0) can be

expressed in terms of several coupled smaller convex cones
according to the following theorems:

Theorem 1 (Grone’s theorem [10]):Let G(V , E) be a
chordal graph, and let{C1, C2, . . . , Cp} be the set of its
maximal cliques. Then,X ∈ S

n
+(E , ?) if and only if

Xk := EkXET
k ∈ S

|Ck|
+

for all k = 1, . . . , p.
Theorem 2 (Agler’s theorem [11]):Let G(V , E) be a

chordal graph, and let{C1, C2, . . . , Cp} be the set of its
maximal cliques. Then,Z ∈ S

n
+(E , 0) if and only if there

exist matricesZk ∈ S
|Ck|
+ for k = 1, . . . , p such that

Z =

p
∑

k=1

ET
k ZkEk.

Note that these results can be proven individually, but can
also can be derived from each other using the duality of the
conesSn+(E , ?) andSn+(E , 0) [22].



D. ADMM algorithm

The ADMM algorithm solves the optimization problem

min f(x) + g(y)

subject to Ax+By = c,

wheref andg are convex functions,x ∈ R
nx , y ∈ R

ny , A ∈
R

nc×nx , B ∈ R
nc×ny and c ∈ R

nc . Given a penalty
parameterρ > 0 and a dual multiplierz ∈ R

nc , the ADMM
algorithm minimizes the augmented Lagrangian

Lρ(x, y, z) = f(x) + g(y) +
ρ

2

∥

∥

∥

∥

Ax+By − c+
1

ρ
z

∥

∥

∥

∥

2

with respect to the variablesx andy separately, followed by
a dual variable update:

x(n+1) = argmin
x

Lρ(x, y
(n), z(n)), (3a)

y(n+1) = argmin
y

Lρ(x
(n+1), y, z(n)), (3b)

z(n+1) = z(n) + ρ(Ax(n+1) +By(n+1) − c). (3c)

The superscript(n) indicates that a variable is fixed to its
value at then-th iteration. ADMM is particularly suitable
when the minimization with respect to each of the variables
x andy in (3a) and (3b) can be carried out efficiently through
closed-form expressions.

III. ADMM FOR SPARSEPRIMAL -FORM SDPS

This section introduces the ADMM algorithm for the
primal-standard-form SDP (1), in which Grone’s theorem is
used to decompose the PSD constraint. We assume that (1)
is sparse with anaggregate sparsity patterndescribed by the
graphG(V , E), meaning that(i, j) ∈ E if and only if the
entry ij of at least one of the data matricesC, A0, . . . , Am,
is nonzero. We also assume thatG is chordal (otherwise,
it can be chordal extended), and that its maximal cliques
C1, . . . , Cp are small.

A. Reformulation and decomposition of the PSD constraint

In (1), only the entries of the matrix variableX cor-
responding to the graph edgesE appear in the cost and
constraint functions, so the constraintX ∈ S

n
+ can be

replaced byX ∈ S
n
+(E , ?). Using Theorem 1, we can then

reformulate (1) as

min
X,X1,...,Xp

〈C,X〉

subject to A(X) = b,

Xk − EkXET
k = 0, k = 1, . . . , p,

Xk ∈ S
|Ck|
+ , k = 1, . . . , p.

(4)

In other words, we can decompose the original large semidef-
inite cone into multiple smaller cones, at the expense of intro-
ducing a set of consensus constraints between the variables.

To ease the exposition, we rewrite (4) in a vectorized form.
Letting vec : Sn → R

n2

be the usual operator mapping a
matrix to the stack of its column, define the vectorized data

c := vec(C),

A :=
[

vec(A0) . . . vec(Am)
]T

,

the vectorized variables

x := vec(X),

xk := vec(xk), k = 1, . . . , p,

and the matrices

Hk := Ek ⊗ Ek, (5)

such that

xk = vec(Xk) = vec(EkXET
k ) = Hkx.

In other words, the matricesH1, . . . , Hp are “entry-selector”
matrices of1’s and 0’s, whose rows are orthonormal, that
project x onto the subvectorsx1, . . . , xp, respectively. If
we denote the constraintsXk ∈ S

|Ck|
+ by xk ∈ Sk, we can

rewrite (4) as

min
x,x1,...,xp

〈c, x〉

subject to Ax = b,

xk = Hkx, k = 1, . . . , p,

xk ∈ Sk, k = 1, . . . , p.

