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Abstract

This paper revisits the classical Linear Quadratic Gaussian (LQG) control from a modern
optimization perspective. We analyze two aspects of the optimization landscape of the LQG
problem: 1) connectivity of the set of stabilizing controllers Cn; and 2) structure of stationary
points. It is known that similarity transformations do not change the input-output behavior of a
dynamical controller or LQG cost. This inherent symmetry by similarity transformations makes
the landscape of LQG very rich. We show that 1) the set of stabilizing controllers Cn has at
most two path-connected components and they are diffeomorphic under a mapping defined by a
similarity transformation; 2) there might exist many strictly suboptimal stationary points of the
LQG cost function over Cn and these stationary points are always non-minimal ; 3) all minimal
stationary points are globally optimal and they are identical up to a similarity transformation.
These results shed some light on the performance analysis of direct policy gradient methods for
solving the LQG problem.

1 Introduction

As one of the most fundamental optimal control problems, Linear Quadratic Gaussian (LQG) control
has been studied for decades. Many structural properties of the LQG problem have been established
in the literature, such as existence of the optimal controller, separation principle of the controller
structure, and no guaranteed stability margin of closed-loop LQG systems [1, 2, 3]. Despite the
non-convexity of the LQG problem, the globally optimal controller can be found by solving two
algebraic Riccati equations [1], or a convex semidefinite program based on a change of variables [4, 5].

While extensive results on LQG have been obtained in classical control, its optimization landscape
is less studied, i.e., viewing the LQG cost as a function of the controller parameters and studying
its analytical and geometrical properties. On the other hand, recent advances in reinforcement
learning (RL) have revealed that the landscape analysis of another benchmark optimal control
problem, linear quadratic regulator (LQR), can lead to fruitful and profound results, especially for
model-free controller synthesis [6, 7, 8, 9, 10, 11, 12]. For instance, it is shown that the set of static
stabilizing feedback gains for LQR is connected, and that the LQR cost function is coercive and
enjoys an interesting property of gradient dominance [6, 13]. These properties are fundamental to
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establish convergence guarantees for gradient-based algorithms for solving LQR and their model-
free extensions for RL [7, 8]. We note that recent studies have also contributed to establishing
performance guarantees of model-based RL techniques for LQR (see e.g., [14, 15]) as well as LQG
control [16, 17, 18, 19].

This paper aims to analyze the optimization landscape of the LQG problem. Unlike LQR that
deals with fully observed linear systems whose optimal solution is a static feedback policy, the LQG
problem concerns partially observed linear systems driven by additive Gaussian noise and its optimal
controller is no longer static. We need to search over dynamical controllers for LQG problems. This
makes its optimization landscape richer and yet much more complicated than LQR. Indeed, the
set of stabilizing static state feedback policies is connected, but the set of stabilizing static output
feedback policies can be highly disconnected [20]. The connectivity of stabilizing dynamical output
feedback policies, i.e., the feasible region of LQG control, remains unclear. Furthermore, LQG
has a natural symmetry structure induced by similarity transformations that do not change the
input-output behavior of dynamical controllers, which is not the case for LQR.

Some recent studies [21, 22, 23, 24, 25] have demonstrated that symmetry properties play a key
role in rendering a large class of non-convex optimization problems in machine learning tractable; see
also [26] for a recent review. For the LQG problem, we can expect the inherent symmetry by similarity
transformations to bring some important properties of its non-convex optimization landscape. We
also note that the notion of minimal controllers (a.k.a. controllable and observable controllers; see
Appendix A.1) is a unique feature in controller synthesis of partially observed dynamical systems,
making the optimization landscape of LQG distinct from many machine learning problems.

1.1 Our contributions

In this paper, we view the classical LQG problem from a modern optimization perspective, and study
two aspects of its optimization landscape. First, we characterize the connectivity of the feasible
region of the LQG problem, i.e., the set of strictly proper stabilizing dynamical controllers, denoted
by Cn (n is the state dimension). We prove that Cn can be disconnected, but has at most two
path-connected components (Theorem 3.1). If Cn is disconnected, its two path-connected components
are diffeomorphic under a mapping defined by a similarity transformation (Theorem 3.2). This
brings positive news to gradient-based local search algorithms for the LQG problem, since it makes
no difference to search over either path-connected component even if Cn is disconnected. We further
present a sufficient condition under which Cn is always connected, and this condition becomes
necessary for a class of LQG problems with a single input or single output (Theorem 3.3). The
sufficient condition naturally holds for any open-loop stable system, thus its set of strictly proper
stabilizing dynamical controllers is always connected (Corollary 3.1).

Second, we investigate structural properties of the stationary points of the LQG cost function.
It is known that the LQG cost is invariant under similarity transformations on the controller
(see Lemma 4.1). One natural consequence is that the globally optimal solutions to the LQG problem
are not unique, not isolated, and can be disconnected in the state-space domain. For a class of LQG
problems, we show that the set of globally optimal solutions is a submanifold of dimension n2 and
it has two path-connected components (Proposition 4.1). The tangent space at a given stabilizing
controller is established in Proposition 4.2. In addition, we present an explicit example showing that
the LQG problem is not coercive, i.e., the LQG cost may have finite value around the boundary of
its feasible region (Example 4).

When characterizing the stationary points with vanishing gradients, the notion of minimal
controllers plays an important role. In Theorem 4.1, we show that it is very likely there exist many
strictly suboptimal stationary points of the LQG cost over Cn, and these stationary points are always
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non-minimal. We further construct an explicit family of non-minimal stationary points for the
LQG problem with an open-loop stable plant, where a criterion is established to check whether
the corresponding Hessian is indefinite or vanishing (Theorem 4.2). In contrast, we prove that all
minimal stationary points are globally optimal to the LQG problem (Theorem 4.3). These minimal
stationary points are identical up to similarity transformations. This is expected from the classical
result that the globally optimal LQG controller is unique in the frequency domain [1, Theorem 14.7].
We also construct an explicit family of LQG problems for which the second order shape of the LQG
cost function is ill-behaved around a minimal stationary point in the sense that its Hessian has a
huge condition number (see Theorem 4.4).

Our analysis implies that if local search iterates converge to a critical point that corresponds to
a controllable and observable controller, then the algorithm has found a globally optimal solution to
the LQG problem (Corollary 4.2). However, it requires further investigation on whether local search
algorithms can escape saddle points of LQG [27].

1.2 Related work

Optimization landscape of LQR The classical Linear-Quadratic Regulator (LQR), one of the
most well-studied optimal control problems, has re-attracted increasing research interest [6, 14,
7, 11, 28, 29]. In particular, LQR has been used as a benchmark problem to study how machine
learning methods interacts with continuous control. For model-free policy optimization methods,
the optimization landscape of LQR is essential to establish their performance guarantees. It is
shown in [6, 8] that both continuous-time and discrete-time LQR problems enjoy the property of
gradient dominance, and thus model-free gradient-based algorithms converge globally for solving
LQR problems under mild conditions [7]. Recent work has examined the optimization landscape of a
class of risk-sensitive state-feedback control problems, and policy optimization methods can converge
to the globally optimal policies [12]. Furthermore, a class of output-feedback linear quadratic control
problems in finite-horizon also satisfies the property of gradient dominance, and gradient algorithms
can reach the globally optimal solutions [30].

Since the globally optimal LQR controller is a static feedback policy, some recent studies have
also examined closely the connectivity of stabilizing static feedback policies [20, 13, 31]. It is shown
in [20] that the set of stabilizing static output feedback policies can be highly disconnected, and
that there are instances with an exponential number of connected components. This disconnectivity
poses a significant challenge for decentralized LQR problems with a subspace constraint. For general
decentralized LQR, policy optimization methods can only be guaranteed to reach some stationary
points [10]. We note that many landscape properties of LQR are derived using classical control
tools [8, 12, 30, 31], and there are an extensive literature on decentralized control (see e.g., [32, 33, 34]
and the references therein); it is promising to adapt classical decentralized LQR results for the
understanding of their optimization landscape. Our work uses classical control tools [1, 4, 5] to
analyze optimization landscape properties of the LQG problem.

Reinforcement learning for LQG and controller parameterization Recent studies have
also started to address performance guarantees for LQG with unknown dynamics, including offline
robust control [16, 17, 18] and online adaptive control [19, 35, 36]. The line of studies on offline
robust control first estimates a system model as well as a bound on the estimation error using
non-asymptotic analysis (see e.g., [16, 37, 38]), and then design a robust LQG controller that
stabilizes the plant against model uncertainty. One challenge is on establishing explicit performance
degradation with respect to model uncertainty for the robust LQG synthesis procedure [16, 17, 18].
For online adaptive control, the recent work [19] has introduced an online gradient descent algorithm
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to update LQG controller parameters that leads to a sub-linear regret in various settings; see [35, 36]
for further developments.

In both offline robust control [16, 17, 18] and online adaptive control [19, 35, 36], a convex
reformulation of the LQG problem is essential for establishing performance guarantees. For example,
the work [19, 35, 36] employs the classical Youla parameterization [39], while the work [17, 18]
adopts the recent system-level parameterization (SLP) [40] and input-output parameterization
(IOP) [41], respectively. The Youla parameterization, SLP, and IOP recast the LQG problem into
an equivalent convex formulation in the frequency domain (see [42] for a comparison), but they all
rely on the underlying system dynamics explicitly. Thus, a system estimation procedure is required
a priori in [16, 17, 18, 19], and these methods are all model-based. In our work, we consider a
natural model-free controller parameterization in the state-space domain for the LQG problem. This
parameterization does not depends on the system dynamics explicitly, but it leads to a non-convex
LQG formulation. Our results contribute to the understanding of its non-convex optimization
landscape, which shed lights to performance analysis of model-free RL techniques for learning LQG
controllers.

Nonconvex optimization with symmetry Nonconvex optimization has been widely employed
in machine learning: many important applications, from classical matrix factorization to modern
deep learning, rely on optimization over nonconvex functions [26, 23]. It is revealed that symmetry
properties are essential to understand the geometry of many nonconvex optimization problems. Two
important symmetry properties are rotational symmetry (e.g., in phase retrieval [21] and low-rank
matrix factorization [22, 23]) and discrete symmetry (e.g., in sparse dictionary learning [24] and
tensor decomposition [25]); see [26] for a recent survey. Under some technical assumptions, these
symmetry properties enable efficient local search methods to obtain global minimizers of nonconvex
optimization problems. In this paper, we highlight a new symmetry property defined by similarity
transformation in the LQG problem. This symmetry appears only in dynamical output-feedback
controller synthesis, and thus the LQR problem does not have this symmetry property. In addition,
a notion of minimal controllers is unique in control problems, making the landscape of LQG distinct
from many machine learning problems [26, 21, 22, 24, 25].

1.3 Paper outline

The rest of this paper is organized as follows. Section 2 presents the problem statement of the
Linear Quadratic Gaussian (LQG) control. We introduce our main results on the connectivity of
stabilizing controllers in Section 3, and present our main results on the structure of stationary points
of LQG problems in Section 4. Some numerical results on gradient descent algorithms for LQG
are reported in Section 5. We conclude the paper in Section 6. Appendices contain preliminaries
in control and differential geometry, proofs of auxiliary results, and a connectivity result of proper
stabilizing controllers.

Notations

We use R and N to denote the set of real and natural numbers, respectively. The set of k × k real
symmetric matrices is denoted by Sk, and the determinant of a square matrix M is denoted by
detM . We denote the set of k× k real invertible matrices by GLk = {T ∈ Rk×k | detT 6= 0}. Given
a matrix M ∈ Rk1×k2 , MT denotes the transpose of M , and ‖M‖F denotes the Frobenius norm
of M . For any M1,M2 ∈ Sk, we use M1 ≺ M2 and M2 � M1 to mean that M2 −M1 is positive
definite, and use M1 �M2 and M2 �M1 to mean that M2 −M1 is positive semidefinite. We use Ik
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to denote the k× k identity matrix, and use 0k1×k2 to denote the k1 × k2 zero matrix; we sometimes
omit their subscripts if the dimensions can be inferred from the context.

2 Problem Statement

In this section, we first introduce the Linear Quadratic Gaussian control problem, and then present
the problem statement of our work.

2.1 The Linear Quadratic Gaussian (LQG) problem

Consider a continuous-time1 linear dynamic system

ẋ(t) = Ax(t) +Bu(t) + w(t)

y(t) = Cx(t) + v(t),
(1)

where x(t) ∈ Rn represents the vector of state variables, u(t) ∈ Rm the vector of control inputs,
y(t) ∈ Rp the vector of measured outputs available for feedback, and w(t) ∈ Rn, v(t) ∈ Rp are system
process and measurement noises at time t. It is assumed that w(t) and v(t) are white Gaussian noises
with intensity matrices W � 0 and V � 0. For notational simplicity, we will drop the argument t
when it is clear in the context.

The classical linear quadratic Gaussian (LQG) problem is defined as

min
u(t)

J := lim
T→∞

1

T
E
[∫ T

t=0

(
xTQx+ uTRu

)
dt

]
subject to (1),

(2)

where Q � 0 and R � 0. In (2), the input u(t) is allowed to depend on all past observation y(τ)
with τ < t. Throughout the paper, we make the following standard assumption of minimal systems
in the sense of Kalman (see Appendix A.1 for a review of these notions).

Assumption 1. (A,B) and (A,W 1/2) are controllable, and (C,A) and (Q1/2, A) are observable.

Unlike the problem of linear quadratic regulator (LQR), static feedback policies in general do not
achieve optimal values of the cost function, and we need to consider a class of dynamical controllers
in the form of

ξ̇(t) = AKξ(t) +BKy(t),

u(t) = CKξ(t),
(3)

where ξ(t) ∈ Rq is the internal state of the controller, and AK, BK, CK are matrices of proper
dimensions that specify the dynamics of the controller. We refer to the dimension q of the internal
control variable ξ as the order of the dynamical controller (3). A dynamical controller is called a
full-order dynamical controller if its order is the same as the system dimension, i.e., q = n; if q < n,
we call (3) a reduced-order or lower-order controller. We shall see later that it is unnecessary to
consider dynamical controllers with order beyond the system dimension n.

The LQG problem (2) admits the celebrated separable principle and has a closed-form solution
by solving two algebraic Riccati equations [1, Theorem 14.7]. Indeed, the optimal solution to (2) is

1We only consider the continuous-time case in this paper, but many analysis techniques can be extended to the
discrete-time case.
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u(t) = −Kξ(t) with a fixed p× n matrix K and ξ(t) is the state estimation based on the Kalman
filter. Precisely, the optimal controller is given by

ξ̇ = (A−BK)ξ + L(y − Cξ),
u = −Kξ.

(4)

In (4), the matrix L is called the Kalman gain, computed as L = PCTV −1 where P is the unique
positive semidefinite solution (see e.g., [1, Corollary 13.8]) to

AP + PAT − PCTV −1CP +W = 0, (5a)

and the matrix K is called the feedback gain, computed as K = R−1BTS where S is the unique
positive semidefinite solution to

ATS + SA− SBR−1BTS +Q = 0. (5b)

We can see that the optimal LQG controller (4) can be written into the form of (3) with

AK = A−BK − LC, BK = L, CK = −K. (6)

Thus, the solution from Ricatti equations (5) is always full-order, i.e., q = n. We note that two
dynamical controllers with the same transfer function K(s) = CK(sI −AK)−1BK lead to the same
LQG cost. In general, the optimal LQG controller is only unique in the frequency domain [1,
Theorem 14.7] but not unique in the state-space domain (3); any similarity transformation on (6)
leads to another optimal solution that achieves the global minimum cost2.

2.2 Parametrization of Dynamical Controllers and the LQG Cost Function

The controller (4) explicitly depends on the plant’s parameters A,B,C, and it may not be straight-
forward to compute (4) if A,B and C are not available. Recently, model-free policy gradient
methods have been applied in a range of control problems, such as LQR in discrete-time [6] and
continuous-time [8], finite-horizon discrete-time LQG problem [30], and state-feedback risk-sensitive
control [12]. These methods view classical control problems from a modern optimization perspective,
and directly optimize control policies based on system observations, without explicit knowledge of
the underlying model. To avoid the explicit dependence on model parameters A,B,C, we consider
the class of dynamical controllers in (3), parameterized by (AK, BK, CK). As we will see later, this
allows us to view LQG (2) from a model-free optimization perspective.

In order to formulate the cost in (2) as a function of the parametrized dynamical controller
(AK, BK, CK), we first need to specify its domain. By combining (3) with (1), we get the closed-loop
system

d

dt

[
x
ξ

]
=

[
A BCK

BKC AK

] [
x
ξ

]
+

[
I 0
0 BK

] [
w
v

]
,[

y
u

]
=

[
C 0
0 CK

] [
x
ξ

]
+

[
v
0

]
.

(7)

It is known from classical control theory [1, Chapter 13] that under Assumption 1, the LQG cost is
finite if the closed-loop matrix[

A BCK

BKC AK

]
=

[
A 0
0 0

]
+

[
B 0
0 I

] [
0 CK

BK AK

] [
C 0
0 I

]
(8)

2This is a well-known fact and can be verified easily; see Lemma 4.1.
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is stable [1], i.e., the real parts of all its eigenvalues are negative; dynamical controllers satisfying
this condition is said to internally stabilize the plant (1). Furthermore, it is a known fact in control
theory that the optimal controller (6) obtained by solving the Riccati equations internally stabilizes
the plant. We therefore parametrize the set of stabilizing controllers with order q ∈ N by3,4

Cq :=

{
K =

[
DK CK

BK AK

]
∈ R(m+q)×(p+q)

∣∣∣∣ DK = 0m×p, (8) is stable
}
, (9)

and let Jq(K) : Cq → R denote the function that maps a parametrized dynamical controller in Cq to
its corresponding LQG cost for each q ∈ N. It can be shown that the set of full-order stabilizing
controllers Cn is nonempty as long as Assumption 1 holds [1], and since it also contains the optimal
LQG controller to (2), we will mainly focus on the set of full-order stabilizing controllers Cn in this
paper. We will abbreviate Jn(K) as J(K) when no confusions occur.

