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Abstract

In addition to traffic light signal, vehicles’ motions can significantly affect the traffic throughput and
fuel economy in a signalized road network. This paper considers a green light optimal velocity planning
problem for eco-driving, where upcoming traffic signal information is utilized to find an optimal speed
profile that avoids red lights and minimizes trip time and/or fuel consumption. We prove that this problem
is NP-complete for the case where there are only binary velocity choices in each segment. The proof is
based on a reduction from a known NP-complete problem, i.e., partition problem. It means that there are
no polynomial-time algorithms to find a globally optimal solution for the general velocity planning problem.
Consequently, we propose a genetic algorithm to obtain a sub-optimal solution, and we provide a detailed
discussion on gene coding, population initialization, select operator and genetic operator. Numerical
experiments demonstrate the effectiveness of our method, and also confirm that more improvements on
fuel efficiency can be realized by taking multiple intersections into account simultaneously.

1 Introduction
During the past two decades, the increasing traffic demand has resulted in a heavy burden on the existing
transportation systems, which sometimes leads to heavy traffic jams in some major cities [2]. For instance,
the traffic congestion in US urban areas caused an estimated 3.1 billion gallons of extra fuel consumption and
6.9 billion additional hours on the road, resulting in a total cost of $160 billion in 2014 [3].

It is known that a significant amount of fuel consumption is spent by vehicles slowing down, idling behind,
and accelerating away from signalized intersections [4, 5]. Reducing idling time and even avoiding red signals
have the potential to greatly improve vehicles’ fuel economy and reduce pollutant emissions [6]. Many efforts
have been focused on designing advanced traffic signal control methods to optimize the signal timing, which
help us reduce waiting time and eliminate unnecessary stops [7]. On the other hand, vehicles are major
ingredients of the road transportation, the motions of which directly affect the traffic efficiency and fuel
consumption during the signalized intersections. Some recent research has been exploring the concept of
eco-driving, which provides real-time driving advices to further improve fuel economy [8, 9]. One of the
important applications is to avoid red traffic signals by providing suitable velocity advisory, known as the
green light optimal velocity planning problem [6, 10, 11, 12, 13, 14].

In principle, the green light optimal velocity planning is to utilize the upcoming traffic signal information
to generate an optimal speed profile that avoids red lights and minimizes certain costs (e.g., trip time and/or
fuel consumption). This planning can be implemented as a smart-phone application that suggests suitable
velocity to the driver [15], or it could be used as a reference velocity for the adaptive cruise control system [6].
This technique has recently received considerable attention due to its high potential to benefit the fuel
efficiency [16]. For instance, Mandava et al. introduced a velocity planning algorithm for a single intersection,
aiming to minimize the acceleration/decelereation rates [11]. A multi-segment speed planning was introduced
for an artery with multiple signalized intersections in [13, 17]. Asadi and Vahidi developed a predictive cruise
control in a traffic network with signalized intersections, where traffic light information was used to reduce
idling time at stop lights [6]. A dynamic programming (DP) approach was proposed to optimize a vehicle’s
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Figure 1: A trip route from the start point to the destination, indicated by the green arrows based on the
traffic network information [23, 24].

trajectory that minimizes the fuel consumption level based on signal phasing and timing data [18]. A pruning
and graph discretization-based approach was introduced to simplify the constrained optimization of a velocity
planning problem in [12]. More recently, several realistic effects have been considered in the problem of green
light optimal velocity planning, such as queue effects at intersections [19], probabilistic prediction of signal
timing [10], driver’s behavior adaptability [14] and impact on mixed traffic [20].

Due to the non-convexity introduced by the traffic signal timing, the majority of existing studies have
focused on designing algorithms to find approximate optimal speed profiles using rule-based [6], heuristic-
based [13] or DP-based [18] strategies. To the authors’ best knowledge, there is no research that formally
addresses the computational complexity of the green light optimal velocity planning problem. Also, due to
the constraint on computation resource, some work only focuses on single intersection considering the nearest
traffic light sequentially, e.g., [6, 19, 14, 11, 20, 21]. However, as suggested in [13, 22], more improvement on
fuel efficiency relies on the strategies taking multiple intersections into account simultaneously in a traffic
network. In such cases, the computation of optimal velocity becomes quite challenging due to the disjointed
feasible sets introduced by multiple available green phases at each intersection. The computation is also
nontrivial if one tries to search the optimal velocity profile directly. For instance, if the maximum speed is
80 km/h and minimum speed is 30 km/h, and the speed scale for suggestion is 1 km/h, then the number
of possible solutions is 4010 for a problem with ten intersections, where the solution space is too big to
exhaustively search. Instead, approximated optimal solutions were sought based on heuristics and/or DP
techniques; see e.g., [13, 22, 18, 12] for details.