(6)

B. The ADMM algorithm for primal SDPs

We start by moving the constraintsAx = b andxk ∈ Sk

in (6) to the objective using the indicator functionsδ0(·) and
δSk

(·), respectively,i.e., we write

min
x,x1,...,xp

〈c, x〉 + δ0 (Ax− b) +

p
∑

k=1

δSk
(xk)

subject to xk = Hkx, k = 1, . . . , p.

(7)

This problem is in the standard form for the application of
ADMM. Given a penalty parameterρ > 0 and a Lagrange
multiplier λk for each constraintxk = Hkx, we define the
augmented Lagrangian

L := 〈c, x〉+ δ0 (Ax− b)

+

p
∑

k=1

[

δSk
(xk) +

ρ

2

∥

∥

∥

∥

xk −Hkx+
1

ρ
λk

∥

∥

∥

∥

2
]

, (8)

and group the variables as

X := {x},

Y := {x1, . . . , xp},

Z := {λ1, . . . , λp}.

Then, according to (3), each iteration of the ADMM consists
of an X -minimization step, aY-minimization step and an
update of multipliersZ.

1) Minimization over X : Minimizing (8) over X is
equivalent to the equality-constrained quadratic program

min
x

〈c, x〉 +
ρ

2

p
∑

k=1

∥

∥

∥

∥

x
(n)
k −Hkx+

1

ρ
λ
(n)
k

∥

∥

∥

∥

2

subject to Ax = b.

(9)



Letting ρy be the multiplier for the equality constraint, and
defining

D :=

p
∑

k=1

HT
k Hk, (10)

the optimality conditions for (9) can be written as the KKT
system
[

D AT

A 0

] [

x
y

]

=

[

∑p
k=1 H

T
k

(

x
(n)
k + ρ−1λ

(n)
k

)

− ρ−1c

b

]

.

(11)
Note thatD is a diagonal matrix, because the rows of

each matrixHk are orthonormal unit vectors of1’s and0’s.
Consequently, (11) can be solved efficiently,e.g., by block
elimination. Moreover, the coefficient matrix is the same at
every iteration, which means its Cholesky (or LDL) factors
can be pre-computed and cached before starting the ADMM
iterations.

2) Minimization over Y: Minimizing (8) over Y is
equivalent to thep independent problems

min
xk

∥

∥

∥
xk −Hkx

(n+1) + ρ−1λ
(n)
k

∥

∥

∥

2

subject to xk ∈ Sk.
(12)

In terms of the original matrix variablesX1, . . . , Xp, this
amounts to a projection on the positive semidefinite cone.
More precisely, ifPk denotes the projection ontoS|Ck|

+ and
mat(·) = vec−1(·) we have

x
(n+1)
k = vec

{

Pk

[

mat
(

Hkx
(n+1) − ρ−1λ

(n)
k

)]}

. (13)

Since the projectionPk can be computed with an eigenvalue
decomposition, and each coneS|Ck|

+ is assumed to be small,
the new variablesx(n+1)

1 , . . . , x
(n+1)
p can be computed

efficiently and in parallel.
Remark 1:The use of a global variablex to enforce the

consensus constraints between the entries of the subvectors
x1, . . . , xp (i.e., xk = Hkx) is fundamental because it allows
to separate the conic constraints from affine constraint in (1),
which makes the minimization overY easy to compute and
parallelizable.

3) Updating the multipliers Z: The final step in the(n+
1)-th ADMM iteration is to update the multipliersλ1 . . . , λp

with the usual gradient ascent rule: for eachk = 1, . . . , p,

λ
(n+1)
k = λ

(n)
k + ρ

(

x
(n+1)
k −Hkx

(n+1)
)

. (14)

This computation is cheap, and can be parallelized.