The following lemma shows that the set Cq can be treated as an open set when it is nonempty.
This is a direct consequence of the fact that the Routh–Hurwitz stability criterion returns a set of
strict polynomial inequalities in terms of the elements of (AK, BK, CK).

Lemma 2.1. Let q ≥ 1 such that Cq is nonempty. Then, Cq is an open subset of the linear space

Vq :=

{[
DK CK

BK AK

]
∈ R(m+q)×(p+q)

∣∣∣∣ DK = 0m×p

}
. (10)

The following two lemmas give useful characterizations of the LQG cost function Jq. These
results are known in the literature; we provide a short proof in Appendix B.1 for completeness.

Lemma 2.2. Fix q ∈ N such that Cq 6= ∅. Given K ∈ Cq, we have

Jq(K) = tr

([
Q 0
0 CT

KRCK

]
XK

)
= tr

([
W 0
0 BKV B

T
K

]
YK

)
, (11)

where XK and YK are the unique positive semidefinite solutions to the following Lyapunov equations[
A BCK

BKC AK

]
XK +XK

[
A BCK

BKC AK

]T
+

[
W 0
0 BKV B

T
K

]
= 0, (12a)[

A BCK

BKC AK

]T
YK + YK

[
A BCK

BKC AK

]
+

[
Q 0
0 CT

KRCK

]
= 0. (12b)

Lemma 2.3. Fix q ∈ N such that Cq 6= ∅. Then, Jq is a real analytic function on Cq.

Now, given the dimension n of the plant’s state variable, the LQG problem (2) can be reformulated
into a constrained optimization problem:

min
K

Jn(K)

subject to K ∈ Cn.
(13)

3We explicitly include the zero matrix DK in the definition of Cq, which corresponds to the set of strictly proper
dynamical controllers. If we allow DK to be non-zero, we will have a proper dynamical controller; see Appendix C. In
this definition, when q = 0, we have Cq = {0m×p} if the plant (1) is open-loop stable, and Cq = ∅ otherwise.

4In (9), for notational simplicity, we lumped the controller parameters into a single matrix; but it should be
interpreted as a dynamical controller, represented by (3). Note that this definition allows us to apply block-wise
matrix operations; see e.g., (14).
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After reformulating the LQG (2) into (13), it is possible to estimate the gradient of Jn(K) from
system trajectories, and one may further derive model-free policy gradient algorithms to find a
solution to (13). To characterize the performance of policy gradient algorithms, it is necessary to
understand the landscape of (13). It is well-known that Cn is in general non-convex. Lemma 2.3
indicates that Jn is a real analytical function. However, little is known about their further geometrical
and analytical properties, especially those that are fundamental for establishing convergence of
gradient-based algorithms. In this paper, we focus on the following two topics of the set Cn and the
LQG cost function Jn:

1) The connectivity of Cn and its implications, which will be studied in Section 3. Connectivity
of stabilizing controllers has received increasing attention, but most recent results focus on
state-feedback controllers or static output-feedback controllers [6, 8, 13, 20]. It is known that
the set of stabilizing state-feedback policies is in general non-convex but connected, and this
connectivity is fundamental for gradient-based local search algorithms to find a good solution. It
is also known that the set of stabilizing static output-feedback policies can be highly disconnected
(there exist cases with an exponential number of connected components [20]). The connectivity of
dynamical controllers Cn, however, is unknown and has not been discussed before in the literature.

2) The structure of the stationary points and the global optimum of Jn, which will be studied
in Section 4. A classical result in control is that the solution to the LQR problem is unique under
mild technical assumptions, which is an important fact in establishing the gradient dominant
property of the LQR cost function [6, 8]. In addition, it has been recently shown that a class
of output-feedback controller design problem in finite-time horizon also has a unique stationary
point [30]. However, it is expected that the stationary points of the LQG problem (13) are not
unique due to the non-uniqueness of globally optimal solutions in the state-space domain. We
aim to reveal further structure properties of stationary points of the LQG problem (13).

3 Connectivity of the Set of Stabilizing Controllers

In this section, we characterize the connectivity of the set of full-order stabilizing controllers Cn. We
first have the following observation.

Lemma 3.1. Under Assumption 1, the set Cn is non-empty, unbounded, and can be non-convex.

Proof. It is a well-known fact in control theory that Cn 6= ∅ under Assumption 1. In particular, any
pole assignment algorithm or solving the Ricatti equations (5a) and (5b) can find a feasible point in
Cn. To show the unboundedness of Cn, we introduce the following set

Sn =

{
K =

[
0 CK

BK AK

]
∈ R(m+n)×(p+n)

∣∣∣∣∣ AK = A−BK − LC, BK = L, CK = −K,
A−BK and A− LC are stable

}
.

It has been established in classical control theory that Sn ⊂ Cn [1, Chapter 3.5] and the set
{K | A − BK is stable} is unbounded (see, e.g., [13, Observation 3.6]). Thus, the set Sn is
unbounded, and so is Cn. Non-convexity of Cn is also known and can be illustrated by the explicit
counterexample in Example 1.

Example 1 (Non-convexity of stabilizing controllers). Consider a dynamical system (1) with

A = 1, B = 1, C = 1.
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The set of stabilizing controllers Cn = C1 is given by

Cn =

{
K =

[
0 CK

BK AK

]
∈ R2×2

∣∣∣∣ [ 1 CK

BK AK

]
is stable

}
.

It is easy to verify that the following dynamical controllers

K(1) =

[
0 2
−2 −2

]
, K(2) =

[
0 −2
2 −2

]

internally stabilize the plant and thus belong to C1. However, K̂ = 1
2

(
K(1) + K(2)

)
=

[
0 0
0 −2

]
fails

to stabilize the plant.

3.1 Main Results

We first introduce the notion of similarity transformation that has been widely-used in control theory.
Given q ≥ 1 such that Cq 6= ∅, we define the mapping Tq : GLq × Cq → Cq that represents similarity
transformations on Cq by

Tq(T,K) :=

[
Im 0
0 T

] [
DK CK

BK AK

] [
Ip 0
0 T

]−1

=

[
DK CKT

−1

TBK TAKT
−1

]
. (14)

It is not hard to verify that for any invertible matrix T ∈ GLq and K ∈ Cq, Tq(T,K) is indeed
a stabilizing controller of order q and thus is in Cq. We can also check that Tq is indefinitely
differentiable on GLq × Cq, and that

Tq(T2,Tq(T1,K)) = Tq(T2T1,K) (15)

for any invertible T1, T2 ∈ GLq. This implies that for any fixed T ∈ GLn, the map

K 7→ Tq(T,K)

admits an inverse given by K 7→ Tq(T
−1,K). Therefore, we have the following result (see Appendix A.3

for a review of manifolds and diffeomorphism).

Lemma 3.2. Given q ≥ 1 such that Cq 6= ∅, for any invertible matrix T ∈ GLq, the map

K 7→ Tq(T,K)

is a diffeomorphism from Cq to itself.

Our main technical results in this section are on the path-connectivity of Cn. Recall that Tn(T,K)
is defined by (14). For notational simplicity, for any fixed T ∈ GLn, we let TT : Cn → Cn denote the
mapping given by

TT (K) := Tn(T,K) =

[
DK CKT

−1

TBK TAKT
−1

]
.

We are now ready to present the main technical results.

Theorem 3.1. Under Assumption 1, the set Cn has at most two path-connected components.

Theorem 3.2. If Cn has two path-connected components C(1)
n and C(2)

n , then C(1)
n and C(2)

n are
diffeomorphic under the mapping TT , for any invertible matrix T ∈ Rn×n with detT < 0.

9



Theorem 3.2 shows that even if Cn has two path-connected components, there exists a linear
bijection mapping defined by a similarity transformation TT between these two components. In
the following theorem, we present a sufficient condition under which Cn is path-connected. This
condition becomes necessary for a class of dynamical systems with single input or single output.

Theorem 3.3. Under Assumption 1, the following statements are true.

1) Cn is path-connected if there exists a reduced-order stabilizing controller, i.e., Cn−1 6= ∅.
2) Suppose the plant (1) is single-input or single-output, i.e., m = 1 or p = 1. Then the set Cn is

path-connected if and only if Cn−1 6= ∅.

One main idea in our proofs is based on a classical change of variables for dynamical controllers
(see, e.g., [5]). We adopt the change of variables to construct a set with a convex projection and a
surjective mapping from that set to Cn, and then path-connectivity results generally follow from
the fact that a convex set is path-connected. The potential disconnectivity of Cn comes from the
fact that the set of real invertible matrices GLn = {Π ∈ Rn×n | det Π 6= 0} has two path-connected
components [43]: GL+

n = {Π ∈ Rn×n | det Π > 0}, GL−n = {Π ∈ Rn×n | det Π < 0}. The full proofs
are technically involved, and we postpone them to Section 3.2— 3.4.

Here, we note that given any open-loop unstable first-order dynamical system, i.e., n = 1, and
A > 0 in (1), it is easy to see that there exist no reduced-order stabilizing controllers, i.e., Cn−1 = ∅.
Thus, Theorem 3.3 indicates that its associated set of stabilizing controllers Cn is not path-connected.
We provide an explicit single-input and single-output (SISO) example below.

Example 2 (Disconectivity of stabilizing controllers). Consider the dynamical system in Example 1:

A = 1, B = 1, C = 1.

Since it is open-loop unstable and only has state of dimension n = 1, we know Cn−1 = ∅. Thus,
Theorem 3.3 indicates that its associated set of stabilizing controllers Cn is not path-connected.

Indeed, using the Routh–Hurwitz stability criterion, it is straightforward to derive that

C1 =

{
K =

[
0 CK

BK AK

]
∈ R2×2

∣∣∣∣[ A BCK

BKC AK

]
is stable

}
=

{
K =

[
0 CK

BK AK

]
∈ R2×2

∣∣∣∣AK < −1, BKCK < AK

}
.

(16)

This set has two path-connected components: C1 = C+
1 ∪ C

−
1 with C+

1 ∩ C
−
1 = ∅, where

C+
1 :=

{
K =

[
0 CK

BK AK

]
∈ R2×2

∣∣∣∣AK < −1, BKCK < AK, BK > 0

}
,

C−1 :=

{
K =

[
0 CK

BK AK

]
∈ R2×2

∣∣∣∣AK < −1, BKCK < AK, BK < 0

}
.

In addition, as expected by Theorem 3.2, it is easy to verify that C+
1 and C−1 are homeomorphic

under the mapping TT , for any T < 0. Figure 1a illustrates the region of the set C1 in (16).

In Appendix B.3, we present a nontrivial second-order SISO system, for which Cn−1 = ∅ and Cn
is disconnected. Theorem 3.3 also suggests the following corollary.

Corollary 3.1. Given any open-loop stable dynamical system (1), i.e., A is stable, we have that Cn
is path-connected.

10



(a) C1 for Example 2 (b) C1 for Example 3

Figure 1: The set of stabilizing controllers C1 for Examples 2 and 3: (a) For Example 2, the set C1 given
by (16) has two path-connected components; (b) For Example 3, the set C1 given by (17) is path-connected.

Proof. Since the dynamical system (1) is open-loop stable, thus

K =

[
0m×p 0m×(n−1)

0(n−1)×p −In−1

]
∈ Cn−1,

and Cn−1 6= ∅. By Theorem 3.3, Cn is path-connected.

Example 3 (Stabilizing controllers for an open-loop stable system). Consider an open-loop stable
dynamical system (1) with

A = −1, B = 1, C = 1.

Since it is open-loop stable, Corollary 3.1 indicates that its associated set of stabilizing controllers Cn
is path-connected. Using the Routh–Hurwitz stability criterion, it is straightforward to derive that

C1 =

{
K =

[
0 CK

BK AK

]
∈ R2×2

∣∣∣∣AK < 1, BKCK < −AK

}
. (17)

This set is path-connected, as illustrated in Figure 1b.

Before presenting the technical proofs, we note that the controllers of Cn in (9) are always
strictly proper, which is sufficient for the LQG problem (2). For closed-loop stability, we can also
consider proper dynamical controllers. We provide this discussion in Appendix C: Unlike Cn that
might be disconnected, the set of proper stabilizing dynamical controllers is always connected (see
Theorem C.1).

Remark 1 (Connectivity of the feasible region of LQR/LQG and gradient-based algorithms). Moti-
vated by the success of data-driven RL techniques, some recent studies revisited the classical LQR
problem from a modern optimization perspective and designed policy gradient algorithms [6, 8, 12].
The connectivity of feasible region (i.e., the set of stabilizing controllers) becomes important to
local search algorithms (e.g., policy gradient) since they typically cannot jump between differ-
ent connected components. It is known that the set of stabilizing static state-feedback policies
{K ∈ Rm×n | A−BK is stable} is connected [13], and this is one important factor in justifying the

11



performance of the algorithms in [6, 8, 12]. On the other hand, the set of stabilizing static output
feedback policies {DK ∈ Rm×p | A − BDKC is stable} can be highly disconnected [20], posing a
significant challenge for local search algorithms. In Theorems 3.1, 3.2 and 3.3, we have shown that
the set of stabilizing controllers Cn in LQG problem has at most two path-connected components that
are diffeomorphic to each other under a particular similarity transformation. Since similarity trans-
formation does not change the input/output behavior of a controller (see Appendix A.1), it makes
no difference to search over any path-connected component in Cn even if Cn is not path-connected.
This brings positive news to gradient-based local search algorithms for the LQG problem.

3.2 Proof of Theorem 3.1

The following Lyapunov stability criterion [44] plays a central role in our proof: A square real matrix
M is stable if and only if the Lyapunov inequality

MP + PMT ≺ 0

has a positive definite solution P � 0.
The analysis of the path-connectivity of Cn is similar with analyzing the connectivity of the set of

stabilizing static state feedback policies: We first adopt a classical change of variables that has been
used for developing convex reformulation of controller synthesis problems, and then path-connectivity
results generally follow from the fact that a convex set is path-connected ; see Remark 2 for details.

Remark 2 (Connectivity of stabilizing static state-feedback policies). The path-connectivity of the
set of stabilizing static state-feedback policies {K ∈ Rm×n | A−BK is stable} is easy to show:

{K ∈ Rm×n | A−BK is stable}
⇐⇒ {K ∈ Rm×n | ∃P � 0, P (A−BK)T + (A−BK)P ≺ 0}
⇐⇒ {K ∈ Rm×n | ∃P � 0, PAT − LTBT +AP −BL ≺ 0, L = KP}
⇐⇒ {K = LP−1 ∈ Rm×n | ∃P � 0, PAT − LTBT +AP −BL ≺ 0}.

(18)

Since the set
{(P,L) | P � 0, PAT − LTBT +AP −BL ≺ 0} (19)

is convex and the map K = LP−1 is continuous for the elements in (19), we know {K ∈ Rm×n |
A−BK is stable} is path-connected. The second equivalence in (18) utilizes a well-known change
of variables K = LP−1. This trick is essential to derive convex reformulations for designing state-
feedback policies in various setups [44]. We note that the trick (18) has been used in [13, 8].

The main strategy in the proof of Theorem 3.1 is similar to (18), but we need to use a more
complicated change of variables for dynamical controllers in the state-space domain [5]. To see the
difficulty, applying the Lyapunov stability result leads to5[

A+BDKC BCK

BKC AK

]
is stable

⇐⇒ ∃P � 0, P

[
A+BDKC BCK

BKC AK

]T
+

[
A+BDKC BCK

BKC AK

]
P ≺ 0,

(20)

where the coupling between the auxiliary variable P and the controller parameters AK, BK, CK, DK

are much more involved.
5We explicitly include the matrix DK in the Lypuanov inequality (20): DK = 0 corresponds to strictly proper

controllers and DK 6= 0 corresponds to proper controllers; see Appendix C.
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In our proof, we adopt the change of variables presented in [5]. Given the system dynamics
(A,B,C) in (1), we first introduce the following convex set6

Fn :=

{
(X,Y,M,G,H, F ) | X,Y ∈ Sn, M ∈ Rn×n, G = 0m×p, H ∈ Rn×p, F ∈ Rm×n,[

X I
I Y

]
� 0,

[
AX+BF A+BGC

M Y A+HC

]
+

[
AX+BF A+BGC

M Y A+HC

]>
≺ 0

}
,

(21)

and the extended set

Gn :=

{
Z = (X,Y,M,G,H, F,Π,Ξ)

∣∣∣∣∣ (X,Y,M,G,H, F ) ∈ Fn,
Π,Ξ ∈ Rn×n, ΞΠ = I − Y X

}
. (22)

We shall later see that there exists a continuous surjective map from Gn to Cn, and the path-
connectivity of the convex set Fn plays a key role in analyzing the path-connected components of
Cn. Before proceeding, we note the following observation for each element in Gn.

Lemma 3.3. For any (X,Y,M,G,H, F,Π,Ξ) ∈ Gn, Π and Ξ are always invertible, and consequently,

the block triangular matrices
[
I 0
Y B Ξ

]
and

[
I CX
0 Π

]
are invertible.

Proof. By definition, for all (X,Y,W,G,H, F,Π,Ξ) ∈ Gn, we have
[
X I
I Y

]
� 0, implying that

det(Y X − I) = detX det(Y −X−1) = det

[
X I
I Y

]
> 0.

Thus, det(Π) 6= 0 and det(Ξ) 6= 0, indicating they are both invertible. The invertibility of the other
two block triangular matrices is straightforward.

We now define a mapping from Gn to a subset of R(m+n)×(p+n).

Definition 1 (Change of variables via nonlinear mapping). For each Z = (X,Y,M,G,H, F,Π,Ξ)
in Gn, let

Φ(Z) =

[
ΦD(Z) ΦC(Z)
ΦB(Z) ΦA(Z)

]
:=

[
I 0
Y B Ξ

]−1 [
G H
F M − Y AX

] [
I CX
0 Π

]−1

. (23)

It is easy to see that ΦD(Z) ≡ G ≡ 0 for Z ∈ Gn. We point out that this mapping (23) is
derived from the change of variables presented in [5], which is essential to obtain equivalent convex
reformulations for a range of output-feedback controller synthesis, including H∞ and H2 optimal
control. The following result builds an explicit connection between Gn and Cn via the mapping Φ,
and its proof is provided in Appendix B.2.