In this work, we consider the problem of green light optimal velocity planning, and formally analyze its
computational complexity. For the first time, we show that this problem is NP-complete for the case where
there are only binary velocity choices in each segment between two intersections. The proof is based on a
reduction from a known NP-complete problem, i.e., partition problem. Therefore, there are no polynomial-
time algorithms that are able to solve the general optimal velocity planning problem exactly unless P=NP.
This conclusion provides a reasonable explanation for the fact that most previous work focused on heuristics
and/or DP techniques instead of seeking a global solution. In this paper, to numerically obtain a sub-optimal
solution, we introduce a heuristic algorithm, called genetic algorithm [25], with a detailed discussion of
gene coding, population initialization, select operator and genetic operator. In contrast to the strategies
considering the nearest traffic light one-by-one [6, 19, 14, 11, 20, 21], our algorithm directly takes multiple
intersections into account. Numerical experiments are conducted to demonstrate effectiveness of our solution,
which also confirm that more improvements on fuel efficiency can be realized when considering multiple
intersections simultaneously.
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The rest of this paper is organized as follows. Section 2 presents the problem statement of green light
optimal optimal velocity planning. The computational complexity of a special case is discussed in Section 3,
and we propose a genetic algorithm to solve the problem in Section 4. This is followed by numerical
experiments in Section 5. Section 6 concludes the paper.

2 Problem Statement: Green Light Optimal Velocity Planning
In this section, we first present a general problem statement of green light optimal velocity planning, and
then introduce some typical mathematical models used in the literature.

2.1 Green Light Optimal Velocity Planning Problem
Given a trip route from a start point to a final point in a traffic network (see Fig. 1 for example), our objective
is to find an velocity profile that eliminates idling at red lights and minimizes certain costs (trip time and/or
fuel consumption). This is referred to as the green light optimal velocity planning problem in our paper.
Note that the route can be determined based on the traffic network condition, e.g., using an in-vehicle route
guidance system [23, 24].

To obtain a concise (yet accurate enough) mathematical model, the trip route is simplified as a straight
road with a series of signalized intersections (see Fig. 2), which means we ignore the effects of possible left-
or right-turn during the intersections. Also, we assume the vehicle has full knowledge of the traffic light
timings obtained by infrastructure-to-vehicle (V2I) communication, and our analysis is carried out for a route
with vehicles in a free traffic flow. As shown in Fig. 2, the route is assumed to have N intersections, with
parameters defined as follows:

• A list of N intersections, denoted as N = {1, 2, . . . , N};
• The distance between consecutive intersections, represented as di, i = 2, . . . , N ; and d1 denotes the
distance to the first upcoming intersection;
• The traffic light timing of each intersection, described by triples {Ti, Gi, gi1}, where Ti is the traffic

signal cycle length, Gi is the green phase length and gi1 is the start time of the first green phase in i-th
traffic light;
• The initial speed at the beginning time, v0.

For simplicity, the green light phase of the i-th traffic light is defined as
∞⋃
j=1

[gij , rij) ,

where gij is the start of j-th green phase and rij is the start of j-th red phase. Note that the yellow phase is
lumped into the red phase, i.e., {

gij = gi1 + j × Ti,
rij = gi1 + j × Ti +Gi.

(1)

It is assumed that traffic timing of each intersection is fixed and the vehicle can obtain the traffic light timing
of each intersection {Ti, Gi, gi1} through V2I communication, as used in [6, 10, 11, 12, 13].

From a mathematical viewpoint, the green light optimal velocity planning can be cast as a constrained
optimization problem: trip time and/or fuel consumption is to be minimized by determining velocity profiles
V = {v1, v2, . . . , vn} for each segment, subject to the vehicle kinematics and time constraints for arrivals at a
green phase, i.e.,

min
vi

J = f(V )

subject to 1) Time constraint,
2) Vehicle kinematics,
3) Allowable bound for the speed,
4) Speed choice space.

(2)
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Figure 2: Schematic diagram of traffic lights distributed in a route. The green light optimal velocity planning
is to find an optimal speed profile that eliminates idling at red signals using the upcoming traffic light
information. di denotes the distance between two consecutive intersections; gij , rij represent the start of the
j-th green phase, j-th red phase of the i-th traffic light, respectively.

where f(V ) denotes certain cost function, and the four types of constraints are defined as follows.