C. Summary & Stopping conditions

The ADMM algorithm is stopped after then-th iteration
if the relative primal/dual error measures

ǫp =

(

p
∑

k=1

∥

∥

∥
x
(n)
k −Hkx

(n)
∥

∥

∥

2
)1/2

max







(

p
∑

k=1

∥

∥

∥
x
(n)
k

∥

∥

∥

2
)1/2

,

(

p
∑

k=1

∥

∥

∥
Hkx

(n)
∥

∥

∥

2
)1/2







,

ǫd = ρ×

(

p
∑

k=1

∥

∥

∥
x
(n)
k − x

(n−1)
k

∥

∥

∥

2
)1/2

(

p
∑

k=1

∥

∥

∥
λ
(n)
k

∥

∥

∥

2
)1/2

,

are smaller than a specified tolerance,ǫtol; see [23] for
more details on stopping conditions for a generic ADMM
algorithm. In conclusion, the decomposed primal-standard-
form SDP (6) can be solved using the steps summarized in
Algorithm 1.

Algorithm 1 ADMM for decomposed primal form SDPs

1: Given ρ > 0, ǫtol > 0 and an initial guessx(0),
x
(0)
1 , . . . , x

(0)
p , λ(0)

1 , . . . , λ
(0)
p

2: Data preprocessing: chordal extension, chordal decom-
position and factorizing the KKT system (11).

3: while max(ǫp, ǫd) ≥ ǫtol do
4: Computex(n) with (11).
5: for k = 1, . . . , p do
6: Computex(n)

k with (13).
7: end for
8: for k = 1, . . . , p do
9: Computeλ(n)

k with (14).
10: end for
11: Update the residualsǫp, ǫd.
12: end while

IV. ADMM FOR SPARSEDUAL -FORM SDPS

We now develop a similar ADMM algorithm for the dual-
standard-form SDP (2), using Agler’s theorem to decompose
the positive semidefinite cone. As in Section III, we assume
that the aggregate sparsity pattern of the problem data is
described by the chordal graphG(V , E).

A. Reformulation of decomposition of the PSD constraint

The equality constraint in (2) implies that the semidefinite
variableZ has the same sparsity pattern as the aggregate
sparsity pattern of the problem data,i.e., Z ∈ S

n
+(E , 0).

Applying Theorem 2, we then rewrite (2) as

min
y,Z1,...,Zp

− 〈b, y〉

subject to A∗(y) +

p
∑

k=1

ET
k ZkEk = C,

Zk ∈ S
|Ck|
+ , k = 1, . . . , p.

(15)

In (15), the original PSD constraint has been replaced by
multiple smaller PSD constraints. However, it is not conve-
nient to apply ADMM to this problem directly, because the
positive semidefinite variablesZ1, . . . , Zk in the equality
constraint are weighted by the matricesEk. Instead, we
introduce a set of slack variablesV1, . . . , Vp such thatZk =



Primal SDP (1) Dual SDP (2)

Decomposed
Primal SDP (4)

Decomposed
Dual SDP (16)

Algorithm 1 Algorithm 2

Grone’s
Theorem

Agler’s
Theorem

Duality

Duality

ADMM ADMM

Scaling

Fig. 1. Duality relationships between primal and dual SDPs,and the
decomposed primal and dual SDPs.

Vk, k = 1, . . . , p, and reformulate (15) as

min
y,Z1,...,Zp,V1,...,Vp

− 〈b, y〉

subject to A∗(y) +

p
∑

k=1

ET
k VkEk = C,

Zk − Vk = 0, k = 1, . . . , p,

Zk ∈ S
|Ck|
+ , k = 1, . . . , p.

(16)

Finally, we definezk := vec(Zk) and vk := vec(Vk) for
all k = 1, . . . , p, and use the same vectorized notation as in
Section III to rewrite (16) in the vectorized form

min
y,z1,...,zp,v1,...,vp

− 〈b, y〉

subject to AT y +

p
∑

k=1

HT
k vk = c,

zk − vk = 0, k = 1, . . . , p,

zk ∈ Sk, k = 1, . . . , p.

(17)

Remark 2:Similar to the primal case, the use of a set of
consensus equality constraints (zk−vk = 0) is also essential
to the development of dual algorithm, so that the update of
the conic variables in our ADMM algorithm are reduced to
simple conic projections.

Remark 3:Although we have derived (17) by applying
Theorem 2, it is not difficult to check that problem (17)
is exactly the dual of the decomposed primal SDP (6).
Consequently, our analysis provides a decomposition frame-
work suitable for the application of first-order methods
analogous of the conversion techniques for interior-point
methods of [12], [13]. This elegant picture, in which the
duality between the primal and dual SDP is inherited by
the decomposed problems by virtue of the duality between
Grone’s and Agler’s theorems, is shown in Figure 1.