Proposition 3.1. The mapping Φ in (23) is a continuous and surjective mapping from Gn to Cn.

After establishing the continuous surjection from Gn to Cn, it is now clear that we can study the
path-connectivity of Cn via the path-connectivity of Gn: Any continuous path in Gn will be mapped
to a continuous path in Cn, and thus any path-connected component of Gn has a path-connected
image under the mapping Φ. Consequently, the number of path-connected components of Cn will be
no more than the number of path-connected components of Gn.

We now proceed to provide results on the path-connectivity of the set Gn.
6We explicitly include the zero matrix G in the definition of Fn, for which the purpose will become clear when

studying the set of proper stabilizing controllers; see Appendix C.
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Proposition 3.2. The set Gn has two path-connected components, given by

G+
n = {(X,Y,M,G,H, F,Π,Ξ) ∈ Gn | det Π > 0} ,
G−n = {(X,Y,M,G,H, F,Π,Ξ) ∈ Gn | det Π < 0} .

Proof. First, the convexity of Fn implies that set Fn is path-connected. We then notice that the set
of real invertible matrices GLn = {Π ∈ Rn×n | det Π 6= 0} has two path-connected components [43]

GL+
n = {Π ∈ Rn×n | det Π > 0}, GL−n = {Π ∈ Rn×n | det Π < 0}.

Therefore the Cartesian product Fn ×GLn has two path-connected components. Finally, it is not
hard to verify that the following mapping

(X,Y,M,G,H, F,Π) 7→ (X,Y,M,G,H, F,Π, (I − Y X)Π−1)

is a continuous bijection from Fn ×GLn to Gn.
Therefore Gn also has two path-connected components, and their expressions are evident.

Proposition 3.2 then implies that Cn has at most two path-connected components. Precisely,
upon defining

C+
n = Φ(G+

n ), C−n = Φ(G−n ),

the two path-connected components of Cn are just given by C+
n and C−n , if Cn is not path-connected.

This completes the proof of Theorem 3.1.

3.3 Proof of Theorem 3.2

In the previous subsection, we have already shown that C+
n and C−n are the two path-connected

components if Cn is not connected. In order to prove Theorem 3.2, it suffices to show that, regardless
of the path-connectivity of Cn, for any T ∈ Rn×n with detT < 0, the mapping TT restricted on C+

n

gives a diffeomorphism from C+
n to C−n .

Since TT is a diffeomorphism from Cn to itself with inverse TT−1 , and C+
n and C−n are two open

subsets of Cn, to complete the proof, we only need to show that

TT (C+
n ) ⊆ C−n , and TT−1(C−n ) ⊆ C+

n

when detT < 0. Consider an arbitrary point

K =

[
0 CK

BK AK

]
∈ C+

n .

By the definition of C+
n , there exists Z = (X,Y,M,G,H, F,Π,Ξ) ∈ G+

n such that Φ(Z) = K. Now let

Π̂ = TΠ, Ξ̂ = ΞT−1, Ẑ = (X,Y,M,G,H, F, Π̂, Ξ̂).

14



It is not difficult to verify that Ẑ ∈ Gn. Since det Π̂ = detT · det Π < 0, we have Ẑ ∈ G−n . Then,

Φ(Ẑ) =

[
ΦD(Ẑ) ΦC(Ẑ)

ΦB(Ẑ) ΦA(Ẑ)

]
=

[
I 0

Y B Ξ̂

]−1 [
G F
H M − Y AX

] [
I CX

0 Π̂

]−1

=

[
I 0
0 T

] [
Ξ Y B
0 I

]−1 [
G F
H M − Y AX

] [
I CX
0 Π

]−1 [
I 0
0 T−1

]
=

[
I 0
0 T

] [
0 CK

BK AK

] [
I 0
0 T−1

]
=

[
0 CKT

−1

TBK TAKT
−1

]
= TT (K),

which implies that TT (K) ∈ Φ(G−n ) = C−n and consequently TT (C+
n ) ⊆ C−n .

The proof of TT−1(C−n ) ⊆ C+
n is similar by noting that detT−1 < 0 if and only if detT < 0.

3.4 Proof of Theorem 3.3

We first show that the nonemptiness of Cn−1 implies the path-connectivity of Cn. Indeed, suppose
there exists K̃ ∈ Cn−1. Then it can be augmented to be a full-order controller in Cn by

K =

 0 C̃K 0

B̃K ÃK 0
0 0 −1


Now define a similarity transformation matrix

T =

[
In−1 0

0 −1

]
.

By the proof of Theorem 3.2, we can see that K ∈ C±n implies TT (K) ∈ C∓n . On the other hand, we
can directly check that TT (K) = K. Therefore we have

K ∈ C+
n ∩ C−n ,

indicating that C+
n ∩ C−n is nonempty. Consequently, Cn is path-connected.

We then carry out the analysis for the case when the plant is single-input or single-output. The
goal is to find a reduced-order controller in Cn−1 when Cn is connected. Here we only prove the
single-out case; the single-input case can be proved similarly, i.e., using the observability matrix or
by the duality between controllability and observability.

Let T be any real n×n matrix with detT < 0. Let K(0) ∈ Cn be arbitrary, and let K(1) = TT (K(0)).
If Cn is path-connected, then there exists a continuous path

K(t) =

[
0 CK(t)

BK(t) AK(t)

]
, t ∈ [0, 1]

in Cn such that
K(0) = K(0), and K(1) = K(1).
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Now for each t ∈ [0, 1], let C(t) denote the controllability matrix for (AK(t), BK(t)), i.e.,

C(t) =
[
BK(t) AK(t)BK(t) · · · AK(t)n−1BK(t)

]
∈ Rn×n,

where the dimension of C(t) is n×n since the plant is single-output (i.e., the controller is single-input).
We then have C(1) = TC(0), and thus

detC(1) · detC(0) < 0.

On the other hand, it can be seen that detC(t) is a continuous function over t ∈ [0, 1]. Therefore

detC(τ) = 0

for some τ ∈ (0, 1), implying that (AK(τ), BK(τ)) is not controllable. This indicates that the transfer
function CK(τ)(sIn−AK(τ))−1BK(τ) can be realized by a state-space representation with dimension
at most n− 1 (see Appendix A.1), and consequently Cn−1 6= ∅.

4 Structure of Stationary Points

We have shown that the set of stabilizing controllers Cn might be disconnected, and that the potential
disconnectivity has no harm to gradient-based local search algorithms. In this section, we proceed to
characterize the stationary points of the cost function in the LQG problem (2), which is another
important factor for establishing the convergence of gradient-based algorithms.

Section 4.1 discusses the invariance of the LQG cost Jq under similarity transformation and its
implications. Section 4.2 shows how to compute the gradient and the Hessian of the LQG cost Jq.
In Section 4.3, some results related to non-minimal stationary points are provided. We characterize
the minimal stationary points for LQG over Cn in Section 4.4. Finally, in Section 4.5, we discuss the
second-order behavior of Jn(K) around its minimal stationary points.

4.1 Invariance of LQG Cost under Similarity Transformation

As shown in Lemma 3.2, the similarity transformation Tq(T, ·) is a diffeomorphism from Cq to itself
for any invertible matrix T ∈ GLq. Then together with (15), we can see that the set of similarity
transformation is a group that is isomorphic to GLq. We can therefore define the orbit of K ∈ Cq by

OK := {Tq(T,K) | T ∈ GLq}.

It is known that the LQG cost is invariant under the same similarity transformation, and thus is a
constant over an orbit OK for any K ∈ Cq.

Lemma 4.1. Let q ≥ 1 such that Cq 6= ∅. Then we have

Jq(K) = Jq(Tq(T,K))

for any K ∈ Cq and any invertible matrix T ∈ GLq.

Proof. Given any K ∈ Cq and any invertible T ∈ Rq×q, we know that T (T,K) ∈ Cq. Thus, the
Lyapunov equation (12a) admits a unique positive semidefinite solution for each of K and Tq(T,K)
(see Lemma A.1).
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(a) Open-loop unstable system in Example 2 (b) Open-loop stable system in Example 3

Figure 2: Non-isolated and disconnected globally optimal LQG controllers. In both cases, we set Q = 1, R =
1, V = 1,W = 1. (a) LQG cost for the open-loop unstable SISO system in Example 2 when fixing AK = −1−
2
√

2, for which the set of globally optimal points
{

(BK, CK) | BK = (1 +
√

2) 1
T , CK = −(1 +

√
2)T, T 6= 0

}
has

two connected components. (b) LQG cost for the open-loop stable SISO system in Example 3 when fixing AK =
1−2
√

2, for which the set of globally optimal points
{

(BK, CK) | BK = (−1 +
√

2) 1
T , CK = (1−

√
2)T, T 6= 0

}
has two connected components.

Suppose that the solution of (12a) for K is XK. Then, it is not difficult to verify that the unique
solution of (12a) for Tq(T,K) is [

I 0
0 T

]
XK

[
I 0
0 T

]T
.

Therefore, we have

Jq(Tq(T,K)) = tr

([
Q 0
0 (CKT

−1)TRCKT
−1

] [
I 0
0 T

]
XK

[
I 0
0 T

]T)

= tr

([
Q 0
0 CT

KRCK

]
XK

)
=Jq(K),

where the second identity applies the trace property tr(AB) = tr(BA) for A,B with compatible
dimensions.

The following proposition shows that every orbit OK corresponding to controllable and observ-
able controllers has dimension q2 with two path-connected components. The proof is given in
Appendix B.6.

Proposition 4.1. Suppose K ∈ Cq represents a controllable and observable controller. Then the
orbit OK is a submanifold of Cq of dimension q2, and has two path-connected components, given by

O+
K = {Tq(T,K) | T ∈ GLq, detT > 0},
O−K = {Tq(T,K) | T ∈ GLq, detT < 0}.

From Lemma 4.1 and Proposition 4.1, one interesting consequence is that given a globally optimal
LQG controller K∗ ∈ Cn, then any controller in following orbit is globally optimal

OK∗ := {Tn(T,K∗) | T ∈ GLn}.
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Figure 3: A graphical illustration of a manifoldM and its tanget space TxM at some point x ∈M. Here
γ(t) is an arbitrary C∞ curve inM that passes through x, and v is the tangent vector of γ(t) at x. The
tangent space TxM consists of all such vectors v.

If K∗ is minimal (i.e., controllable and observable), the orbit OK∗ is a submanifold in Vn of dimension
n2, and it has two path-connected components. Figure 2 demonstrates the orbit of globally optimal
LQG controllers for an open-loop unstable system and another open-loop stable system, which shows
that the set of globally optimal LQG controllers are non-isolated and disconnected in Cn.

Proposition 4.1 guarantees that for any controllable and observable K ∈ Cq, the orbit OK is a
submanifold of dimension q2 in Cq, which allows us to define the tangent space of OK.7 For each
minimal K ∈ Cq, we use T OK to denote the tangent space of OK at K, and treat it as a subspace of
Vq; recall that Vq is defined by (10). The dimension of T OK is then

dim T OK = dimOK = q2.

We denote the orthogonal complement of T OK in Vq by T O⊥K . The following proposition characterizes
the tangent space T OK and its orthogonal complement T O⊥K at a minimal controller K ∈ Cq.

Proposition 4.2. Let K ∈ Cq represent a controllable and observable controller. Then

T OK =

{[
0 −CKH

HBK HAK −AKH

] ∣∣∣∣H ∈ Rq×q
}
,

T O⊥K =

{
∆ =

[
0 ∆BK

∆CK
∆AK

]
∈ Vq

∣∣∣∣∆AK
AT

K −AT
K∆AK

+ ∆BK
BT

K − CT
K∆CK

= 0

}
.

Proof. Let H ∈ Rq×q be arbitrary. Then for sufficiently small ε, we have

Tq(I + εH,K) =

[
0 CK(I + εH)−1

(I + εH)BK (I + εH)AK(I + εH)−1

]
= K + ε

[
0 −CKH

HBK HAK −AKH

]
+ o(ε),

implying that the tangent map of Tq(·,K) at the identity is given by

H 7→
[

0 −CKH
HBK HAK −AKH

]
.

7See Appendix A.3 for the definition of tangent spaces. A visualization of a manifold M and its tangent space
TxM at one point x ∈ M is provided in Figure 3.
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Then since Tq(·,K) is a diffeomorphism from GLq to OK, the tangent map of Tq(·,K) at the identity
is an isomorphism from Rq×q (the tangent space of GLq at the identity) to the tangent space T OK.
Thus

T OK =

{[
0 −CKH

HBK HAK −AKH

] ∣∣∣∣H ∈ Rq×q
}
.

Then the orthogonal complement T O⊥K is given by

T O⊥K =
{

∆ ∈ Vq
∣∣∣ tr(UT∆) = 0 for all U ∈ T OK

}
=

{
∆=

[
0 ∆BK

∆CK
∆AK

]
∈Vq

∣∣∣∣∣ tr
([

0 −CKH
HBK HAK −AKH

]T
∆

)
= 0,∀H ∈ Rq×q

}

=

{
∆=

[
0 ∆BK

∆CK
∆AK

]
∈Vq

∣∣∣∣ trHT
(

∆AK
AT

K −AT
K∆AK

+ ∆BK
BT

K − CT
K∆CK

)
= 0,∀H ∈ Rq×q

}
=

{
∆=

[
0 ∆BK

∆CK
∆AK

]
∈Vq

∣∣∣∣∆AK
AT

K −AT
K∆AK

+ ∆BK
BT

K − CT
K∆CK

= 0

}
.

This completes the proof.

We conclude this subsection by noting that the LQG cost function Jq(K) is not coercive in the
sense that there might exist sequences of stabilizing controllers Kj ∈ Cq where limj→∞ Kj = K̂ ∈ ∂Cq
such that

lim
j→∞

Jq(Kj) <∞,

and sequences of stabilizing controllers Kj ∈ Cq where limj→∞ ‖Kj‖F =∞ such that

lim
j→∞

Jq(Kj) <∞.

The latter fact is easy to see from Proposition 4.1 since the orbit OK can be unbounded and Jq(K)
is constant for any controller in the same orbit. The following example shows that the LQG cost
might converge to a finite value even when the controller K goes to the boundary of Cq.

Example 4 (Non-coercivity of the LQG cost). Consider the open-loop stable SISO system in
Example 3, and we fix Q = 1, R = 1, V = 1,W = 1 in the LQG formulation. The set of full-order
stabilizing controllers C1 is shown in (17). We consider the following stabilizing controller

Kε =

[
0 ε
−ε 0

]
∈ C1, ∀ε 6= 0.

It is not hard to see that limε→0 Kε ∈ ∂C1. By solving the Lyapunov equation (12a), we get the
unique solution as

XKε =

ε
2 + 1

2

ε

2
ε

2

ε2

2
+ 1

 ,
and the corresponding LQG cost as

J(Kε) =
1 + 3ε2 + ε4

2
.

Therefore, we have limε→0 J(Kε) = 1/2, while limε→0 Kε ∈ ∂C1.
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4.2 The Gradient and the Hessian of the LQG Cost

The following lemma gives a closed-loop form for the gradient of the LQG cost function Jq, and its
proof is given in Appendix B.4.

Lemma 4.2 (Gradient of LQG cost Jq). Fix q ≥ 1 such that Cq 6= ∅. For every K =

[
0 CK

BK AK

]
∈ Cq,

the gradient of Jq(K) is given by

∇Jq(K) =

 0
∂Jq(K)

∂CK

∂Jq(K)

∂BK

∂Jq(K)

∂AK

 ,
with

∂Jq(K)

∂AK
= 2

(
Y T

12X12 + Y22X22

)
, (24a)

∂Jq(K)

∂BK
= 2

(
Y22BKV + Y22X

T
12C

T + Y T
12X11C

T
)
, (24b)

∂Jq(K)

∂CK
= 2

(
RCKX22 +BTY11X12 +BTY12X22

)
, (24c)

where XK and YK, partitioned as

XK =

[
X11 X12

XT
12 X22

]
, YK =

[
Y11 Y12

Y T
12 Y22

]
(25)

are the unique positive semidefinite solutions to (12a) and (12b), respectively.

We next consider the Hessian of Jq(K). Let K be any controller in Cq, and we use HessK :
Vq × Vq → R to denote the bilinear form of the Hessian of Jq at K, so that for any ∆ ∈ Vq, we have

Jn(K + ∆) = Jn(K) + tr
(
∇Jq(K)T∆

)
+

1

2
HessK(∆,∆) + o(‖∆‖2F )

as ‖∆‖F → 0. Obviously, HessK is symmetric in the sense that HessK(x, y) = HessK(y, x) for all
x, y ∈ Vn. The following lemma shows how to compute HessK(∆,∆) for any ∆ ∈ Vq by solving three
Lyapunov equations, whose proof is given in Appendix B.4.

Lemma 4.3. Fix q ≥ 1 such that Cq 6= ∅. Let K =

[
0 CK

BK AK

]
∈ Cq. Then for any ∆ =[

0 ∆CK

∆BK
∆AK

]
∈ Vq, we have

HessK(∆,∆) = 2 tr

(
2

[
0 B∆CK

∆BK
C ∆AK

]
X ′K∗,∆ · YK∗ + 2

[
0 0

0 C∗K
TR∆CK

]
·X ′K∗,∆

+

[
0 0
0 ∆BK

V∆T
BK

]
YK∗ +

[
0 0
0 ∆T

CK
R∆CK

]
XK∗

)
,

where XK∗ and YK∗ are the solutions to the Lyapunov equations (12a) and (12b), and X ′K∗,∆ ∈
R(n+q×(n+q) is the solution to the following Lyapunov equation[

A BC∗K
B∗KC A∗K

]
X ′K∗,∆ +X ′K∗,∆

[
A BC∗K

B∗KC A∗K

]T
+M1(XK∗ ,∆) = 0, (26)
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with

M1(XK∗ ,∆) :=

[
0 B∆CK

∆BK
C ∆AK

]
XK∗ +XK∗

[
0 B∆CK

∆BK
C ∆AK

]T
+

[
0 0

0 B∗KV∆T
BK

+∆BK
V B∗K

T

]
.