• Time constraint, which ensures the arriving time ti at i-th intersection lie in the green phase,

ti ∈
∞⋃
j=1

[gij , rij) . (3)

• Vehicle kinematics, which describes the vehicle’s motion in each segment. This is highly related to the
estimation of trip time and fuel consumption.
• Allowable bound for the speed, which is usually specified by traffic agency for each segment,

vi ∈ [vi,min, vi,max] , i ∈ N, (4)

where vi,min, vi,max denote the minimal and maximal allowable velocity in the i-th segment, respectively.
• Speed choice space, which is required by designers. For instance, the velocity for suggestion can be
continuous, or limited to integer numbers, or even restricted to binary values (e.g., high speed or low
speed).

vi ∈ S, i ∈ N, (5)

where S denotes the speed choice space.

2.2 Modeling of Green Light Optimal Velocity Planning
The formulation (2) presents a highly abstract model for the velocity planning problem. Here, we present
typical mathematical models of the involved cost function and constraints. According to different focuses
reflected in the performance index J , the velocity planning problem (2) can be categorized into two cases: 1)
trip-time oriented [6, 10]; and 2) fuel-consumption oriented [11, 18]:

1. Trip-time oriented: The objective is to find an optimal velocity profile such that the trip time is minimized
without waiting at the red lights. Then, the performance index can be written as:

Jt =

N∑
i=1

hi(di, vi), (6)

where hi(di, vi) denotes the time consumption in each segment i.
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2. Fuel-consumption oriented: This aims to find a energy-saving speed profile, where the performance index
is

Jf =

N∑
i=1

fi(di, vi), (7)

where fi(di, vi) represents the fuel consumption in the i-th segment.

Note that there exist a variety of fuel consumption models in the literature [26]. A typical one is
the Virginia Tech Comprehensive Power-Based Fuel Consumption Model (VT-CPFM). In VT-CPFM, a
polynomial of engine power is used to calculate fuel consumption rate, which is defined as

fc =

{
α0 + α1E + α2E

2, if E > 0

α0, if E = 0
(8)

where fc is the fuel consumption rate (g/s), E denotes the engine power, and α0, α1, and α2 are the coefficients
of the fuel consumption model that need to be calibrated for a particular vehicle. Normally, the the engine
power E can be computed as

E = v

(
mv̇ +

1

2
CdAρav

2 +mgf cos θ +mg sin θ

)
,

where m is the vehicle’s mass, Cd is the drag coefficient, A is the vehicle frontal area, ρa is the air density, f
is the rolling resistance coefficient of the tires, g is the gravitational acceleration, θ is the road slope, and v is
the vehicle speed.

Meanwhile, the problem of green light velocity planning can also be grouped according to the assumptions
for vehicle kinematics: 1) constant-speed type [13]; and 2) constant-acceleration type [22]:

1. Constant-speed type: It is assumed that the vehicle runs at a constant speed in each segment, ignoring
the acceleration or deceleration process. This is the simplest case. Then, the arriving time ti can be
calculated as

ti =

i∑
j=1

dj
vj
, i ∈ N. (9)

2. Constant-acceleration type: It is one step improvement over the constant speed assumption, but also
increases the complexity level. It accounts for the acceleration or deceleration process for velocity change
form vi running in the i-th segment to vi+1 running in the next segment. However, the acceleration or
deceleration is assumed to be constant, i.e.,

vi+1 = vi + a× ta,i, (10)

where a represents the constant acceleration/deceleration value and ta,i is the time length for transition.
In this case, the arriving time ti is calculated as

ti =

i∑
j=1

(∣∣∣∣vj − vj−1a

∣∣∣∣+ dj − lj
vj

)
, (11)

where

lj =

∣∣∣∣∣v2j − v2j−1a

∣∣∣∣∣ , j ∈ N.

Therefore, the generic green light optimal velocity planning, formulated in (2), can be further categorized
into four basic types: trip-time oriented and constant-speed type; trip-time oriented and constant-acceleration
type; fuel-consumption oriented and constant-speed type; and fuel-consumption oriented and constant-
acceleration type.

In the following, we first formally prove that green light optimal velocity planning under the assumption
of trip-time oriented and constant-speed type is NP-complete when the speed suggestion is restricted to
binary choice in each segment. Then, we develop a numerical heuristic algorithm to find an approximate
solation to the generic green light optimal velocity planning problem (2).
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Remark 1. We note that there also exist other variants of formulation, considering nonlinear vehicle dynamics [6,
21], probabilistic prediction of signal timing [10], driver’s behavior adaptability [14], and queue effects at
intersections [19]. These considerations are more in accordance to the realistic conditions, but they make
the problem much more complicated as well. Consequently, many of them only focus on single intersection
considering the nearest traffic light in a sequential fashion.