B. The ADMM algorithm for dual SDPs

As in Section III, we start by moving all but the consensus
equality constraintszk = vk, k = 1, . . . , p, to the objective
using indicator functions. This leads to

min −〈b, y〉+ δ0

(

c−AT y −

p
∑

k=1

HT
k vk

)

+

p
∑

k=1

δSk
(zk)

subject to zk = vk, k = 1, . . . , p. (18)

Given a penalty parameterρ > 0 and a Lagrange multi-
plier λk for each of the constraintszk = vk, k = 1, . . . , p,
we define the augmented Lagrangian

L := −〈b, y〉+ δ0

(

c−AT y −

p
∑

k=1

HT
k vk

)

+

p
∑

k=1

[

δSk
(zk) +

ρ

2

∥

∥

∥

∥

zk − vk +
1

ρ
λk

∥

∥

∥

∥

2
]

, (19)

and group the variables as

X := {y, v1, . . . , vp},

Y := {z1, . . . , zp},

Z := {λ1, . . . , λp}.

1) Minimization over X : Minimizing (19) over blockX
is equivalent to the equality-constrained quadratic program

min
y,v1,...,vp

− 〈b, y〉+
ρ

2

p
∑

k=0

∥

∥

∥

∥

z
(n)
k − vk +

1

ρ
λ
(n)
k

∥

∥

∥

∥

2

subject to c−AT y −

p
∑

k=1

HT
k vk = 0. (20)

Let ρx be the multiplier for the equality constraint. After
some algebra, the optimality conditions for (20) can be
written as the KKT system
[

D AT

A 0

] [

x
y

]

=

[

c−
∑p

k=1 H
T
k

(

z
(n)
k + ρ−1λ

(n)
k

)

−ρ−1b

]

,

(21)
plus a set ofp uncoupled equations for the variablesvk,

vk = z
(n)
k +

1

ρ
λ
(n)
k +Hkx, k = 1, . . . , p. (22)

The KKT system (21) is the same as (11) after rescaling
x 7→ −x, y 7→ −y, c 7→ ρ−1c and b 7→ ρb. Consequently,
the numerical cost of these operation is the same as in
Section III-B.1, plus the cost of (22), which is cheap and can
be parallelized. Moreover, as in Section III-B.1, the factors of
the coefficient matrix required to solve the KKT system (21)
can be pre-computed and cached before iterating the ADMM
algorithm.

2) Minimization over Y: Similarly to Section III-B.2,
the variablesz1, . . . , zp are updated withp independent
projections,

z
(n+1)
k = vec

{

Pk

[

mat
(

v
(n+1)
k − ρ−1λ

(n)
k

)]}

, (23)

Again, these projections can be computed efficiently and in
parallel.

3) Updating the multipliers Z: The multipliersλk, k =
1, . . . , p, are updated with the usual gradient ascent rule

λ
(n+1)
k = λ

(n)
k + ρ

(

z
(n+1)
k − v

(n+1)
k

)

. (24)

Remark 4:Since the computational cost of (22) is the
same as (14), all ADMM iterations for the decomposed
dual-standard-form SDP (16) have the same cost as the



ADMM iterations for the decomposed primal-standard-form
SDP (6), plus the cost of (24). However, if one minimizes
the dual augmented Lagrangian (19) overz1, . . . , zp before
minimizing it over y, v1, . . . , vp, then (22) can be used to
simplify the multiplier update equations to

λ
(n+1)
k = ρHkx

(n+1), k = 1, . . . , p. (25)

Given that the productsH1x, . . . , Hpx have already been
computed to updatev1, . . . , vp, updating the multipliers
λ1, . . . , λp requires only a scaling operation. Consequently,
if one swaps the order of the minimization, the ADMM
algorithms for the primal and dual standard form SDPs can
be considered as scaled versions to each other, which have
the same leading-order computational cost at each iteration.

C. Summary & Stopping conditions

Similarly to Section III-C, we stop our ADMM algorithm
after the n-th iteration if the relative primal/dual error
measures
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p
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ǫd := ρ×
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are smaller than a specified tolerance,ǫtol. The complete
ADMM algorithm to solve the decomposed dual-standard-
form SDP (16) is summarized in Algorithm 2.