From Lemma 4.3, one can further compute HessK(∆1,∆2) for any ∆1,∆2 ∈ Vn by

HessK(∆1,∆2) =
1

4
(HessK(∆1 + ∆2,∆1 + ∆2)−HessK(∆1 −∆2,∆1 −∆2))

=
1

2
(HessK(∆1 + ∆2,∆1 + ∆2)−HessK(∆1,∆1)−HessK(∆2,∆2)) .

4.3 Non-minimal Stationary Points

In this part, we show that the LQG cost Jn(K) over the full-order stabilizing controller Cn may have
many non-minimal stationary points that might be strict saddle points.

We first investigate the gradient of Jq(K) under similarity transformation. Given any T ∈ GLq,
recall the definition of the linear map of similarity transformation Tq (T,K) in (14). The following
lemma gives an explicit relationship among the gradients of Jq(·) at K and Tq (T,K).

Lemma 4.4. Let K =

[
0 CK

BK AK

]
∈ Cq be arbitrary. For any T ∈ GLq, we have

∇Jq|Tq(T,K) =

[
Im 0
0 T−T

]
· ∇Jq|K ·

[
Ip 0
0 TT

]
. (27)

Proof. Let ∆ ∈ Vq be arbitrary. We have

Jq(Tq (T,K + ∆))− Jq(Tq (T,K))

= Jq(Tq (T,K) + Tq(T,∆))− Jq(Tq (T,K))

= tr

[(
∇Jq|Tq(T,K)

)T
·Tq (T,∆)

]
+ o(‖∆‖)

= tr

[(
∇Jq|Tq(T,K)

)T
·
[
Im 0
0 T

]
∆

[
Ip 0
0 T−1

]]
+ o(‖∆‖)

= tr

([Im 0
0 T

]T
· ∇Jq|Tq(T,K) ·

[
Ip 0
0 T−1

]T)T
∆

+ o(‖∆‖).

On the other hand, Lemma 4.1 shows that the LQG cost stays the same when applying similarity
transformation. Thus, we have

Jq(TT (K + ∆))− Jq(TT (K)) = Jq(K + ∆)− Jq(K)

= tr
[(
∇Jq|K

)T ·∆]+ o(‖∆‖).

By comparing the two equations, we get

∇Jq|K =

[
Im 0
0 T

]T
· ∇Jq|Tq(T,K) ·

[
Ip 0
0 T−1

]T
,

which then leads to the relationship (27).
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As expected, a direct consequence of Lemma 4.4 is that, if K ∈ Cq is a stationary point of Jq,
then any controller in the orbit OK is also a stationary point of Jq. In addition, Lemma 4.4 allows
us to establish an interesting result that any stationary point of Jq can be transferred to stationary
points of Jq+q′ for any q′ > 0 with the same objective value.

Theorem 4.1. Let q ≥ 1 be arbitrary. Suppose there exists K? =

[
0 C?K
B?

K A?K

]
∈ Cq such that

∇Jq(K?) = 0. Then for any q′ ≥ 1 and any stable Λ ∈ Rq′×q′ , the following controller

K̃? =

 0 C?K 0

B?
K A?K 0

0 0 Λ

 ∈ Cq+q′ (28)

is a stationary point of Jq+q′ over Cq+q′ satisfying Jq+q′
(
K̃?
)

= Jq(K̃).

Proof. Since K? ∈ Cq, we have K̃? ∈ Cq+q′ by construction. It is straightforward to verify that

Tq+q′
(
T, K̃?

)
= K̃? with T =

[
Iq 0
0 −Iq′

]
.

Therefore, by Lemma 4.4, we have

∇Jq+q′
∣∣
K̃?

= ∇Jq+q′
∣∣
Tq+q′

(
T,K̃?

) =

[
Im+q 0

0 −Iq′

]
· ∇Jq+q′

∣∣
K̃?
·
[
Ip+q 0

0 −Iq′

]
,

which implies that, excluding the the bottom right q′ × q′ block, the last q′ rows and the last q′

columns of ∇Jq+q′
∣∣
K̃?

are zero. On the other hand, it can be checked that

Jq+q′

([
K 0
0 Λ

])
= Jq(K), ∀K ∈ Cq,

and since ∇Jq(K?) = 0, we can see that the upper left (m+ q)× (p+ q) block of ∇Jq+q′
∣∣
K̃? is equal

to zero. Then, from Lemma 2.2, it is not difficult to verify that the value Jq(K̃∗) is independent of
the q′ × q′ stable matrix Λ, and thus the bottom right q′ × q′ block of ∇Jq+q′

∣∣
K̃?

is zero.
We can now see that ∇Jq+q′

∣∣
K̃?

= 0. This completes the proof.

Theorem 4.1 indicates that from any stationary point of Jq over lower-order stabilizing controllers
in Cq, we can construct a family of stationary points of Jq+q′ over higher-order stabilizing controllers
in Cq+q′ . Moreover, the stationary points constructed by (28) are neither controllable nor observable.
This indicates that, if the globally optimal controller of Jn is controllable and observable, and if the
problem

min
K∈Cq

Jq(K)

has a solution for some q < n, then there will exist many strictly suboptimal stationary points of Jn
over Cn.

The following theorem explicitly constructs a family of stationary points for Jn with an open-loop
stable plant, and also provides a criterion for checking whether the corresponding Hessian is indefinite
or vanishing.
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Theorem 4.2. Suppose the plant (1) is open-loop stable. Let Λ ∈ Rn×n be stable, and let

K? =

[
0 0
0 Λ

]
.

Then K? is a stationary point of Jn(K) over K ∈ Cn, and the corresponding Hessian HessK? is either
indefinite or zero.

Furthermore, suppose Λ is diagonalizable, and let eig(−Λ) denote the set of (distinct) eigenvalues
of −Λ. Let Xop and Yop be the solutions to the following Lyapunov equations

AXop +XopA
T +W = 0, ATYop + YopA+Q = 0, (29)

and let
Z =

{
s ∈ C | CXop

(
sI −AT

)−1
YopB = 0

}
. (30)

Then, the Hessian of Jn at K? is indefinite if and only if eig(−Λ) * Z; the Hessian of Jn at K? is
zero if and only if eig(−Λ) ⊆ Z.

The fact that K? =

[
0 0
0 Λ

]
is a stationary point can be proved similarly as in Theorem 4.1.

Regarding the properties of the Hessian, we exploit its bilinear property and use Lemma 4.3 for
direct calculation. In particular, the Lyapunov equations (12a) and (12b) are reduced to (29), and
the transfer function in (30) is obtained when we solve the third Lyapunov equation (26). The
detailed proof is provided in Appendix B.7.

Theorem 4.2 constructs a family of non-minimal strict saddle points or stationary points with
vanishing Hessian for LQG with open-loop stable systems. We now present two explicit examples
illustrating the Hessian of Jq(K) at non-minimal stationary points.

Example 5 (Strict saddle point). Consider the open-loop stable SISO system in Example 3. We
choose Q = R = 1,W = V = 1 for the LQG formulation. By Theorem 4.2, given any negative a < 0,
the following controller

K? =

[
0 0
0 a

]
∈ R2×2

is a stationary point of J1(K) over the set of full-order stabilizing controller C1. Furthermore, it can
be checked that

CXop

(
sI −AT

)−1
YopB =

1

4(s+ 1)
.

Therefore the Hessian of J1 at K? is indefinite by Theorem 4.2, indicating that K∗ is a strict saddle
point [27]. Indeed, by using (11), we can directly compute the LQG cost and obtain

J1

([
0 CK

BK AK

])
=
A2

K −AK(1 +B2
KC

2
K)−BKCK(1− 3BKCK +B2

KC
2
K)

2(−1 +AK)(AK +BKCK)
.

The Hessian at K? can then be represented as
∂J2(K)
∂A2

K

∂J2(K)
∂AK∂BK

∂J2(K)
∂AK∂CK

∂J2(K)
∂BKAK

∂J2(K)
∂B2

K

∂J2(K)
∂BK∂CK

∂J2(K)
∂CKAK

∂J2(K)
∂CKBK

∂J2(K)
∂∂C2

K


∣∣∣∣∣∣∣∣∣
K?=

0 0
0 a


=

1

2(1− a)

0 0 0
0 0 1
0 1 0

 ,

which has eigenvalues 0 and ± 1
2(1−a) .

23



Figure 4: The function t 7→ Jn(K? + t∆) for Example 6.

Example 6 (Stationary point with vanishing Hessian). Consider the following SISO system:

A =

[
−1 0
1 −2

]
, B =

[
−1
1

]
, C =

[
−2 11

]
, W =

[
1 0
0 1

]
, V = 1,

and let

Q =

[
1 0
0 1

]
, R = 1.

It can be checked that
CXop

(
sI −AT

)−1
YopB =

5(s− 1)

36(s+ 1)(s+ 2)
.

By Theorem 4.2, the point

K? =

0 0 0
0 −1 0
0 0 −1


is a stationary point of Jn with a vanishing Hessian. In Figure 4, we plot the graph of the function
t 7→ Jn(K? + t∆) for

∆ =

 0 2 1/2
−1 1 3
3 0 0

 .
Figure 4 suggests that K? is a saddle point of Jn with a vanishing Hessian but non-vanishing
third-order partial derivatives.

4.4 Minimal Stationary Points Are Globally Optimal

As discussed in Theorems 4.1 and 4.2, there may exist many non-minimal stationary points for Jn
that are not globally optimal. In this section, we aim to show that all minimal stationary points are
globally optimal to the LQG problem (2).

Recall that K =

[
0 CK

BK AK

]
∈ Cq is minimal if it represents a controllable and observable

controller. The gradient computation in Lemma 4.2 works for both minimal and non-minimal
stabilizing controllers in Cq. For a minimal stabilizing controller K, we further have the following
result (see Appendix B.5 for a proof).
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Lemma 4.5. Fix q ∈ N such that Cq 6= ∅, and let K ∈ Cq be minimal. Under Assumption 1, the
solutions XK and YK to (12a) and (12b) are positive definite.

By letting the gradient (24) equal to zero, i.e.,

∂Jn(K)

∂AK
= 0,

∂Jn(K)

∂BK
= 0,

∂Jn(K)

∂CK
= 0, (31)

we can characterize the stationary points of the LQG problem (13). In particular, we have closed-loop
form expressions for full-order minimal stationary points K ∈ Cn, which turn out to be globally
optimal. This result is formally summarized below.

Theorem 4.3. Under Assumption 1, all minimal stationary points K ∈ Cn to the LQG problem (13)
are globally optimal, and they are in the form of

AK = T (A−BK − LC)T−1, BK = −TL, CK = KT−1, (32)

where T ∈ Rn×n is an invertible matrix, and

K = R−1BTS, L = PCTV −1, (33)

with P and S being the unique positive definite solutions to the Riccati equations (5a) and (5b).

Theorem 4.3 can be viewed as a special case in [1, Theorem 20.6] that presents first-order
necessary conditions for optimal reduced-order controllers K ∈ Cq. Following the analysis in [1,
Chapter 20], we present an adapted proof for Thereon 4.3 here.

Proof. Consider a stationary point K =

[
0 CK

BK AK

]
∈ Cn such that the gradient (24) vanishes. If the

controller K is minimal, we know by Lemma 4.5 that the solutions XK and YK to (12a) and (12b)
are unique and positive definite.

Upon partitioning XK and YK in (25), by the Schur complement, the following matrices are
well-defined and positive definite

P := X11 −X12X
−1
22 X

T
12 � 0, S := Y11 − Y12Y

−1
22 Y T

12 � 0. (34)

We further define T := Y −1
22 Y T

12. By (24a), we know that matrix T is invertible, and

T−1 = −X12X
−1
22 .

Now, letting ∂Jn(K)
∂BK

= 0, from (24b), we have

BK = −(XT
12 + Y −1

22 Y T
12X11)CTV −1,

= −(XT
12 + TX11)CTV −1

= −T (X11 −X12X
−1
22 X

T
12)CTV −1,

= −TPCTV −1.

(35)

Similarly, from (24c), we have

CK = −R−1BT(Y11X12X
−1
22 + Y12) = R−1BTST−1. (36)
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Furthermore, at the stationary point K, (24b) + T×(24c) leads to

BKCX12 +AKX22 +XT
12C

TBT
K +X22A

T
K +BKV B

T
K+

T (AX12 +BCKX22 +X11C
TBT

K +X12A
T
K) = 0,

which is the same as

−TPCTV −1CX12 +AKX22−XT
12C

TV −1CPT +X22A
T
K + TPCTV −1CPT+

T (AX12 +BR−1BTST−1X22 −X11C
TV −1CPT +X12A

T
K) = 0.

By the definition of T , we have TX12 = −X22. Then, the equation above becomes

−TPCTV −1CX12 +AKX22−XT
12C

TV −1CPT + TPCTV −1CPT+

T (AX12 +BR−1BTST−1X22 −X11C
TV −1CPT ) = 0,

leading to

AK = TPCTV −1CX12X
−1
22 +XT

12C
TV −1CPTX−1

22 − TPC
TV −1CPTX−1

22

− T (AX12 +BR−1BTST−1X22 −X11C
TV −1CPT )X−1

22

= T (A− PCTV −1C −BR−1BTS)T−1.

(37)

From (35), (36) and (37), upon defining K and L in (33), it is easy to see that the stationary
points are in the form of (32). It remains to prove that P and S defined in (34) are the unique
positive definite solutions to the Riccati equations (5a) and (5b). Since XK is the solution to the
Lyapunov equation (12a), by plugging in the blocks of XK we get

0 = AX11 +X11A+BCKX
T
12 +X12C

T
KB

T
K +W, (38a)

0 = AX12 +BCKX22 +X11C
TBT

K +X12A
T
K, (38b)

0 = AKX22 +X22A
T
K +BKCX12 +XT

12C
TBT

K +BKV B
T
K . (38c)

We multiply (38c) by T−1 on the left and by T−T on the right, and by noting that BK = −TPCTV −1

and T−1 = −X12X
−1
22 , we get

0 = X12X
−1
22 AKX

T
12 +X12A

T
KX
−1
22 X

T
12

+ PCTV −1CX12X
−1
22 X

T
12 +X12X

−1
22 X

T
12C

TV −1CP + PCTV −1CP.

Since P = X11 −X12X
−1
22 X

T
12, we further get

0 = X12X
−1
22 AKX

T
12 +X12A

T
KX
−1
22 X

T
12 + PCTV −1CX11 +X11C

TV −1CP − PCTV −1CP. (39)

Next, we multiply (38b) by −T−T = X−1
22 X

T
12 on the right and get

0 = AX12X
−1
22 X

T
12 +BCKX

T
12 +X11C

TV −1CTP +X12A
T
KX
−1
22 X

T
12.

By plugging this equality into (39), we get

0 = −AX12X
−1
22 X

T
12 −BCKX

T
12 −X12X

−1
22 X

T
12A−X12C

T
KB

T − PCTV −1CP.

Then, we plug the above equality into (38a) and get

0 = A(X11 −X12X
−1
22 X

T
12) + (X11 −X12X

−1
22 X

T
12)A− PCTV −1CP +W,
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and since P = X11 −X12X
−1
22 X

T
12, we can see that P satisfies the Riccati equation (5a). Through

similar steps, we can derive from (12b) that S satisfies the Riccati equation (5b).
Finally, from classical control theory [1, Theorem 14.7], a globally optimal controller to the

LQG problem (13) is given by (6), and any similarity transformation leads to another equivalent
controller with the same LQG cost. Therefore, any minimal stationary point, given by (32), is
globally optimal.

The results in Theorem 4.3 indicate that if the LQG problem (13) has a globally optimal solution
in Cn that is also minimal, then the globally optimal controller is unique in Cn after taking a quotient
with respect to similarity transformation. This is expected from the classical result that the globally
optimal LQG controller is unique in the frequency domain [1, Theorem 14.7].

We note that minimal stationary points are required in the proof of Theorem 4.3, as it guarantees
that matrices (34) are well-defined and the solutions (35) and (36) are unique. Theorem 4.3 allows
us to establish the following corollaries.

Corollary 4.1. The following statements are true:

1) If Jn(K) has a minimal stationary point in Cn, then all its non-minimal stationary points K ∈ Cn
are strictly suboptimal.

2) If Jn(K) has a non-minimal stationary point in Cn that is globally optimal, then all stationary
points K ∈ Cn of Jn(K) are non-minimal.

We have already seen LQG cases with non-minimal stationary points that are strictly suboptimal
in Example 5 and Example 6. It should be noted that, even with Assumption 1, the LQG problem (13)
might have no minimal stationary points, i.e., all the solutions K for (31) may be non-minimal; this
happens if the controller from the Ricatti equations (5) is not minimal.

Example 7 (Non-minimal globally optimal controllers). Here we give an example from [45], whose
optimal LQG controller does not have a minimal realization in Cn. Consider the linear system (1)
with

A =

[
0 −1
1 0

]
, B =

[
1
0

]
, C =

[
1 −1

]
, W =

[
1 −1
−1 16

]
, V = 1,

and let the LQG cost be defined by

Q =

[
4 0
0 0

]
, R = 1.

This LQG problem satisfies Assumption 1. The positive definite solutions to the Riccati equations
(5) are given by

P =

[
1 0
0 4

]
, S =

[
2 0
0 2

]
,

and the globally optimal controller is given by

AK =

[
−3 0
5 −4

]
, BK = L =

[
1
−4

]
, CK = −K =

[
−2 0

]
. (40)

It is not hard to see that (CK, AK) is not observable. Therefore, the controller obtained from the
Riccati equations is not minimal in this example. Consequently, by Corollary 4.1, all stationary
points of Jn are not minimal for this example.
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In this case, the globally optimal controllers in Cn are not all connected by similarity transfor-
mations. For example, it can be verified that the following two non-minimal controllers are both
globally optimal:

K1 =

 0 −2 0
1 −3 0
−4 5 −4

 , K2 =

0 −2 0
1 −3 0
0 0 −1

 ,
but there exists no similarity transformation between K1 and K2 since

[
−3 0
5 −4

]
and

[
−3 0
0 −1

]
have different sets of eigenvalues (recall that similarity transformation does not change eigenvalues).