3 Computational Complexity Analysis
For the first step to theoretically investigate the complexity of green light optimal planning problem, we
consider the case of trip-time oriented and constant-speed type. Then, the problem is concisely formulated as

min
vi

N∑
i=1

di
vi

subject to
i∑

j=1

di
vi
∈
∞⋃
j=1

[gij , rij) ,

vi ∈ [vi,min, vi,max] ,

vi ∈ S, i ∈ N.

(12)

In this section, we discuss the computational complexity (12), where the speed suggestion is restricted
to binary choice in each segment. We show that this special case is NP-complete by a reduction from the
partition problem.

Remark 2. The formulation (12) has captured one key challenge in this problem, i.e., the dynamic switching
of traffic signal timing:

⋃∞
j=1 [gij , rij). This type of constraint naturally makes the feasible solution space

disjoined and non-convex. Solving a non-convex optimization problem is in general computationally intensive.
In this section, for the first time, we show that one special form of (12) actually belongs to NP-complete,
which means there exist no polynomial-time algorithms to solve the general optimal velocity planning problem
exactly unless P=NP.

3.1 Preliminaries on P/NP
We first introduce some definitions for complexity analysis for the sake of completeness; the interested reader
can refer to [27] for more details.

• Polynomial-time reduction: Problem A is said to be polynomial-time reduced to problem B if there is a
polynomial-time algorithm that transforms the inputs of A into those of B, such that the transformed
problem has the same output as the original problem.

• Class P: The general class of problems, where there exists an algorithm that can provide an answer in
polynomial time, is called “class P” (polynomial) or “P”.

• Class NP: The general class of problems, where an answer can be verified in polynomial time is called
“class NP” (Non-deterministic polynomial) or “NP”.

• Class NP-complete: A set of problems to each of which any other NP problem can be reduced in
polynomial time, and whose solution can still be verified in polynomial time, is called NP-complete.

According to the definitions, we have P ⊆ NP. The problems that belong to NP-complete cannot be solved
in polynomial time unless P = NP. Many scientists believe that P 6= NP [28], and up to now no one has been
able to find a polynomial-time algorithm for any known NP-complete problem. To prove NP-completeness of
a new problem, one common way is to reduce one known NP-complete problem to this new problem [27]. For
solving NP-complete problems, practical methods are typically based on rule or heuristic algorithms, such as
greedy algorithm and genetic algorithm [25, 27]. However, such methods can only provide approximated and
sub-optimal solutions.
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3.2 NP-complete result for binary speed choice
Here, we introduce the partition problem: given a set of N positive integers {p1, p2, . . . , pn}, decide whether
there exists a subset S ⊆ {1, 2, . . . , N} such that∑

i∈S
pi =

∑
i/∈S

pi. (13)

Lemma 1 ([29]). Partition problem is NP-complete.

Then, we state the main theorem of this paper.

Theorem 1. The problem of green light optimal velocity planning (12) belongs to NP-complete, if the speed
space S only have binary value, i.e., S = {vlow, vhigh}, vi,min ≤ vlow, vhigh ≤ vi,max.

Proof. The proof is based on a reduction of the partition problem to (12) with binary speed choices. Given
any instance of the partition problem {p1, p2, . . . , pN}, we can construct an instance of (12) in the following
way.

Step 1. Set pi as the length of segment i, i.e.,

di = pi, i ∈ N.

Step 2. Make the green light phase of i-th intersection be sufficient large, where i = 1, 2, . . . , N − 1, such
that the vehicle can pass these N − 1 intersections using any speed choice.

Step 3. Make the traffic light cycle of the N -th intersection be sufficient large and only the following time
point be green light phase

tg =

∑N
i=1 di
2

×
(

1

vlow
+

1

vhigh

)
. (14)

It is obvious that the construction in steps 1-3 can be finished in polynomial time. Then, it remains to
show that the constructed instance of (12) is equivalent to the original partition problem, i.e., any solution
to (12) is a solution to the partition problem, and vice versa. Note that the optimal cost value of the
constructed instance of (12) is tg if it exists.