Algorithm 2 ADMM for decomposed dual form SDPs

1: Given ρ > 0, ǫtol > 0 and an initial guessy(0),
z
(0)
1 , . . . , z

(0)
p ,λ(0)

1 , . . . , λ
(0)
p

2: Data preprocessing: chordal extension, chordal decom-
position and factorizing the KKT system (21).

3: while max(ǫp, ǫd) ≥ ǫtol do
4: for k = 1, . . . , p do
5: Computez(n)k with (23).
6: end for
7: Computey(n), x with (20).
8: for k = 1, . . . , p do
9: Computev(n)k with (22)

10: Computeλ(n)
k with (25) (no cost).

11: end for
12: Update the residualsǫp andǫd.
13: end while

l blocks

d

d

h

h

Fig. 2. Block-arrow sparsity pattern: the number of blocks,l; block size,
d; the size of the arrow head,h.

V. NUMERICAL SIMULATIONS

We have implemented our techniques in CDCS (Cone
Decomposition Conic Solver), an open source MATLAB
solver for partially decomposable conic programs. CDCS
supports cartesian products of the following cones:R

n,
non-negative orthant, second-order cone, and the positive
semidefinite cone. Currently, only chordal decomposition
techniques for semidefinite cones are implemented, while the
other supported cone types are not decomposed. Although
some steps in Algorithms 1 and 2 are parallelizable, our
current implementation is sequential. Moreover, we do not
use the clique combination techniques suggested in [12],
[24] for simplicity. Finally, CDCS scales the problem before
the chordal decomposition step using the methods described
in [7] and implemented in SCS [8]. Our codes can be
downloaded from
https://github.com/giofantuzzi/CDCS .
We tested CDCS on four large-scale sparse problems (n ≥

1000,m ≥ 1000) in SDPLIB [20], as well as on a series
of randomly generated SDPs with the block-arrow sparse
pattern, used as a benchmark in [17]. The performance of
our method is compared to that of the interior-point solver
SeDuMi [25] and of the first-order solver SCS [8]; both these
solvers are used on the full problem (without decomposition)
or the decomposed problem returned by SparseColO [14].

The comparison has two purposes: 1) the solution returned
by SeDuMi is of high accuracy, so we can use it to assess the
quality of the solution computed by CDCS; 2) SCS is a high
performance first-order solver for general conic programs,
so we can assess the unique features of our techniques in
terms of chordal decomposition. We remark that the CPU
time required by SeDuMi should not be compared to the
other solvers, because the latter only aim to achieve moderate
accuracy. In the experiments reported below, the termination
tolerance for CDCS and SCS was set asǫtol = 10−3, and the
maximum number of iterations was set to2 × 103. All the
experiments were carried out on a computer with an Intel(R)
Core(TM) i7 CPU, 2.8 GHz processor and 8GB of RAM.

A. SDPs with block-arrow pattern

We consider randomly generated SDPs with block-arrow
patterns (see Figure 2), which is used as a benchmark case
in [17]. Such sparsity pattern is chordal, and its parameters
are the number of blocks,l; block size,d; the size of the

https://github.com/giofantuzzi/CDCS
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Fig. 3. CPU time for SDPs with block-arrow patterns. Left to right: varying number of constraints; varying number of blocks; varying block size.

TABLE I

PROBLEM STATISTICS FORSDPLIBPROBLEMS

maxG32 maxG51 thetaG51 qpG51

Affine constraints,m 2000 1000 6910 1000
Original cone size,n 2000 1000 1001 2000
Number of cliques,p 1499 674 674 1675
Maximum clique size 60 322 323 304
Minimum clique size 5 6 7 1

arrow head,h; and the number of constraints,m. Here, we
consider the following cases:

1) Fix l = 40, d = 10, h = 20, varym;
2) Fix m = 1000, d = 10, h = 20, vary l;
3) Fix l = 40, h = 10, m = 1000, vary d.

The CPU times for different combinations of solvers,
averaged over five random problem instances, are shown
in Figure 3. CDCS is approximately 10 times faster than
SeDuMi and the combination SparseCoLO+SeDuMi, and
our implementation of Algorithm 2 is the fastest of all
methods we tested. Besides, the optimal value returned by
CDCS was always within 0.02% of the high-accuracy value
returned by SeDuMi.