Theorem 4.3 also allow us to check whether a sequence of gradient iterates converges to a globally
optimal solution.

Corollary 4.2. Consider a gradient descent algorithm Kt+1 = Kt − α∇J(K) for the LQG prob-
lem (13). Suppose the iterates Kt converge to a point K∗, i.e., limt→∞ Kt = K∗. If K∗ is a controllable
and observable controller, then it is globally optimal.

4.5 Hessian of J(K) at Minimal Stationary Points

Finally, we turn to characterizing the second-order behavior of Jn around a globally optimal controller
K∗. Throughout this subsection, we will assume that K∗ is controllable and observable. We focus on
the eigenvalues and eigenspaces of the Hessian HessK∗ . The null space of HessK∗ is

null HessK∗ = {x ∈ Vn | HessK∗(x, y) = 0, ∀y ∈ Vn}.

The following lemma shows that the tangent space T OK∗ is a subspace of the null space of HessK∗ ,
which is a direct corollary of [23, Theorem 2].

Lemma 4.6. Suppose K∗ is controllable and observable. Then

T OK∗ ⊆ null HessK∗ .

This lemma can be viewed as a local version of Lemma 4.1 indicating the invariance of Jn along
the orbit OK. Consequently, the dimension of the null space of HessK∗ is at least q2. On the other
hand, we also have the following result.

Lemma 4.7. Suppose K∗ is controllable and observable, and let ∆ ∈ T O⊥K∗ . Then for all sufficiently
small t > 0,

Jn(K∗ + t∆)− Jn(K∗) > 0.

Proof. We prove by contradiction. Suppose for any sufficiently small δ > 0, there always exists
t ∈ (0, δ) such that Jn(K∗ + t∆) = Jn(K∗). Then we can find a positive sequence (tj)j≥1 such that
tj → 0 and Jn(K∗ + tj∆) = Jn(K∗). Denote Kj = K∗ + tj∆. Since ∆ is orthogonal to T OK∗ , there
must exists some j ≥ 1 such that Kj /∈ T OK∗ . By [1, Theorem 3.17], we can see that the transfer
function of Kj will be different from the transfer function of Kj . Then by the uniqueness of the
transfer function solution to the LQG problem, Kj cannot be a global minimum of Jn, contradicting
Jn(Kj) = Jn(K∗).
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Combining the observations from Lemmas 4.6 and 4.7, we can see that, while the Hessian HessK∗

is degenerate and its null space has a nontrivial subspace T OK∗ , the degeneracy associated with
T OK∗ does not cause much trouble for optimizing Jn, as the directions in T OK∗ correspond to
similarity transformations that lead to other globally optimal controllers, while along the directions
orthogonal to T OK∗ , the optimal controller of Jn is locally unique.

We are therefore interested in the behavior of HessK∗ restricted to the subspace T O⊥K∗ . Specifically,
we let rcondK∗ denote the reciprocal condition number of HessK∗ restricted to the subspace T O⊥K∗ ,
i.e.,

rcondK∗ :=
min∆⊥T OK∗ HessK∗(∆,∆)/‖∆‖2F
max∆⊥T OK∗ HessK∗(∆,∆)/‖∆‖2F

. (41)

Intuitively, if rcondK∗ is bounded away from zero, then we can expect gradient-based methods to
achieve good local convergence behavior for optimizing Jn. However, we give an explicit example
below showing that rcondK∗ can be arbitrarily bad even if the original plant seems entirely normal.

Example 8. Let ε > 0 be arbitrary, and let

A =
3

2

[
−1 0
0 −1− ε

]
, B =

[
1

1 + ε

]
, C =

[
1 1

]
,

and

Q =

[
4 1
1 4

]
, W =

[
4 1 + ε

1 + ε 4(1 + ε)2

]
, V = R = 1.

For this plant, the positive definite solutions to the Riccati equations (5) are given by

P =

[
1 0
0 1 + ε

]
, S =

[
1 0
0 1

1+ε

]
,

and we have

K = R−1BTS =
[
1 1

]
, L = PCTV −1 =

[
1

1 + ε

]
.

The optimal controller K∗ is then given by

K∗ =

[
0 −K
L A−BK − LC

]
=

 0 −1 −1
1 −7

2 −2
1 + ε −2(1 + ε) −7

2(1 + ε)

 .
It can be checked that the optimal controller provided by the Riccati equations is controllable and
observable when ε 6= 0. In Theorem 4.4, we provide an asymptotic upper bound on the reciprocal
condition number rcondK∗ . We also provide numerical results on HessK∗ for ε ∈ [0.002, 0.5] in
Figure 5. It can be seen that the upper bound (42c) on rcondK∗ is on the order of O(ε4), indicating
that rcondK∗ degrades rapidly as ε approaches zero. Moreover, it can be numerically checked via
Lemma 4.2 that, even if we set ε = 0.5, the reciprocal condition number rcondK∗ is still below
1.7× 10−6. On the other hand, if we plug in ε = 0.5, the resulting plant’s parameters as well as the
controllability and observability matrices

[
B AB

]
=

[
1 −1.5

1.5 −3.375

]
,

[
C

CAT

]
=

[
1 1
−1.5 −2.25

]
seem entirely normal.
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(a) (b) (c)

Figure 5: Numerical results on the behavior of HessK∗ in Example 8: (a) The minimum eigenvalue of HessK∗

restricted on T O⊥
K∗ , the value of HessK∗(∆0,∆0), and the asymptotic upper bound given by (42a). (b) The

maximum eigenvalue of HessK∗ restricted on T O⊥
K∗ , the value of HessK∗(∆1,∆1), and the asymptotic lower

bound given by (42b). (c) The reciprocal condition number rcondK∗ and its asymptotic upper bound given
by (42c).

Theorem 4.4. Consider the LQG problem in Example 8. Let ε > 0 be arbitrary. Let

∆0 =

0 0 0
0 −1/2 1/2
0 1/2 −1/2

 , ∆1 =

 0 −1/2 −1/2
1/2 0 0
1/2 0 0

 .
Then, as ε→ 0, we have

HessK∗(∆0,∆0) =
d2J(K∗ + t∆0)

dt2

∣∣∣∣
t=0

=
3

7000
ε4 + o(ε4),

HessK∗(∆1,∆1) =
d2J(K∗ + t∆1)

dt2

∣∣∣∣
t=0

=
680

343
+ o(1),

and ∥∥ProjT OK∗
[∆0]

∥∥
F

= O(ε).

Consequently, as ε→ 0,

min
∆⊥T OK∗

HessK∗(∆,∆)

‖∆‖2F
≤ HessK∗(∆0,∆0)

‖∆0‖2F −
∥∥PT OK∗ [∆0]

∥∥2

F

=
3

7000
ε4 + o(ε4), (42a)

max
∆⊥T OK∗

HessK∗(∆,∆)

‖∆‖2F
≥ HessK∗(∆1,∆1)

‖∆1‖2F
=

680

343
+ o(1), (42b)

and the reciprocal condition number of HessK∗ restricted on T O⊥K∗ can be upper bounded by

rcondK∗ ≤
147

680000
ε4 + o(ε4) ≈ 2.16× 10−4 · ε4 + o(ε4). (42c)

The proof of Theorem 4.4 is based on direct but tedious calculation of Hessian via Lemma 4.3.
The details are provided in Appendix B.8. The observations in Example 8 suggest that, if we apply
the vanilla gradient descent algorithm to the optimization problem (13), it may take a huge number
of iterations for the iterate to converge to a globally optimal controller for certain LQG problems
that appear entirely normal.
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5 Numerical experiments

We have illustrated our main technical results on connectivity of stabilizing controllers and stationary
points through Examples 1-8. Here, we present some numerical experiments to demonstrate empirical
performance of gradient descent algorithms for solving the LQG problem (13). The scripts for all
experiments can be downloaded from https://github.com/zhengy09/LQG_gradient.

5.1 Gradient descent algorithms

A vanilla gradient descent algorithm for solving (13) is as follows. Upon giving an initial stabilizing
controller K ∈ Cn, we update the controller: t = 0, 1, 2, . . .

AK,t+1 = AK,t − st
∂J(K)

∂AK

∣∣∣∣
Kt

, BK,t+1 = BK,t − st
∂J(K)

∂BK

∣∣∣∣
Kt

, CK,t+1 = CK,t − st
∂J(K)

∂CK

∣∣∣∣
Kt

, (43)

where the gradient is obtained using (24), until the gradient satisfies ‖∇J(Kt)‖F ≤ ε or the iteration
reaches the maximum number tmax. In our simulation, the step size st in (43) is determined by the
Armijo rule [46, Chapter 1.3]: Set st = 1, repeat st = βst until

J(Kt)− J(Kt+1) ≥ αst‖∇J(Kt)‖2F ,

where α ∈ (0, 1), β ∈ (0, 1), e.g., α = 0.01 and β = 0.5.
For numerical comparison, we can also reduce the number of controller parameters by considering

a controller canonical form. In particular, for any SISO controller, the controllable canonical form of
K is

AK =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
−b0 −b1 −b2 . . . −bn−1

 , BK =


0
0
0
...
1

 , CK =
[
a0 a1 a2 . . . an−1

]
. (44)

We now only update the controller parameters ai, bi, i = 0, . . . , n − 1 by using a partial gradient
in (43). It is clear that the set of stabilizing controllable controllers is a subset of Cn, but we note
that the connectivity of stabilizing controllable controllers is unclear and cannot be deduced from
the results in Section 3. Here, we further remark a few facts [1, Chapter 3]

• The controller K in (44) is not necessarily minimal, and it may be unobservable. Thus, this
parameterization (44) is able to capture some non-minimal globally optimal controllers, e.g., the
LQG problem in Example 7.
• For any controllable SISO K, there is a unique similarity transformation such that TT (K) is in

the form of (44). Conversely, given K in the form of (44), all the controllers in the orbit OK are
controllable.
• By Theorem 4.3, if the LQG problem (13) for SISO systems has a minimal stationary point, then

it admits a unique globally optimal controller in the form of (44).

In our experiments, we set the maximum iteration number tmax = 104 and the stopping criterion
ε = 10−6. To investigate the influence of initial stabilizing controllers on convergence performance of
gradient descent algorithms, we used two different initialization strategies:

1) Random initialization: We used a pole placement method to get an initial stabilizing controller
K, and the closed-loop poles were chosen randomly from (−2,−1).
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2) Initialization around a globally optimal point: We also considered initialization around the globally
optimal controller from Riccati equations, i.e.,

AK,0 ∼ N (A?K, δI), BK,0 ∼ N (B?
K, δI), CK,0 ∼ N (C?K, δI),

where (A?K, B
?
K, C

?
K) is the optimal LQG controller (6) from solving Riccati equations, and we

chose δ = 10−2 in the simulations.

Throughout this section, we denote the vanilla gradient descent algorithm (43) as Vanilla GDA
and call the gradient descent over the controllable canonical form (44) as Vanilla GDB.

5.2 Numerical Results I: Performance with random initialization

We first consider two examples for which Vanilla GDB has good empirical convergence performance.
The first one is the famous Doyle’s LQG example from [3]

A =

[
1 1
0 1

]
, B =

[
0
1

]
, C =

[
1 0

]
, W = 5

[
1 1
1 1

]
, V = 1 (45a)

with performance weights

Q = 5

[
1 1
1 1

]
, R = 1. (45b)

The globally optimal LQG controller from Riccati equations is

AK =

[
−4 1
−10 −4

]
, BK =

[
5
5

]
, CK =

[
−5 −5

]
, (46)

and its corresponding LQG cost is J? = 750. The system (45) is open-loop unstable, so we chose
an initial stabilizing controller using pole placement where the poles were randomly selected from
(−2,−1) in our simulations. The results are shown in Figure 6. For this LQG case, Vanilla GDB
over the controllable canonical form has better convergence performance compared to Vanilla
GDA. In particular, Vanilla GDA did not converge within 104 iterations, and the final iterate in
Vanilla GDA has non-zero gradient. Instead, for different initial points, Vanilla GDB converged to
the following solution (up to two decimal places)

AK =

[
0 1

−26.00 −8.00

]
, BK =

[
0
1

]
, CK =

[
25.00 −50.00

]
. (47)

The controller (47) from Vanilla GDB is minimal, and the gradient is close to zero (stationary point).
By Corollary 4.2, it is reasonable to conclude that this controller is globally optimal. Indeed, (47)

is identical to (46) via a similarity transformation defined by T =

[
25 5
−30 5

]
. By Lemma 4.3, we

can also compute the hessian of J2(K) at (47), for which the minimum eigenvalue is 12.15 when
restricting to the subspace T O⊥K∗ .

Our second numerical experiment is carried out on the LQG case in Example 7, for which
a globally optimal controller from Riccati equations is non-minimal, shown in (40). The initial
controllers were randomly chosen by pole placement from (−2,−1). Similar to the first numerical
experiment, Vanilla GDA did not converge within 104 iterations, while Vanilla GDB converged
to stationary points (the gradient reached the stopping criterion); see Figure 7. In this case, the
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(a) Vanilla GDA (b) Vanilla GDB

Figure 6: Convergence performance of gradient descent algorithms for Doyle’s example in (45) with four
different random initialization K0.

(a) Vanilla GDA (b) Vanilla GDB

Figure 7: Convergence performance of gradient descent algorithms for Example 7 with four different random
initialization K0.

controllers from Vanilla GDB are not minimal, and they have different state-space representations,
two of which are

AK,1 =

[
0 1

−14.0912 −7.6970

]
, BK,1 =

[
0
1

]
, CK,1 =

[
−9.3941 −1.9999

]
, (48a)

AK,2 =

[
0 1

−17.2130 −8.7375

]
, BK,2 =

[
0
1

]
, CK,2 =

[
−11.4753 −1.9999

]
. (48b)

Our theoretical results (Theorem 4.1 and Corollary 4.2) failed to check whether the controllers (48)
from Vanilla GDB are globally optimal. However, after pole-zero cancellation, we can check that
the controllers (48) correspond to the same transfer function with (40), which is

K? =
−2

s+ 3
.

Also, we numerically check that the the Hessian of J2(K) at the controllers (48) and (40) has a
minimum eigenvalue as zero over the subspace T O⊥K∗ .
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(a) Vanilla GDA (b) Vanilla GDB

Figure 8: Convergence performance of gradient descent algorithms for Example 6 with different initialization
strategies. In each subfigure, the left one shows results using random initialization, and the right one show
results using initialization around a globally optimal point.

(a) Vanilla GDA (b) Vanilla GDB

Figure 9: Convergence performance of gradient descent algorithms for Example 8 (ε = 0.5) with four
different initialization K0. In each subfigure, the left one shows results using random initialization, and the
right one show results using initialization around a globally optimal point.

5.3 Numerical Results II: initialization matters

Here, we present two LQG examples for which Vanilla GDB over the controllable canonical form
seems to get stuck around some points when using random initialization. We first consider the LQG
in Example 6, for which we have shown there exist stationary points with vanishing Hessian (see
Figure 4). Note that this LQG problem has a minimal globally optimal controller, so it admits a
unique globally optimal controller in the form of (44). However, as shown in Figure 8, with random
initialization, Vanilla GDB over the controllable canonical form seems to get stuck around different
points; Vanilla GDA does make steady improvement over the LQG cost function, but it still failed
to converge within 104 iterations. When using the initialization around a globally optimal point, the
convergence performance of both Vanilla GDA and Vanilla GDB has been significantly improved,
and both of them reached the stopping criterion within one hundred iterations. We note that the
random initialization actually started from a point with a smaller LQG cost compared to the other
initialization.

Our final numerical experiment is carried out for the LQG in Example 8, where we chose ε = 0.5.
The results are shown in Figure 9. Both Vanilla GDA and Vanilla GDB failed to converge with 104

iterations, and they seems to get stuck around different points for very many iterations that are not
globally optimal. Similar to the previous case, using the initialization around a globally optimal
point greatly improved the convergence performance of Vanilla GDA and Vanilla GDB, and both
of them reached the stopping criterion within a few hundred iterations.

These two LQG cases show that initialization has a great impact on the performance of gradient
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algorithms for solving general LQG problems. We also note that for the LQG cases we tested,
gradient descent algorithms can reduce the LQG cost quickly in the beginning period of iterations,
but might get struck in some region for many iterations.

6 Conclusion

In this paper, we have characterized the connectivity of the set of stabilizing controllers Cn and pro-
vided some structural properties of the LQG cost function. These results reveal rich yet complicated
optimization landscape properties of the LQG problem. Ongoing work includes establishing conver-
gence conditions for gradient descent algorithms and investigating whether local search algorithms
can escape saddle points of the LQG problem. We note that the optimization landscape of LQG
also depends on the parameterization of dynamical controllers. It will be interesting to look into
the LQG problem when parameterizing controllers in a canonical form. Finally, our analysis reveals
that minimal stationary points in Cn are always globally optimal, and it would also be interesting to
investigate the existence of minimal stationary points for the LQG problem.

Appendix

A Fundamentals of Control Theory and Differential Geometry

For self-completeness, this section reviews some fundamental notions in control theory (see [1,
Chapter 3] for more details), as well as some basic notions from differential geometry [43, 47].

A.1 Controllability, Observability, and Minimal Systems

Consider a dynamical system, parameterized by (A,B,C,D) ∈ Rn×n × Rn×m × Rp×n × Rp×m, as
follows

ẋ = Ax+Bu,

y = Cx+Du.
(49)

The system (49) is called controllable if the following controllability matrix is of full row rank

rank
([
B AB . . . An−1B

])
= n,

and observable if the following observability matrix is of full column rank

rank




C
CA
...

CAn−1


 = n.