1) ⇒: Suppose there is one suction to the constructed instance of (12). Then, there exist a subset
Ŝ ⊂ {1, 2, . . . , N}, and the advisory speed for Ŝ is vlow and other segments are vhigh, such that we have∑

j∈Ŝ dj

vlow
+

∑
j /∈Ŝ dj

vhigh
= tg, (15)

where tg is shown in (14). Note that, we have

∑
j∈Ŝ

dj +
∑
j /∈Ŝ

dj =

N∑
i=1

di. (16)

According to (14), (15) and (16), we have ∑
j∈Ŝ

dj =
∑
j /∈Ŝ

dj . (17)

This means a solution of the original partition problem is derived.
2)⇐: Suppose there is one solution to the partition problem, i.e., there exist a subset S ∈ {1, 2, . . . , N}

such that
∑

j∈S dj =
∑

j /∈S dj . Next, choose the velocity for the segments in S as vlow and the velocity for
other segments as vhigh. Then, we have∑

j∈S dj

vlow
+

∑
j /∈S dj

vhigh
=

∑N
i=1 di
2

(
1

vlow
+

1

vhigh

)
= tg, (18)

This indicates a solution to the constructed instance of (12) is obtained.
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Therefore, we can claim that the partition problem can be polynomial-time reduced to the optimal
velocity planning (12) with binary speed choices. According to Lemma 1, partition problem is NP-complete.
Consequently, the problem (12) with binary speed choices belongs to NP-complete.

To the best of our knowledge, Theorem 1 is the first result in the literature that formally addresses the
computational complexity of green light optimal velocity planning problem. Most of exiting studies only
focus on the formulation of the mathematical model considering different factors, and then employ rule-based
or DP-based algorithms to solve the problem [6, 10, 11, 12, 13, 14].
Remark 3. If the speed space S is in integer domain, the complexity of (12) remains an open question.
Intuitively, it is much more difficult to solve (12) with more velocity choices. For instance, if the speed limit
is set to vi,min = 1 m/s, vi,max = 30 m/s, there are 30 available choices for each segment. Then, the number
of candidate velocity profiles to (12) is 30N . However, the size of search space in Theorem 1 is 2N since each
segment only has two possible choices. If S is in continue domain, then the complexity of (12) is unknown as
well. Note that a linear combination of two feasible solutions to (12) may be infeasible due to the constraint
of traffic lights. This means the feasible region of (12) is not convex. It is in general nontrivial to solve
non-convex problems.

4 Solution via a Heuristic Algorithm
In this section, we develop a numerical heuristic algorithm to solve the green light optimal velocity planning
problem (2). Since we have proven that a special form of (12) is NP-complete, there are no effective algorithms
to find a global optimal solution in polynomial time. Instead, we propose a genetic algorithm to obtain
a sub-optimal solution. In particular, for problem (2), we consider a combination of trip time and fuel
consumption as the cost function and take the constant acceleration into account. Then, (2) can be compactly
written into

min
vi

Jt + ρJf

subject to ti ∈
∞⋃
j=1

[gij , rij) ,

vi ∈ [vi,min, vi,max] ,

vi ∈ S, i ∈ N,

(19)

where S is in continuous space, ti is defined in (11), and Jt denotes the trip time and Jf denotes the fuel
consumption, and ρ is a cost balanced factor. In our case, Jt is calculated as

Jt =

N∑
i=1

(∣∣∣∣vj − vj−1a

∣∣∣∣+ dj − lj
vj

)
,

and Jf is computed as

Jf =

N∑
i=1

∫ ti

ti−1

fcdt,

where fc is the fuel consumption rate defined in (8). In this paper, we assume that (19) is feasible in the
subsequent discussion; otherwise, stops at the red traffic light are unavoidable.

4.1 General framework
Genetic algorithm is a search technique that follows the evolution paradigm [30]. A population is first
initialized and then genetic operators are applied to produce offsprings (corresponding to the exploration
of the neighborhood), which converges to a nearly optimal solution over a large number of generations or
iterations.

One advantage of the genetic algorithm with respect to other local search algorithms is that more variable
space can be explored in each iteration, since a genetic algorithm can incorporate more strategies to generate

8



Algorithm 1 Genetic algorithm for the velocity planning
Input: Problem statistics: Intersection number N , green light phase

⋃∞
j=1 [gij , rij), speed bound vi,max, vi,min, distance

di, constant acceleration a, initial speed v0, cost balanced factor ρ
GA parameters: Maximum iterations kmax, population size Np, linear combination factor γ, probability of
rule-based initiation pi and probability of rule-based crossover pc.