B. Sparse SDPs from SDPLIB

Our second experiment is based on a set of sparse SDPs
from SDPLIB [20]. We consider two max-cut problems
(maxG32 and maxG51), a Lovász theta problem (thetaG51),
and a box-constrained quadratic problem (qpG51), all of
which are large, sparse SDPs. Table I reports the dimensions
and some chordal decomposition details of these problems,
while Figure 4 illustrates their aggregate sparsity patterns.

Table II summarizes our numerical results; problems
maxG51, thetaG51 and qpG51 could not be solved using
SeDuMi after being decomposed by SparseCoLO due to
memory overflow caused by the large number of consensus
constraints in the decomposed problem. For all four prob-
lems, CDCS (both primal and dual) is faster than SeDuMi,
and can give speedups compared to either SCS and Sparse-
CoLO+SCS in terms of CPU time and iterations.

It should be kept in mind that the most time-consuming
step in CDCS is the projection onto a large number of
semidefinite cones, which is currently implemented sequen-

(a) (b)

(c) (d)

Fig. 4. Aggregate sparsity pattern of the SDPLIB problems considered:
(a) maxG32 (b) maxG51 (c) thetaG51, (d) qpG51.

tially; CPU times are likely to reduce with a parallel imple-
mentation. Also note that although Algorithms 1 and 2 are
scaled versions of each other and have the same iteration
cost, they behave slightly differently; this could be expected,
since ADMM algorithms are sensitive to data scaling.

Finally, we remark that the stopping objective value from
CDCS is within 2% of the optimal value returned by SeDuMi
(which is highly accurate, and can be considered exact) in
all four cases, and within 0.08% for the max-cut problems
maxG32 and maxG51 — a negligible difference in applica-
tions. Of course, the accuracy can be improved by setting
tighter stopping tolerances.

VI. CONCLUSION

In this paper, we proposed a conversion framework for
large SDPs characterized by chordal sparsity suitable for the
application of first-order methods, analogous to the conver-
sion techniques for interior-point methods of [12], [13]. We
also developed efficient ADMM algorithms for sparse SDPs
in either primal or dual standard form, which are imple-
mented in the conic solver CDCS. Our numerical simulations
on random SDPs with block-arrow sparsity patterns and on
large sparse problems in SDPLIB [20] show that our methods
can provide speedups compared to interior-point solvers



TABLE II

RESULTS FOR THE PROBLEM INSTANCES INSDPLIB

SeDuMi
SparseCoLO+

SeDuMi SCS
SparseCoLO+

SCS
CDCS

(primal)
CDCS
(dual)

maxG32

Total time (s) 974.6 355.2 2.553×10
3 65.1 88.6 53.1

Pre-processing time (s) 0 3.18 0.43 3.24 21.2 21.4
Objective value 1.568×10

3 1.568×10
3 1.568×10

3 1.566×10
3 1.569×10

3 1.568×10
3

Iterations 14 15 2000 960 238 127

maxG51

Total time (s) 134.5 – 87.9 1.201×10
3 110.9 75.9

Pre-processing time (s) 0 – 0.11 2.87 3.30 3.20
Objective value 4.006×10

3 – 4.006×10
3 3.977×10

3 4.005×10
3 4.006×10

3

Iterations 16 – 540 2000 235 157

thetaG51

Total time (s) 2.218×10
3 – 424.2 1.346×10

3 471.2 735.1
Pre-processing time (s) 0 – 0.30 5.30 25.1 25.0

Objective value 349 – 350.6 341.3 354.5 355.9
Iterations 20 – 2000 2000 394 646

qpG51

Total time (s) 1.407×10
3 – 2.330×10

3 985.8 727.1 606.2
Pre-processing time (s) 0 – 0.47 190.2 12.3 12.3

Objective value 1.182×10
3 – 1.288×10

3 1.174×10
3 1.195×10

3 1.194×10
3

Iterations 22 – 2000 2000 1287 1048

such as SeDuMi [25] — even when the chordal sparsity is
exploited using SparseCoLO [14] — and also compared to
the state-of-the-art first-order solver SCS [8]. Looking ahead,
it would be desirable to exploit chordal sparsity in a first-
order self-dual embedding formulation similar to that of [7],
because a self-dual embedding can detect infeasibility. The
development of improved software packages that take full
advantage of parallel/distributed computer architectures is
also of interest.
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