The input-output behavior of (49) can also be equivalently described in the frequency domain

G(s) = C(sI −A)−1B +D. (50)

It is easy to verify that the transfer function G(s) is invariant under any similarity transformation
on the state-space model (TAT−1, TB,CT−1, D).
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System (49) is called minimal if and only if it is controllable and observable. This “minimal”
notion is justified by the following interpretation: if system (49) is not minimal, then there exists
another state-space model with a smaller state dimension n̂ < n

˙̂x = Âx̂+ B̂u

y = Ĉx̂+Du,

such that the input-output behavior is the same as (49), i.e., G(s) = Ĉ(sI − Â)−1B̂ +D. In this
paper, we have used the notions of “minimal controller” and “controllable and observable controller”
in an interchangeabe way. The following theorem shows that minimal realizations of a transfer
matrix are identical up to a similarity transformation.

Theorem A.1 ([1, Theorem 3.17]). Given a real rational transfer matrix G(s), suppose (A1, B1, C1, D1)
and (A2, B2, C2, D2) are two minimal state-space realizations of G(s). Then, there exists a unique
invertible matrix T , such that

A2 = TA1T
−1, B2 = TB1, C2 = C1T

−1, D2 = D1.

Finally, the system (49) is proper in the sense that the degree of the numerator in (50) does not
exceed the degree of its denominator. The system (49) becomes strictly proper if D = 0.

A.2 Lyapunov Equations

Given a real matrix A ∈ Rn×n and a symmetric matrix Q ∈ Sn, we consider the following Lyapunov
equation

ATX +XA+Q = 0. (51)

Its vectorized version is
(In ⊗AT +AT ⊗ In) vec(X) = − vec(Q), (52)

where we use ⊗ to denote Kronecker product. From (52), it can be shown that if A is stable, then
(In ⊗AT +AT ⊗ In) is invertible, and thus the Lyapunov equation (51) admits a unique solution for
any matrix Q. Further, we have the following results on the positive semidefiniteness of the solution
X.

Lemma A.1 ([1, Lemma 3.18]). Consider the Lyapunov equation (51). Assuming that A is stable,
the following statements hold.

• The unique solution is

X =

∫ ∞
0

eA
TtQeAtdt.

• X � 0 if Q � 0, and X � 0 if Q � 0.
• If Q � 0, then X � 0 if and only if (Q1/2, A) is observable.

Given the solution to the Lyapunov equation (51), there also exist converse results that establish
the stability property of the matrix A; see [1, Lemma 3.19].
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A.3 Manifolds and Lie Groups

We adopt the following definitions for manifolds in Euclidean spaces. We refer to [43, 47] for more
details of these definitions and related results.

Definition 2 (C∞ maps and diffeomorphism). Let E and F be two real Euclidean spaces, and
let X ⊂ E and Y ⊆ F be subsets of E and F respectively. We say that a map φ : X → Y is C∞,
if for any p ∈ X , there exists an open neighborhood U of p in E and an indefinitely differentiable
function φ̃ : U → F that coincides with φ on U ∩ X . We say that a C∞ map φ : X → Y is a
diffeomorphism from X to Y , if φ has an inverse map φ−1 : Y → X that is C∞. We say that X and
Y are diffeomorphic if there exists a diffeomorphism from X to Y.

Definition 3 (Manifold and submanifold). Let E be a real Euclidean space. A subsetM ⊂ E is
said to be a C∞ manifold of dimension k in E , if for any p ∈M, there exists an open neighborhood
U of p in E , such that U ∩M is diffeomorphic to some open subset of Rk.

LetM⊆ E be a C∞ manifold in the real Euclidean space E . A subset N ⊆M is said to be a
C∞ (embedded) submanifold ofM if it is a manifold in the real Euclidean space E .

Definition 4 (Tangent space). LetM⊆ E be a C∞ manifold in a real Euclidean space E . Given
x ∈M, we say that v ∈ E is a tangent vector ofM at x, if there exists a C∞ curve γ : (−1, 1)→M
with γ(0) = x and v = γ′(0). The set of tangent vectors ofM at x is called the tangent space ofM
at x, which we denoted by TxM.

It is a known fact in differential geometry that the dimension of the tangent space is equal to the
dimension of the manifold.

Definition 5 (Tangent map). Let M ⊆ E and N ⊆ F be two C∞ manifolds in real Euclidean
spaces E and F respectively. let φ :M→N be a C∞ map. For any x ∈M, the tangent map of φ
at x is the linear map dφx : TxM→ Tφ(x)N defined by

dφx(γ′(0)) =
d(φ ◦ γ(t))

dt

∣∣∣∣
t=0

for any C∞ curve γ : (−1, 1)→M with γ(0) = x.

It is known in differential geometry that, if φ : M → N is a diffeomorphism, then dφx is an
isomorphism (a bijective linear map) from TxM to Tφ(x)N .

Definition 6 (Lie group). A C∞ manifold G is said to be a Lie group, if there exists a C∞ binary
operation · : G × G → G, such that the following group axioms are satisfied:

1) associativity: (x · y) · z = x · (y · z) for all x, y, z ∈ G;
2) identity: there exists e ∈ G such that e · x = x · e = x for all x ∈ G;
3) inverse: for all x ∈ G there exists a unique x−1 ∈ G such that x · x−1 = x−1 · x = e;

and moreover, the inversion x 7→ x−1 is a C∞ map from G to G.

In this paper, we extensively use the Lie group GLq which is the set of q × q (real) invertible
matrices together with the ordinary matrix multiplication. GLq is a Lie group whose elements are
organized continuously and smoothly. In addition, GLq is also a q2-dimensional manifold where the
group operations of multiplication and inversion are smooth maps.
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Definition 7 (Lie group action). LetM be a C∞ manifold, and let G be a Lie group with identity
e ∈ G. We say that a C∞ map T : G ×M→M gives a (left) Lie group action, if T (e, x) = x and
T (u · v, x) = T (u,T (v, x)) for all x ∈M and u, v ∈ G.

As an example, the similarity transformation Tq(T,K) defined in (14) gives a Lie group action
of GLq on Cq.

B Auxiliary Results for Continuous-time Systems

This section presents some auxiliary proofs/results for continuous-time systems.

B.1 Proofs of Lemmas 2.2 and 2.3

We first prove the LQG cost formulation in Lemma 2.2. Given a stabilizing controller K ∈ Cq,
the closed-loop system is shown in (7). Since the controller K internally stabilizes the plant, the
closed-loop matrix

Acl :=

[
A BCK

BKC AK

]
is stable and the state variable (x(t), ξ(t)) is a Gaussian process with mean satisfying

lim
t→∞

E
([
x(t)
ξ(t)

])
= 0,

and covariance satisfying

lim
t→∞

E

([
x(t)
ξ(t)

] [
x(t)
ξ(t)

]T)
= lim

t→∞

∫ t

0
eAcl(t−τ)

[
W

BKV B
T
K

]
eA

T
cl(t−τ)dτ

=

∫ ∞
0

eAclt

[
W

BKV B
T
K

]
eA

T
cltdt.

(53)

By Lemma A.1, the last expression in (53) is the same as the unique solution XK to the Lyapunov
equation (12a).

Therefore, the corresponding LQG cost is given by

Jq := lim
T→∞

1

T
E
[∫ T

t=0

(
xTQx+ uTRu

)
dt

]
= lim

t→∞
E

([
x
ξ

]T [
Q

CT
KRCK

] [
x
ξ

])

= lim
t→∞

E tr

([
Q

CT
KRCK

] [
x
ξ

] [
x
ξ

]T)

= tr

([
Q

CT
KRCK

]
lim
t→∞

E

([
x
ξ

] [
x
ξ

]T))

= tr

([
Q

CT
KRCK

]
XK

)
.

The other expression of the LQG cost in Lemma 2.2 follows from the Lyapunov function (12b) by
duality between controllability Gramian and observability Gramian.

38



We now proceed to prove Lemma 2.3. First, upon vectorizing the Lyapunov equation (12a), we
have

(In+q ⊗Acl +Acl ⊗ In+q) vec(XK) = −vec
([
W 0
0 BKV B

T
K

])
.

Since Acl is stable, we know that In+q ⊗Acl +Acl ⊗ In+q is invertible, and thus we have

vec(XK) = − (In+q ⊗Acl +Acl ⊗ In+q)
−1 vec

([
W 0
0 BKV B

T
K

])
.

It is not difficult to see that each element of (In+q ⊗Acl +Acl ⊗ In+q)
−1 is a rational function of

the elements of K. Therefore, the LQG cost function

Jq(K) = tr

([
Q 0
0 CT

KRCK

]
XK

)
is a rational function of the elements of K, which is real analytical.

B.2 Proof of Proposition 3.1

It is straightforward to see that Φ(·) is continuous since each element of Φ(Z) is a rational function
in terms of the elements of Z (a ratio of two polynomials). To show that Φ is a mapping onto Cn, we
need to prove the following statements:

1) For all K ∈ Cn, there exists Z = (X,Y,M,G,H, F,Π,Ξ) ∈ Gn such that Φ(Z) = K.
2) For all Z = (X,Y,M,G,H, F,Π,Ξ) ∈ Gn, we have Φ(Z) ∈ Cn.

To show the first statement, let K =

[
DK CK

BK AK

]
∈ Cn be arbitrary. By definition we have DK = 0,

and the stability of the matrix
[
A BCK

BKC AK

]
implies that the Lyapunov inequality

[
A+BDKC BCK

BKC AK

] [
X ΠT

Π X̂

]
+

[
X ΠT

Π X̂

] [
A+BDKC BCK

BKC AK

]T
≺ 0 (54)

has a solution
[
X ΠT

Π X̂

]
� 0. Without loss of generality we may assume that det Π 6= 0 (otherwise

we can add a small perturbation on Π to make it invertible while still preserving the inequality (54)).
Upon defining [

Y Ξ

ΞT Ŷ

]
:=

[
X ΠT

Π X̂

]−1

, T :=

[
X ΠT

Π X̂

]−1 [
X I
Π 0

]
=

[
I Y
0 ΞT

]
,

we can verify that

Y X + ΞΠ = I, TT

[
X ΠT

Π X̂

]
T =

[
X I
I Y

]
� 0. (55)

Upon letting
M = Y (A+BDKC)X + ΞBKCX + Y BCKΠ + ΞAKΠ,

G = DK,

H = Y BDK + ΞBK,

F = DKCX + CKΠ,

(56)
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we can also verify that

TT

[
A+BDKC BCK

BKC AK

] [
X ΠT

Π X̂

]
T =

[
AX +BF A+BGC

M Y A+HC

]
. (57)

Combining (57) with (54) and (55), we see that Z = (X,Y,M,G,H, F,Π,Ξ) ∈ Gn by the definition
of Gn. Note that the change of variables (56) can be compactly represented as[

G F
H M

]
=

[
I 0
Y B Ξ

] [
DK CK

BK AK

] [
I CX
0 Π

]
+

[
0 0
0 Y AX

]
,

and with the guarantee in Lemma 3.3, we see that[
DK CK

BK AK

]
=

[
I 0
Y B Ξ

]−1 [
G F
H M − Y AX

] [
I CX
0 Π

]−1

=

[
ΦD(Z) ΦC(Z)
ΦB(Z) ΦA(Z)

]
= Φ(Z).

We then prove the second statement. Let Z = (X,Y,M,G,H, F,Π,Ξ) ∈ Gn be arbitrary. Let
X̂ = Π(X − Y −1)−1ΠT, and it’s straightforward to see that X̂ � 0 and[

X ΠT

Π X̂

] [
I Y
0 ΞT

]
=

[
X XY + ΠTΞT

Π ΠY + X̂ΞT

]
=

[
X I
Π 0

]
,

where we used the fact that

ΠY + X̂ΞT =ΠY + Π(X − Y −1)−1ΠTΞT

=ΠY −Π(X − Y −1)−1(XY − I)

=ΠY −Π(X − Y −1)−1(X − Y −1)Y

=0.

We also have [
G F
H M

]
=

[
I 0
Y B Ξ

] [
ΦD(Z) ΦC(Z)
ΦB(Z) ΦA(Z)

] [
I CX
0 Π

]
+

[
0 0
0 Y AX

]
from the definition of Φ. Similarly as showing the equality (57), we can derive that[

AX+BF A+BGC
M Y A+HC

]
=

[
I Y
0 ΞT

]T [
A+BGC BΦC(Z)
ΦB(Z)C ΦA(Z)

] [
X ΠT

Π X̂

] [
I Y
0 ΞT

]
.

Then from the definition of Gn, we can further get[
A+BGC BΦC(Z)
ΦB(Z)C ΦA(Z)

] [
X ΠT

Π X̂

]
+

[
X ΠT

Π X̂

] [
A+BGC BΦC(Z)
ΦB(Z)C ΦA(Z)

]T
≺ 0,

and since X −ΠTX̂−1Π = Y −1 � 0, the matrix
[
X ΠT

Π X̂

]
is positive definite. We can now see that[

A BΦC(Z)
ΦB(Z)C ΦA(Z)

]
satisfies the Lyapunov inequality and thus is stable, meaning that Φ(Z) ∈ Cn.
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B.3 A Second-Order SISO System for Which Cn Is Not Path-Connected

Consider a second-order SISO plant with

A =

[
0 1
1 0

]
, B =

[
0
1

]
, C =

[
0 1

]
. (58)

For this case, any reduced-order controller in C1 and can be parametrized by K =

[
0 CK

BK AK

]
for

some AK, BK, CK ∈ R. We now show that the matrix (8), given by0 1 0
1 0 CK

0 BK AK

 ,
is not stable for any AK, BK, CK ∈ R, implying that C1 = ∅. Indeed, by the Routh–Hurwitz criterion,
the characteristic polynomial

det

λI3 −

0 1 0
1 0 CK

0 BK AK

 = λ3 −AKλ
2 − (BKCK + 1)λ+AK.

has all roots in the open left half plane if and only if

−AK > 0, AK > 0, AK(BKCK + 1) > AK,

which are obviously infeasible. We can now conclude that Cn is not path-connected by Theorem 3.3
since the plant is SISO.

We can also directly prove the disconnectivity of Cn in this example. The set Cn = C2 for (58)
can be written as

Cn =


 0 CK,1 CK,2

BK,1 AK,11 AK,12

BK,2 AK,21 AK,22

 ∈ R3×3

∣∣∣∣∣∣∣∣


0 1 0 0
1 0 CK,1 CK,2

0 BK,1 AK,11 AK,12

0 BK,2 AK,21 AK,22

 is stable

 .

Obviously BK cannot be zero for any stabilizing controller in C2. Since for any BK ∈ R2\{0},

there exists T ∈ R2×2 with detT > 0 such that TBK =

[
0
1

]
, by the path-connectivity of the set

{T ∈ R2×2 : detT > 0} [43], we can see that Cn is path-connected if and only if the set

S =

K̂ =

CK,1 CK,2

AK,11 AK,12

AK,21 AK,22

 ∈ R3×2

∣∣∣∣∣∣∣∣


0 1 0 0
1 0 CK,1 CK,2

0 0 AK,11 AK,12

0 1 AK,21 AK,22

 is stable


is path-connected. The Routh–Hurwitz stability criterion allows establishing an equivalent condition
for the set S as

S =

 K̂ =

CK,1 CK,2

AK,11 AK,12

AK,21 AK,22

∣∣∣∣∣∣ p1(K̂) > 0, p2(K̂) > 0, p3(K̂) > 0, p4(K̂) > 0

 ,
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where

p1(K̂) = −AK,11 −AK,22,

p2(K̂) = AK,11 +AK,22 +AK,11CK,2 −AK,12CK,1,

p3(K̂) = (AK,11 +AK,22)2(AK,11AK,22 −AK,12AK,21)

− (AK,11 +AK,22 +AK,11CK,2 −AK,12CK,1)

× [(AK,11 +AK,22)(AK,11AK,22 −AK,12AK,21 − CK,2) +AK,11CK,2 −AK,12CK,2],

p4(K̂) = −AK,11AK,22 +AK,12AK,21.

We first show that AK,12 6= 0 for any K̂ ∈ S. Indeed, if AK,12 = 0, we then have

p2(K̂) = AK,11 +AK,22 +AK,11CK,2, p4(K̂) = −AK,11AK,22,

and

p3(K̂) = (AK,11 +AK,22)2AK,11AK,22

− (AK,11 +AK,22 +AK,11CK,2)[(AK,11 +AK,22)(AK,11AK,22 − CK,1) +AK,11CK,2]

= AK,22CK,2(AK,11 +AK,22 +AK,11CK,2 −A2
K,11(AK,11 +AK,22)).

From p1(K̂) > 0 and p2(K̂) > 0, we get AK,11CK,2 > 0, and together with p4(K̂) > 0 and p3(K̂) > 0,
we see that AK,22CK,2 < 0 and

AK,11 +AK,22 +AK,11CK,2 < A2
K,11(AK,11 +AK,22) < 0,

which contradicts p2(K̂) > 0. Thus AK,12 6= 0 for any K̂ ∈ S
On the other hand, let

K̂(1) =

−3/2 −2
0 1

1/8 −1

 , K̂(2) =

 3/2 −2
0 −1
−1/8 −1

 .
It can be checked that K̂(1) and K̂(2) are both in S. Now we see that S is not path-connected, since
any continuous path connecting K̂(1) and K̂(2) must pass a point with AK,12 = 0. Consequently, the
set C2 is not path-connected for this example.

B.4 The Gradient and the Hessian of Jq(K)

We first introduce the following lemma.

Lemma B.1. Suppose M : (−δ, δ)→ Rk×k and G : (−δ, δ)→ Sk are two indefinitely differentiable
matrix-valued functions for some δ > 0 and k ∈ N\{0}, and suppose M(t) is stable for all t ∈ (−δ, δ).
Let X(t) denote the solution to the following Lyapunov equation

M(t)X(t) +X(t)M(t)T +G(t) = 0.