Output: Optimal speed profile: V = [v1, . . . , vN ]
1: Initialize a population of Np individuals using (20) (with probability 1− pi) and the rule-based initialization (with

probability pi).
2: Evaluate the fitness of the initialized population (indexed as 0) using (21)
3: for k = 1, . . . , kmax do
4: Selection: select parents from population k − 1 using the linear ranking strategy;
5: Crossover : perform crossover on parents to create population k using (25) (with probability 1 − pc) and

rule-based crossover (with probability pc);
6: Mutation: perform mutation of population k;
7: Fitness: evaluate the fitness of population k using (21);
8: if Converged then
9: break;

10: end if
11: end for
12: Output the best individual in the population k as [v1, . . . , vN ].

new individuals both in the initial population phase and in the dynamic generation phase [31, 32]. The
overall structure of our proposed genetic algorithm for (19) includes the following steps:

• Coding: The genes of the chromosomes (or individuals) describe the velocity profiles for a chosen route,
and each chromosome denotes a possible solution to (19);

• Initial population: We randomly generate a portion of initial chromosomes, and also generate some
feasible chromosomes considering the hard constraints in (19);

• Fitness evaluation: The fitness of each chromosome is evaluated by the trip time and fuel consumption
and feasibility of the traffic light constraints (3);

• Selection operator: The selection operator is based on a linear ranking to choose the chromosomes for
reproduction;

• Offspring generation: The new generation is obtained by a linear combination of selected chromosomes
and gene mutation;

• Stop criterion: When the number of generations reach a pre-fixed maximum number or the solution does
not change for a pre-fixed number of iterations, we stop the algorithm and output the best chromosome
as a suboptimal solution.

4.2 Detailed design
Here, we present the detailed descriptions for the proposed genetic algorithm in each step.

4.2.1 Coding for solutions

To implement the genetic algorithm, we first need to design the chromosome representation for problem (19).
Usually, the chromosome representation is not unique, but needs to adapt with the problem characteristic [25].
For our problem, we use the target velocity in each segment as the genes of a chromosome. The length of a
chromosome is equal to the number of intersections, i.e., a chromosome is represented by

V = {v1, v2, . . . , vN}.

9



4.2.2 Initial population

Population initialization is critical in the design of genetic algorithm since it can affect the search space,
convergence speed and also the final solution [33]. For our problem, we first randomly generate a portion of
initial chromosomes that satisfy the bounds of allowable speeds and ignore the time constraint (3), i.e.,

vi = vi,min + τ(vi,max − vi,min), i ∈ N, (20)

where τ is a random variable between 0 and 1.
This randomly generating method is easy to implement and also allows us to search the entire space of

possible solutions. However, one major disadvantage is that the initial chromosomes usually violate the time
constraint (3). To guarantee some feasible initial candidates, we also use a rule-based strategy to generate
some chromosomes (see the Supplementary Materials). In the implementation, a mix of these two methods
are used to produce the initial population with priori probability pi. For instance, pi = 0.2 means 80% of the
initial population is generated by the random method, and 20% is generated by the rule-based method.

4.2.3 Fitness evaluation

The fitness evaluation is to measure the quality of each chromosome, which is in the form of

Fit(V ) = h(V ) + l(V ), (21)

where h(V ) reflects the trip time and fuel consumption of each chromosome, and l(V ) considers the hard
time constraint (3). Therefore, given any chromosome V = {v1, v2, . . . , vN}, we should have{

l(V ) = 0, if (3) is satisfied,
l(V ) > max(h(V )), otherwise.

(22)

Obviously, functions satisfying (22) are not unique. In our implementation, we use the following forms

l(V ) =

N∑
i=1

ni, h(V ) = 1− e−J , (23)

where J = Jt + ρJf is the combination of trip time and fuel consumption in (19), and ni is the indicator of
the feasibility of passing the i-th intersection, i.e.,

ni =

{
0, if ti ∈

⋃∞
j=1 [gij , rij) ,

1, otherwise.
(24)

In each generation, all the chromosomes are evaluated and the best individual is recorded to the next
generation.

4.2.4 selection operator

The selection phase is to choose the chromosomes for reproduction. In our approach, the strategy of linear
ranking is used to select the chromosomes to be included in the mating pool, which is widely used in the
literature.

Linear ranking: Chromosomes are sorted according to their fitness and a rank ri ∈ {1, 2, . . . , Np} is
assigned to each individual, where Np is the population size. The best individual, i.e., the individual with
lowest fitness value, gets rank Np and the worst one gets rank 1. Then,

2ri
Np(Np + 1)

, i = 1, . . . , Np,

is the probability of choosing the i-th individual in the ranking order.
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Table 1: Problem statistics of the typical scenario

Parameters Value
Number of intersections N 10

Distance di(m)
700, 580, 440, 760, 720,
520, 720, 660, 440, 600

Traffic light cycle length (s) 60, 55, 60, 65, 65, 65, 70,
70, 75, 70

Green phase length (s) 21, 23, 25, 21, 42, 42, 28,
42, 36, 46

Green phase start time (s) 37, 19, 46, 40, 6, 20, 39,
6, 16, 42

Initial velocity v0(m/s) 10
Lower bound of velocity vi,min(m/s) 5.6
Upper bound of velocity vi,max(m/s) 22.2
Cost balance factor ρ 0.3
Constant acceleration a(m/s2) 1.5