Then X(t) is indefinitely differentiable over t ∈ (−δ, δ), and its j’th order derivative at t = 0, denoted
by X(j)(0), is the solution to the following Lyapunov equation

M(0)X(j)(0) +X(j)(0)M(0)T

+

(
j∑
i=1

j!

i!(j − i)!

(
M (i)(0)X(j−i)(0) +X(j−i)(0)M (i)(0)T

)
+G(j)(0)

)
= 0.

(59)
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Proof of Lemma B.1. The differentiability of X(t) follows from the observation that the unique
solution to the Lyapunov equation can be written as

vec(X(t)) = −(Ik ⊗MT(t) +MT(t)⊗ Ik)−1 vec(Q(t)).

Since M(t), G(t) and X(t) are indefinitely differentiable, they admit Taylor expansions around t = 0
given by

M(t) =
a∑
j=0

tj

j!
M (j)(0) + o(ta),

G(t) =
a∑
j=0

tj

j!
G(j)(0) + o(ta),

X(t) =

a∑
j=0

tj

j!
X(j)(0) + o(ta)

for any a ∈ N. By plugging these Taylor expansions into the original Lyapunov equation, after some
algebraic manipulations, we can show that

a∑
j=0

tj

[
j∑
i=0

1

i!(j − i)!

(
M (i)(0)X(j−i)(0) +X(j−i)(0)M (i)(0)T

)
+

1

j!
G(j)(0)

]
+ o(ta) = 0.

Since the above equality holds for all sufficiently small t, we get

j∑
i=0

1

i!(j − i)!

(
M (i)(0)X(j−i)(0) +X(j−i)(0)M (i)(0)T

)
+

1

j!
G(j)(0) = 0,

which is the same as (59). Thus, X(j)(0) is a solution to the Lyapunov equation (59).

Given any stabilizing controller K ∈ Cq, we denote the closed-loop matrix as

Acl,K =

[
A BCK

BKC AK

]
=

[
A 0
0 0

]
+

[
B 0
0 I

]
K

[
C 0
0 I

]
and recall that the LQG cost is given by

Jq(K) = tr

([
Q 0
0 CT

KRCK

]
XK

)
,

where XK is the unique positive semidefinite solution to the Lyapunov equation (12a).

Consider an arbitrary direction ∆ =

[
0 ∆BK

∆CK
∆AK

]
∈ Vq. For sufficiently small t > 0 such that

K + t∆ ∈ Cq, the corresponding closed-loop matrix is

Acl,K+t∆ = Acl,K + t

[
B 0
0 I

]
∆

[
C 0
0 I

]
,

43



and we let XK,∆(t) denote the solution to the Lyapunov equation (12a) with closed-loop matrix
Acl,K+t∆, i.e.,(

Acl,K + t

[
B 0
0 I

]
∆

[
C 0
0 I

])
XK,∆(t) +XK,∆(t)

(
Acl,K + t

[
B 0
0 I

]
∆

[
C 0
0 I

])T

+

[
W 0
0 (BK + t∆BK

)V (BK + t∆BK
)T

]
= 0.

(60)
By Lemma B.1, we see that XK,∆(t) admits a Taylor expansion of the form

XK,∆(t) = XK + t ·X ′K,∆(0) +
t2

2
·X ′′K,∆(0) + o(t2), · (61)

and the derivatives X ′K,∆(0) and X ′′K,∆(0) are the solutions to the following Lyapunov equations

Acl,KX
′
K,∆(0) +X ′K,∆(0)AT

cl,K +M1(XK,∆) = 0, (62)

Acl,KX
′′
K,∆(0) +X ′′K,∆(0)AT

cl,K + 2M2

(
X ′K,∆(0),∆

)
= 0, (63)

where

M1(XK,∆) :=

[
B 0
0 I

]
∆

[
C 0
0 I

]
XK +XK

[
C 0
0 I

]T
∆T

[
B 0
0 I

]T
+

[
0 0
0 BKV∆T

BK
+∆BK

V BT
K

]
,

M2

(
X ′K,∆(0),∆

)
:=

[
B 0
0 I

]
∆

[
C 0
0 I

]
X ′K,∆(0) +X ′K,∆(0)

[
C 0
0 I

]T
∆T

[
B 0
0 I

]T
+

[
0 0
0 ∆BK

V∆T
BK

]
.

Now, by plugging the Taylor expansion (61) into the expression (11) for Jq(K), we get

Jq(K + t∆) = tr

([
Q 0
0 (CK + t∆CK

)TR(CK + t∆CK
)

]
XK,∆(t)

)
= Jq(K) + t · tr

([
Q 0
0 CT

KRCK

]
X ′K,∆(0) +

[
0 0
0 CT

KR∆CK
+ ∆T

CK
RCK

]
XK

)
+
t2

2
· tr

([
Q 0
0 CT

KRCK

]
X ′′K,∆(0) + 2

[
0 0
0 CT

KR∆CK
+ ∆T

CK
RCK

]
X ′K,∆(0)

+ 2

[
0 0
0 ∆T

CK
R∆CK

]
XK

)
+ o(t2),

from which we can directly recognize dJq(K + t∆)

dt

∣∣∣
t=0

and d2Jq(K + t∆)

dt2

∣∣∣∣
t=0

.

Now suppose X is the solution to the following Lyapunov equation

Acl,KX +XAT
cl,K +M = 0

for some M ∈ Sn+q. Then, by Lemma A.1, we have

X =

∫ +∞

0
eAcl,KsMeA

T
cl,Ks ds,
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and consequently

tr

([
Q 0
0 CT

KRCK

]
X

)
=

∫ +∞

0
tr

([
Q 0
0 CT

KRCK

]
eAcl,KsMeA

T
cl,Ks

)
ds

=

∫ +∞

0
tr

(
eA

T
cl,Ks

[
Q 0
0 CT

KRCK

]
eAcl,KsM

)
ds = tr(YKM),

in which we recall that YK is the unique positive semidefinite solution to Lyapunov equation (12b).
Therefore the first-order derivative dJq(K + t∆)

dt

∣∣∣
t=0

can be alternatively given by

dJq(K + t∆)

dt

∣∣∣∣
t=0

= tr

(
YKM1(XK,∆) +

[
0 0
0 CT

KR∆CK
+ ∆T

CK
RCK

]
XK

)

= 2 tr

([0 RCK

0 0

]
XK

[
0 0
0 I

]
+

[
B 0
0 I

]T
YKXK

[
C 0
0 I

]T
+

[
0 0
0 I

]
YK

[
0 0

BKV 0

])T

∆

 .
One can readily recognize the gradient ∇Jq(K) by noticing that

dJq(K + t∆)

dt

∣∣∣∣
t=0

= tr
(
∇Jq(K)T∆

)
.

Upon partitioning XK and YK as (25), a few simple calculations lead to the gradient formula of Jq(K)
in (24).

Similarly, we can show that the second-order derivative d2Jq(K + t∆)

dt2

∣∣∣∣
t=0

can be alternatively

given by

d2Jq(K + t∆)

dt2

∣∣∣∣
t=0

= 2 tr

(
YKM2

(
X ′K,∆(0),∆

)
+

[
0 0
0 CT

KR∆CK
+ ∆T

CK
RCK

]
X ′K,∆(0) +

[
0 0
0 ∆T

CK
R∆CK

]
XK

)
= 2 tr

(
2

[
B 0
0 I

]
∆

[
C 0
0 I

]
X ′K,∆(0)YK + 2

[
0 0
0 CT

KR∆CK

]
X ′K,∆(0)

+

[
0 0
0 ∆BK

V∆T
BK

]
YK +

[
0 0
0 ∆T

CK
R∆CK

]
XK

)
.

(64)

Remark 3. If we let HessK : Vq × Vq → R denote the bilinear form of the Hessian of Jq at K ∈ Cq.
Then one can compute HessK(∆1,∆2) for any ∆1,∆2 ∈ Vq by noting that

HessK(∆1,∆2) =
1

4
(HessK(∆1 + ∆2,∆1 + ∆2)−HessK(∆1 −∆2,∆1 −∆2)) ,

and that

HessK(∆,∆) =
d2Jq(K + t∆)

dt2

∣∣∣∣
t=0

for any ∆ ∈ Vq.
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B.5 Proof of Lemma 4.5

By Lemma A.1, given a stable matrix A, if (C,A) is observable, then the solution L to the Lyapunov
equation is positive definite

ATL+ LA+ CTC = 0.

Therefore, we only need to prove([
Q

1
2 0

0 R
1
2CK

]
,

[
A BCK

BKC AK

])

is observable, and this is equivalent to show that the eigenvalues of the following matrix[
A BCK

BKC AK

]
+

[
L11 L12

L21 L22

] [
Q

1
2 0

0 R
1
2CK

]
=

[
A+ L11Q

1
2 BCK + L12R

1
2CK

BKC + L21Q
1
2 AK + L22R

1
2CK

]

can be arbitrarily assigned by choosing L11, L12, L21, L22. This is true by choosing

L12 = −BR−
1
2 ,

and observing that A+L11Q
1
2 and AK+L22R

1
2CK can be arbitrarily assigned since (Q

1
2 , A), (CK, AK)

are both observable.
Thus, by Lemma A.1, the solution YK to (12b) is positive definite. Similarly, we can prove XK is

positive definite.

B.6 Proof of Proposition 4.1

We have already seen that Tq gives a smooth Lie group action of GLq on Cq. We first show that the
isotropy group of K under the group actions in GLq, defined by

{T ∈ GLq | Tq(T,K) = K},

is a trivial group containing only the identity matrix. Let T ∈ GLq satisfy Tq(T,K) = K, or[
0 CKT

−1

TBK TAKT
−1

]
=

[
0 CK

BK AK

]
.

Then we have TAK = AKT , and consequently

TAj+1
K BK = AKTA

j
KBK.

By mathematical induction, we can see that TAjKBK = AjKBK for all j = 0, . . . , q − 1, indicating
that any column vector of AjKBK is an eigenvector of T with eigenvalue 1. On the other hand, the
controllability of K implies the column vectors of the matrix[

BK AKBK · · · Aq−1
K BK

]
span the whole space Rq. Therefore Rq is a subspace of the eigenspace of T with eigenvalue 1,
meaning that T is just the identity matrix.

Since the isotropy group {T ∈ GLq | Tq(T,K) = K} only contains the identity, by [43, Proposition
7.26], the mapping T 7→ Tq(T,K) is an immersion and the orbit OK is an immersed submanifold.
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We then prove that OK is closed under the original topology of Cq. Suppose (Tj)
∞
j=1 is a sequence

in GLq such that

Tq(Tj ,K) =

[
0 CKT

−1
j

TjBK TjAKT
−1
j

]
→
[

0 C̃K

B̃K ÃK

]
= K̃, j →∞.

Let G(s) be the transfer function of K, i.e.,

G(s) = CK(sI −AK)−1BK.

We notice that for any j ≥ 1, the matrix sI − TjAKT
−1
j is invertible if and only if sI − AK is

invertible. Thus for any fixed s ∈ C such that sI −AK is invertible, we have

lim
j→∞

CKT
−1
j (sI − TjAKT

−1
j )−1TjBK = C̃K(sI − ÃK)−1B̃K.

On the other hand, we simply have

CKT
−1
j (sI − TjAKT

−1
j )−1TjBK = CK(sI −AK)−1BK = G(s).

This shows that the transfer function of K̃ agrees with G(s) for any s ∈ C such that sI − AK is
invertible, and thus is just equal to G(s). On the other hand, the controllability and observability
of K ∈ Cq indicates that the transfer function G(s) has order q, and so any two state-space
representations of G(s) with order q will always be similarity transformations of each other (see
Theorem A.1). In other words, there exists T̃ ∈ GLq such that

K̃ =

[
0 C̃K

B̃K ÃK

]
=

[
0 CKT̃

−1

T̃BK T̃AKT̃
−1

]
= Tq(T̃ ,K),

which implies that K̃ ∈ OK. We can now conclude that OK is a closed subset of Cq. As a consequence
of the closedness of OK, the set OK equipped with the subspace topology induced from Cq is a locally
compact Hausdorff space.

Now, by combining the above results and applying [48, Theorem 2.13], we can conclude that the
mapping T 7→ Tq(T,K) is a homeomorphism from GLq to OK. Therefore, the mapping T 7→ Tq(T,K)
is a diffeomorphism from GLq to OK, and OK is an embedded submanifold of Cq with dimension
given by

dimOK = dim GLq = q2.

Finally, the two path-connected components of OK are immediate.

B.7 Proof of Theorem 4.2

We first show that K? is a stationary point of Jn(K) over K ∈ Cn. Since

Tn(−In,K?) = K?,

by Lemma 4.4, we have

∇Jn|K? = ∇Jn|Tn(−In,K?) =

[
Im 0
0 −In

]
· ∇Jn|K? ·

[
Ip 0
0 −In

]
.

This equality implies that, excluding the bottom right n× n block, the last n rows and the last n
columns of ∇Jn|K? are zero. On the other hand, it is not hard to see that Jn(K?) does not depend
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on the choice of Λ as long as Λ is stable. Therefore the bottom right n× n block of ∇Jn|K? is zero.
We can now see that ∇Jn|K? = 0, showing that K? is a stationary point of Jn.

Let ∆ =

[
0 ∆CK

∆BK
∆AK

]
∈ Vn be arbitrary, and let

∆(1) =

[
0 ∆CK

0 0

]
, ∆(2) =

[
0 0

∆BK
0

]
, ∆(3) =

[
0 0
0 ∆AK

]
.

By the bilinearity of the Hessian, we have

HessK?(∆,∆) =
∑

1≤i<j≤3

HessK?(∆
(i) + ∆(j),∆(i) + ∆(j))−

3∑
i=1

HessK?(∆
(i),∆(i)).

Since the controllers K? + t∆(i) for i = 1, 2, 3 and K? + t(∆(i) + ∆(3)) for i = 1, 2 have the same
transfer function representation as K∗, we can see that for all sufficiently small t,

Jn(K?) = Jn(K? + t∆(1)) = Jn(K? + t∆(2)) = Jn(K? + t∆(3))

= Jn(K? + t(∆(1) + ∆(3))) = Jn(K? + t(∆(2) + ∆(3))),

which implies that
HessK?(∆

(i),∆(i)) = 0, ∀i = 1, 2, 3,

and
HessK?(∆

(1) + ∆(3),∆(1) + ∆(3)) = HessK?(∆
(2) + ∆(3),∆(2) + ∆(3)) = 0.

Therefore
HessK?(∆,∆) = HessK?(∆

(1) + ∆(2),∆(1) + ∆(2)).

Now, if HessK?(∆,∆) = 0 for all ∆ ∈ Vn, then the Hessian HessK? is obviously zero. Otherwise,
HessK?(∆,∆) 6= 0 for some ∆ ∈ Vn, which implies that

HessK?(∆
(1),∆(2))

=
1

2

(
HessK?(∆

(1) + ∆(2),∆(1) + ∆(2))−HessK?(∆
(1),∆(1))−HessK?(∆

(2),∆(2))
)

=
1

2
HessK?(∆,∆) 6= 0.

Note that ∆(1) and ∆(2) are linearly independent (otherwise HessK?(∆
(1),∆(2)) will be zero).

Together with HessK?(∆
(i),∆(i)) = 0 for i = 1, 2, we see that HessK? must be indefinite (a symmetric

matrix having a 2×2 principal submatrix with zero diagonal entries and non-zero off-diagonal entries
must be indefinite).

Now we proceed to the situation where Λ is diagonalizable. We will use e(k)
i to denote the

k-dimensional vector where only the ith entry is 1 and other entries are zero.

Part I: eig(−Λ) * Z =⇒ the Hessian is indefinite. Let λ ∈ eig(−Λ)\Z. Since λ /∈ Z, there
exists some i, j such that

G(λ) := e
(p)
i

T
CXop

(
λI −AT

)−1
YopBe

(m)
j 6= 0.

We consider three situations:
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1) λ is real. In this case, let T be a real invertible matrix such that

TΛT−1 =

[
−λ 0
0 ∗

]
.

Let ∆(1),∆(2) ∈ Vn be given by

∆(1) =

[
0 ∆

(1)
CK

0 0

]
, ∆(2) =

[
0 0

∆
(2)
BK

0

]
,

where
∆

(1)
CK

= e
(m)
j e

(n)
1

T
T−1, ∆

(2)
BK

= Te
(n)
1 e

(p)
i

T
.

Then it’s not hard to see that

Jn(K? + t∆(1)) = Jn(K? + t∆(2)) = Jn(K?)

for any sufficiently small t, indicating that

HessK?(∆
(1),∆(1)) = HessK?(∆

(2),∆(2)) = 0.

On the other hand, we have that the unique solutions to Lyapunov equations (12a) and (12b) are

XK? =

[
Xop 0

0 0

]
, YK? =

[
Yop 0
0 0

]
.

By Lemma 4.3, we can see that

HessK?(∆
(1) + ∆(2),∆(1) + ∆(2)) = 4 tr

([
0 B∆

(1)
CK

∆
(2)
BK
C 0

]
X ′

K?,∆(1)+∆(2)

[
Yop 0
0 0

])
,

where X ′
K?,∆(1)+∆(2) is the solution to the following Lyapunov equation[

A 0
0 Λ

]
X ′

K?,∆(1)+∆(2) +X ′
K?,∆(1)+∆(2)

[
A 0
0 Λ

]T
+

[
0 B∆

(1)
CK

∆
(2)
BK
C 0

] [
Xop 0

0 0

]
+

[
Xop 0

0 0

][
0 B∆

(1)
CK

∆
(2)
BK
C 0

]T
= 0.