4.2.5 offspring generation

Once the chromosomes for reproduction have been selected, the next stage is to produce offsprings using two
genetic operators: crossover and mutation. Crossover applies to a pair of selected chromosomes, aiming to
obtain better result by exchanging information contained in the current individuals. Here, a linear combination
is used to realize the crossover. Suppose the selected pair of chromosomes are V1,parent, V2,parent, two offspring
are generated as {

V1,child = γV1,parent + (1− γ)V2,parent,

V2,child = (1− γ)V1,parent + γV2,parent,
(25)

where γ is a linear combination factor. Similar to the initialization step, the easily implementable linear
combination (25) allows us to search all possible solutions between V1 and V2, but with the disadvantage of
leading to possible infeasible candidates. In our implementation, we also use a rule-based strategy at priori
probability pc to generate offsprings that promises to improve feasibility (see the Supplementary Materials).
Mutation applies to a single individual with the aim to introduce extra variability into the population to
enhance the diversity. We first randomly select an individual form the population. Then, we read the genes
of the individual from left to right, and generate a random probability value. If the value is less than the
mutation probability, we generate a number from a normal distribution N(vi, 1) and assign it to the mutation
position. We repeat this process until all the genes are read.

We terminate the offspring generation phase if the number of chromosomes reaches the population size.
The proposed algorithm ends when a maximal number of iterations is reached or the best individual does not
change for a pre-fixed number, and we output the best individual as a sub-optimal solution. The major steps
are summarized in Algorithm 1.

5 Numerical Experiments
This section presents a set of numerical experiments to validate the proposed method. We considered a typical
scenario of a road with ten signalized intersections. The distance between two consecutive intersections was
chosen from 400 m to 800 m randomly with step-length 20 m, and the length of each traffic light cycle was
generated from 50 s to 80 s randomly with step-length 5 s. The problem statistics of a typical scenario is
listed in Table 1, and the parameters of GA used in our simulations are given in Table 2.

We consider four different strategies in the proposed GA: 1) assuming only nearest traffic light information
is available, i.e., considering one intersection sequentially; 2) considering two intersections at a time; 3)
considering five intersections at a time; 4) considering ten intersections simultaneously. For comparison, we

11



Table 2: Parameters in the genetic algorithm

Parameters Value
Maximal number of iterations kmax 1000
Population size Np 500
Linear combination factor γ 0.33
Probability of rule-based initiation pi 0.4
Probability of rule-based crossover pc 0.5
Probability of crossover 0.95
Probability of mutation 0.1
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Figure 3: Vehicle trajectories for different strategies

also assume an aggressive driver’s strategy in the simulations: the vehicle runs as the maximal velocity in
each segment and slows down, idles behind, and accelerates away from signalized intersections if meeting the
red lights.

Fig. 3 shows the trajectories when using these five strategies. It can be seen that the speed profiles from
the proposed GA could avoid red lights while the aggressive driver strategy has to stop at the red lights. Also,
if one only considers the nearest traffic light, the velocity profile might be greedy, which neglects the effects of
the upcoming intersections. In the chosen scenario, the strategy of considering one intersection sequentially
results in a speed profile that runs fast for the first three intersections and has to slow down for the forth
intersection. This increases the fuel consumption. Also, for the seventh intersection, the vehicle has to slow
down again since the previous velocity is not high enough. This inharmonious behaviour could be avoided if
one considers more intersections at a time, as demonstrated by the trajectories provided by other strategies
in Fig. 3. Meanwhile, as shown in Fig. 4, the greedy velocity profile also leads to a higher fuel consumption
and higher trip time. In contrast, the strategy of considering ten intersection simultaneously provide the best
improvement of fuel efficiency and reduction of trip time. Besides, Fig. 4(a) confirms that vehicles spend a
significant amount of fuel consumption by slowing down, idling behind, and accelerating away from signalized
intersections, which could be avoided using the upcoming traffic information, e.g., solving a velocity planning
problem.
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Figure 4: Comparison of different strategies: I: Aggressive driver; II: only considering 1 intersection; III:
considering 2 intersections; IV: considering 5 intersections; V: considering 10 intersections simultaneously.

6 Conclusion
This paper studied the problem of green light optimal velocity planning problem. We have proven that
this problem is NP-complete for the case where there are only binary velocity choices in each segment.
Our proof is based a reduction from a known NP-complete problem. Then, a genetic algorithm has been
introduced to obtain a sub-optimal solution, where a detailed discussion is provided on gene coding, population
initialization, select operator and genetic operator. Numerical experiments demonstrated the effectiveness
of our method, which also confirmed that more improvements on fuel efficiency could be realized by taking
multiple intersections into account simultaneously. One future work is to consider the complexity analysis for
the velocity planning problem in continuous domain, and another interesting direction of future work is to
consider multiple vehicles, such as platoons [34], running through signalized intersections.
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Appendix

6.1 Rule-based initialization
To improve the probability of feasible individuals in the initialization phase, we employ a rule-based strategy
at probability pi, as detailed in Procedure 1. The key idea of the proposed rule-based strategy is to find a
feasible trip time window for each intersection; see (26). In Procedure 1, it is assumed that each segment di
is long enough for the vehicle’s acceleration/deceleration process, i.e.,

di ≥ max

{
v2i,max − v2i−1

2|a|
,
v2i−1 − v2i,min

2|a|

}

Procedure 1 Rule-based initialization
Input: Intersection Number N , Green light phase

⋃∞
j=1 [gij , rij), speed bound vi,max, vi,min, distance di, constant

acceleration value a, and initial speed v0
Output: Speed profile: V = [v1, . . . , vN ]
1: Initialize t0 = 0, v0 = v0.
2: for i = 1, . . . , N do
3: Calculate the bounds of arrival time tmin, tmax

tmin = ti−1 +
∣∣∣vi,max − vi−1

a

∣∣∣+ 2|a|di − (v2i,max − v2i−1)

2|a|vi,max
,

tmax = ti−1 +
∣∣∣vi−1 − vi,min

a

∣∣∣+ 2|a|di − (v2i−1 − v2i,min)

2|a|vi,min
.

4: Calculate the feasible travel time window:

G = [tmin, tmax]
⋂(

∞⋃
j=1

[gij , rij)

)
(26)

5: Choose the arrival time randomly ti ∈ G.
6: Calculate the trip time during the i-th segment

tseg = ti − ti−1.

7: Compute the velocity vi as

vi =


vi−1−|a|tseg+√

−2vi−1|a|tseg + a2t2seg + 2|a|di, if
di
vi−1

< tseg

vi−1+|a|tseg−√
2vi−1|a|tseg + a2t2seg − 2|a|di, otherwise

(27)

8: end for
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6.2 Rule-based crossover
As mentioned in Remark 1, the linear combination (25) for crossover is able to to search all possible solutions
between two candidates, but it may also lead to infeasible individuals due to the non-convexity of the feasible
domain. In our implementation, we use a rule-based crossover at probability pc defined in Procedure 2.
Similar to the rule-based initialization, the key idea is to find feasible trip time window that is defined by
both the selected parents and green light phase; see (28).

Procedure 2 Rule-based crossover
Input: Intersection Number N , Green light phase

⋃∞
j=1 [gij , rij), speed bound vi,max, vi,min, distance di, constant accel-

eration value a, initial speed v0, and two selected chromosomes V1 = [v1,1, v1,2, . . . , v1,N ], V2 = [v2,1, v2,2, . . . , v2,N ]
Output: Two offsprings: V3 = [v3,1, . . . , v3,N ],

V4 = [v4,1, . . . , v4,N ]
1: Initialize t3,0 = 0, t4,0 = 0, v3,0 = v0, v4,0 = v0.
2: for i = 1, . . . , N do
3: Calculate the bounds of arrival time tmin,k, tmax,k(k = {3, 4})

tmin,k = tk,i−1 +
∣∣∣vi,max − vk,i−1

a

∣∣∣
+

2|a|di − (v2i,max − v2k,i−1)

2|a|vi,max
,

tmax,k = tk,i−1 +
∣∣∣vk,i−1 − vi,min

a

∣∣∣
+

2|a|di − (v2k,i−1 − v2i,min)

2|a|vi,min
.

4: Calculate the trip time Tk, k = {1, 2} of the parents, and find the time interval T .

Tk =

i∑
j=1

(∣∣∣vk,j − vk,j−1

a

∣∣∣+ 2|a|dj − |v2k,j − v2k,j−1|
2|a|vk,j

)
,

T = [min(T1, T2),max(T1, T2)].

5: Calculate the feasible travel time window (k = {3, 4}):

Gk = [tmin,k, tmax,k]
⋂(

∞⋃
j=1

[gij , rij)

)⋂
T. (28)

6: Choose the arrival time randomly tk,i ∈ Gk, k = {3, 4}.
7: Calculate the trip time during the i-th segment

tk,seg = tk,i − tk,i−1, k = 3, 4

8: Compute the velocity vk,i, k = {3, 4} using an equation similar to (27).
9: end for
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