Since[
0 B∆

(1)
CK

∆
(2)
BK
C 0

] [
Xop 0

0 0

]
+

[
Xop 0

0 0

][
0 B∆

(1)
CK

∆
(2)
BK
C 0

]T
=

[
0 XopC

T∆
(2)
BK

T

∆
(2)
BK
CXop 0

]
,

the matrix X ′
K?,∆(1)+∆(2) can be represented by

X ′
K?,∆(1)+∆(2) =

∫ +∞

0
exp

([
A 0
0 Λ

]
s

)[
0 XopC

T∆
(2)
BK

T

∆
(2)
BK
CXop 0

]
exp

([
A 0
0 Λ

]T
s

)
ds

=

∫ +∞

0

[
eAs 0
0 eΛs

][
0 XopC

T∆
(2)
BK

T

∆
(2)
BK
CXop 0

][
eA

Ts 0

0 eΛTs

]
ds

=

∫ +∞

0

[
0 eAsXopC

T∆
(2)
BK

T
eΛTs

eΛs∆
(2)
BK
CXope

ATs 0

]
ds.
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Therefore

HessK?(∆
(1) + ∆(2),∆(1) + ∆(2))

=

∫ ∞
0

4 tr

([
0 B∆

(1)
CK

∆
(2)
BK
C 0

][
0 eAsXopC

T∆
(2)
BK

T
eΛTs

eΛs∆
(2)
BK
CXope

ATs 0

] [
Yop 0
0 0

])
ds

=

∫ +∞

0
4 tr

(
B∆

(1)
CK
eΛs∆

(2)
BK
CXope

ATsYop

)
ds.

By the construction of ∆
(1)
CK

and ∆
(2)
BK

, we can see that

∆
(1)
CK
eΛs∆

(2)
BK

= e−λse
(m)
j e

(p)
i

T
.

Thus

HessK?(∆
(1) + ∆(2),∆(1) + ∆(2)) =

∫ +∞

0
4e

(p)
i

T
CXope

(AT−λI)sYopBe
(m)
j ds

= 4e
(p)
i

T
CXop

(
λI −AT

)−1
YopBe

(m)
j

= 4G(λ),

which is nonzero by assumption. Consequently,

HessK?(∆
(1),∆(2))

=
1

2

(
HessK?(∆

(1)+∆(2),∆(1)+∆(2))−HessK?(∆
(1),∆(1))−HessK?(∆

(2),∆(2))
)

= 2G(λ) 6= 0.

Together with the fact that HessK?(∆
(1),∆(1)) = HessK?(∆

(2),∆(2)) = 0, we can see that neither
HessK? nor −HessK? can be positive semidefinite. Thus HessK? has at least one positive eigenvalue
and one negative eigenvalue.

2) λ = λre + iλim is not real, and G(λ) is not purely imaginary. In this case, since Λ is real, the
complex conjugate of λ, which we denote by λ, is also an eigenvalue of Λ. We can find a real
invertible matrix T such that

TΛT−1 =

[−λre −λim

λim −λre

]
0

0 ∗

 .
We still let ∆(1),∆(2) ∈ Vn be given by

∆(1) =

[
0 ∆

(1)
CK

0 0

]
, ∆(2) =

[
0 0

∆
(2)
BK

0

]
, ∆

(1)
CK

= e
(m)
j e

(n)
1

T
T−1, ∆

(2)
BK

= Te
(n)
1 e

(p)
i

T
.

Then similarly as in the previous situation, we have

HessK?(∆
(1),∆(1)) = HessK?(∆

(2),∆(2)) = 0,

and

HessK?(∆
(1) + ∆(2),∆(1) + ∆(2)) =

∫ +∞

0
4 tr

(
B∆

(1)
CK
eΛs∆

(2)
BK
CXope

ATsYop

)
ds.
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By the construction of ∆
(1)
CK

and ∆
(2)
BK

, we have

∆
(1)
CK
eΛs∆

(2)
BK

= e−λres cos(−λims)e
(m)
j e

(p)
i

T

=
e−λs + e−λs

2i
e

(m)
j e

(p)
i

T
,

and therefore

HessK?(∆
(1) + ∆(2),∆(1) + ∆(2))

=
1

2i

(∫ +∞

0
4e

(p)
i

T
CXope

(AT−λI)sYopBe
(m)
j ds+

∫ +∞

0
4e

(p)
i

T
CXope

(AT−λI)sYopBe
(m)
j ds

)
= − 2i(G(λ) +G(λ)),

and sinceG(λ) is not purely imaginary, we have HessK?(∆
(1)+∆(2),∆(1)+∆(2)) 6= 0. Consequently,

HessK?(∆
(1),∆(2)) 6= 0, and together with the fact that HessK?(∆

(1),∆(1)) = HessK?(∆
(2),∆(2)) =

0, we can conclude that HessK? has at least one positive eigenvalue and one negative eigenvalue.
3) λ = λre + iλim is not real, and G(λ) is purely imaginary. In this case, we can still find a real

invertible matrix T such that

TΛT−1 =

[−λre −λim

λim −λre

]
0

0 ∗

 .
We let ∆(1),∆(2) ∈ Vn be given by

∆(1) =

[
0 ∆

(1)
CK

0 0

]
, ∆(2) =

[
0 0

∆
(2)
BK

0

]
, ∆

(1)
CK

= e
(m)
j e

(n)
1

T
T−1, ∆

(2)
BK

= Te
(n)
2 e

(p)
i

T
.

Then we have
HessK?(∆

(1),∆(1)) = HessK?(∆
(2),∆(2)) = 0,

and

HessK?(∆
(1) + ∆(2),∆(1) + ∆(2)) =

∫ +∞

0
4 tr

(
B∆

(1)
CK
eΛs∆

(2)
BK
CXope

ATsYop

)
ds.

By the construction of ∆
(1)
CK

and ∆
(2)
BK

, we have

∆
(1)
CK
eΛs∆

(2)
BK

= e−λres sin(−λims)e
(m)
j e

(p)
i

T

=
e−λs − e−λs

2
e

(m)
j e

(p)
i

T
,

and therefore

HessK?(∆
(1) + ∆(2),∆(1) + ∆(2))

=
1

2

(∫ +∞

0
4e

(p)
i

T
CXope

(AT−λI)sYopBe
(m)
j ds−

∫ +∞

0
4e

(p)
i

T
CXope

(AT−λI)sYopBe
(m)
j ds

)
= 2(G(λ)−G(λ)),

and since G(λ) has a nonzero imaginary part, we have HessK?(∆
(1) + ∆(2),∆(1) + ∆(2)) 6= 0.

Consequently, HessK?(∆
(1),∆(2)) 6= 0, and together with the fact that HessK?(∆

(1),∆(1)) =
HessK?(∆

(2),∆(2)) = 0, we can conclude that HessK? has at least one positive eigenvalue and
one negative eigenvalue.
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Part II: eig(−Λ) ⊆ Z =⇒ the Hessian is zero. In this part, we will show that

HessK?(∆,∆) = 0

for any ∆ ∈ Vn.

Let ∆ =

[
0 ∆CK

∆BK
∆AK

]
∈ Vn be arbitrary. Let

∆(1) =

[
0 ∆CK

0 0

]
, ∆(2) =

[
0 0

∆BK
0

]
, ∆(3) =

[
0 0
0 ∆AK

]
.

We have already shown that

HessK?(∆,∆) = HessK?(∆
(1) + ∆(2),∆(1) + ∆(2)).

Let T be an invertible n× n (complex) matrix that diagonalizes Λ as

TΛT−1 =

−λ1

. . .
−λn

 .
Define

Uik = e
(m)
i e

(n)
k

T
T−1, Vjk = Te

(n)
k e

(p)
j

T

for each 1 ≤ i ≤ m, 1 ≤ j ≤ p and 1 ≤ k ≤ n. It’s not hard to see that {Uik | 1 ≤ i ≤ m, 1 ≤ k ≤ n}
forms a basis of Cm×n, and {Vjk | 1 ≤ j ≤ n, 1 ≤ k ≤ n} forms a basis of Cn×q. Therefore ∆CK

and
∆BK

can be expanded as

∆CK
=

∑
1≤i≤m

∑
1≤k≤n

αikUik, ∆BK
=
∑

1≤j≤q

∑
1≤k≤n

βjkVjk.

By similar derivations as in Case 1, we can get

HessK?(∆
(1) + ∆(2),∆(1) + ∆(2))

=

∫ +∞

0
4 tr

(
B∆CK

eΛs∆BK
CXope

ATsYop

)
ds.

Then, since

∆CK
eΛs∆BK

=
∑

1≤i≤m

∑
1≤j≤q

∑
1≤k≤n

∑
1≤k′≤n

αikβjk′Uike
ΛsVjk′

=
∑

1≤i≤m

∑
1≤j≤q

∑
1≤k≤n

∑
1≤k′≤n

αikβjk′e
(m)
i e

(n)
k

T

e
−λ1s

. . .
e−λns

 e(n)
k′ e

(p)
j

T

=
∑

1≤i≤m

∑
1≤j≤q

∑
1≤k≤n

αikβjk′e
−λkse

(m)
i e

(p)
j

T
,

we have
HessK?(∆

(1) + ∆(2),∆(1) + ∆(2))

=
∑

1≤i≤m

∑
1≤j≤q

∑
1≤k≤n

∫ +∞

0
4αikβjk′ · e

(p)
j

T
CXope

(A−λkI)TsYopBe
(m)
i ds

=
∑

1≤i≤m

∑
1≤j≤q

∑
1≤k≤n

4αikβjk′ · e
(p)
j

T
CXop

(
λkI −AT

)−1
YopBe

(m)
i .
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Since eig(−Λ)\Z = ∅, we can see that CXop

(
λkI −AT

)−1
YopB = 0 for any 1 ≤ k ≤ n. Therefore

HessK?(∆,∆) = HessK?(∆
(1) + ∆(2),∆(1) + ∆(2)) = 0,

which completes the proof.

B.8 Proof of Theorem 4.4

For each ε > 0, let the closed-loop system matrix be denoted by

Acl(ε) =


−3

2 0 −1 −1
0 −3

2(1 + ε) −1− ε −1− ε
1 1 −7

2 −2
1 + ε 1 + ε −2(1 + ε) −7

2(1 + ε),


and let

MW,V (ε) =

[
W 0

0 B∗KV B
∗
K
T

]
=


4 1 + ε 0 0

1 + ε 4(1 + ε)2 0 0
0 0 1 1 + ε
0 0 1 + ε (1 + ε)2

 ,

MQ,R(ε) =

[
Q 0

0 C∗K
TRC∗K

]
=


4 1 0 0
1 4 0 0
0 0 1 1
0 0 1 1


Let XK∗(ε) and YK∗(ε) denote the solutions to the Lyapunov equations

Acl(ε)XK∗(ε) +XK∗(ε)Acl(ε)
T +MW,V (ε) = 0,

Acl(ε)
TYK∗(ε) + YK∗(ε)Acl(ε) +MQ,R(ε) = 0.

By Lemma B.1, we can compute the Taylor expansions of XK∗(ε) and YK∗(ε), which turn out to be

XK∗(ε) =
1

7


8 1 1 1
1 8 1 1
1 1 1 1
1 1 1 1

+


−1/5 1/2 −1/5 1/2
1/2 41/5 1/2 6/5
−1/5 1/2 −1/5 1/2
1/2 6/5 1/2 6/5

 ε7
+


1/5 −1/2 1/5 −1/2
−1/2 1/5 −1/2 1/5
1/5 −1/2 1/5 −1/2
−1/2 1/5 −1/2 1/5

( ε214
− ε3

28
+
ε4

56

)
+ o(ε4),
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and

YK∗(ε) =
1

7


8 1 −1 −1
1 8 −1 −1
−1 −1 1 1
−1 −1 1 1

+


−1/5 −1/2 1/5 1/2
−1/2 −39/5 1/2 4/5
1/5 1/2 −1/5 −1/2
1/2 4/5 −1/2 4/5

 ε7
+


1/5 1/2 −1/5 −1/2
1/2 77/5 −1/2 −7/5
−1/5 −1/2 1/5 1/2
−1/2 −7/5 1/2 7/5

 ε2

14
+


−1/5 −1/2 1/5 1/2
−1/2 −153/5 1/2 13/5
1/5 1/2 −1/5 −1/2
1/2 13/5 −1/2 −13/5

 ε3

28

+


1/5 1/2 −1/5 −1/2
1/2 61 −1/2 −5
−1/5 −1/2 1/5 1/2
−1/2 −5 1/2 5

+
ε4

56
+ o(ε4).

Next, we let

M
(0)
1 (ε) =


0 0 0 0
0 0 0 0
0 0 −1/2 1/2
0 0 1/2 −1/2

XK∗(ε) +XK∗(ε)


0 0 0 0
0 0 0 0
0 0 −1/2 1/2
0 0 1/2 −1/2

 ,
which corresponds to the matrix M1(XK∗ ,∆0) in Lemma 4.3. Let X ′(0)

K∗ (ε) denote the solution to
the Lyapunov equation

Acl(ε)X
′(0)
K∗ (ε) +X

′(0)
K∗ (ε)Acl(ε)

T +M
(0)
1 (ε) = 0.

Then similarly by Lemma B.1, we can compute the Taylor expansion of X ′(0)
K∗ (ε), which is given by

X
′(0)
K∗ (ε) =


0 0 1 −1
0 0 1 −1
1 1 2 0
−1 −1 0 −2

 ε

100
+


−6 −6 −69 78
−6 −6 −20 29
−69 −20 −132 64
78 29 64 64

 ε2

9800

+


12 12 89 −107
12 12 −9 −9
89 −9 166 −128
−107 −9 −128 −30

 ε3

19600
+


−18 −18 −109 136
−18 −18 38 −11
−109 38 −200 192
136 −11 192 −4

 ε4

39200
+ o(ε4).

By Lemma 4.3, we then have

HessK∗(∆0,∆0) = 4 tr




0 0 0 0
0 0 0 0
0 0 −1/2 1/2
0 0 1/2 −1/2

X ′(0)
K∗ (ε)YK∗(ε)

 =
3

7000
ε4 + o(ε4).
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Similarly, to compute the leading term of the Taylor expansion of HessK∗(∆1,∆1), we let

M
(1)
1 (ε) =


0 0 −1/2 −1/2
0 0 −(1 + ε)/2 −(1 + ε)/2

1/2 1/2 0 0
1/2 1/2 0 0

XK∗(ε)

+XK∗(ε)


0 0 −1/2 −1/2
0 0 −(1 + ε)/2 −(1 + ε)/2

1/2 1/2 0 0
1/2 1/2 0 0

+


0 0 0 0
0 0 0 0
0 0 1 (2 + ε)/2
0 0 (2 + ε)/2 1 + ε

 ,
which corresponds to the matrix M1(XK∗ ,∆1) in Lemma 4.3. Let X ′(1)

K∗ (ε) denote the solution to
the Lyapunov equation

Acl(ε)X
′(1)
K∗ (ε) +X

′(1)
K∗ (ε)Acl(ε)

T +M
(1)
1 (ε) = 0.

Then by Lemma B.1, we have

X
′(1)
K∗ (ε) =

1

686


−72 −72 5 5
−72 −72 5 5

5 5 82 82
5 5 82 82

+ o(1),

and then by Lemma 4.3, we can show that

HessK∗(∆1,∆1) =
680

343
+ o(1).

Finally, we show that
∥∥ProjT OK∗

[∆0]
∥∥
F

= O(ε). It can be shown that for any ∆ =

[
0 ∆CK

∆BK
∆AK

]
,

we have
∆AK

A∗K
T −A∗K

T∆AK
+ ∆BK

B∗K
T − C∗K

T∆CK
= 0

⇐⇒
[
A∗K ⊗ In − In ⊗A∗K

T B∗K ⊗ In −In ⊗ C∗K
T
] vec(∆AK

)
vec(∆BK

)
vec(∆CK

)

 = 0.

Denoting
M =

[
A∗K ⊗ In − In ⊗A∗K

T B∗K ⊗ In −In ⊗ C∗K
T
]

=


0 2(1 + ε) −2 0 1 0 1 0
2 7ε/2 0 −2 0 1 1 0

−2(1 + ε) 0 −7ε/2 2(1 + ε) 1 + ε 0 0 1
0 −2(1 + ε) 2 0 0 1 + ε 0 1

 .
Since for ε > 0, dim T OK∗ = n2 = 4, we can see that

rankM = n2 + nm+ np− dim kerM = 8− dim T OK∗ = 4.

By Proposition 4.2, we can obtain ‖ProjT OK∗
[∆0]‖F by computing∥∥∥MT(MMT)−1Mv0

∥∥∥
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where v0 =
[
−1/2 1/2 1/2 −1/2 0 0 0 0

]T. We note that

MMT =


10 + 8ε+ 4ε2 1 + 7ε+ 7ε2 1 + 8ε −8− 8ε− 4ε2

1 + 7ε+ 7ε2 10 + 49ε2/4 −8− 8ε 1− 6ε− 7ε2

1 + 8ε −8− 8ε 10 + 18ε+ 85ε2/4 1− 7ε
−8− 8ε− 4ε2 1− 6ε− 7ε2 1− 7ε 10 + 10ε+ 5ε2

 .
It can be checked that

MMT


−72− 84ε+ 3ε2 + 29ε3 + 49ε4/2
72 + 126ε+ 60ε2 + 13ε3 − 14ε4

72− 30ε− 36ε− 35ε3

−72− 12ε− 27ε2 + 14ε3

 = (432 + 840ε+ 1122ε2 + 702ε3 + 249ε4)


ε

7ε/4
−7ε/4
−ε


= (432 + 840ε+ 1122ε2 + 702ε3 + 249ε4)Mv0,

implying that

(MMT)−1Mv0 =
1

432 + 840ε+ 1122ε2 + 702ε3 + 249ε4


−72− 84ε+ 3ε2 + 29ε3 + 49ε4/2
72 + 126ε+ 60ε2 + 13ε3 − 14ε4

72− 30ε− 36ε− 35ε3

−72− 12ε− 27ε2 + 14ε3



=


−1/6
1/6
1/6
−1/6

+


28
−7
−85
64

 ε

216
+ o(ε).

Since

MT


−1/6
1/6
1/6
−1/6

 = O(ε),

we can see that
MT(MMT)−1Mv0 = O(ε),

which completes the proof.

C Connectivity of the Set of Proper Stabilizing Controllers

We present analogue results for the set of proper stabilizing controllers. The dynamical controller
in (3) is strictly proper as it does not contain a direct feedback term from the output measurement.
We note that the optimal solution for the LQG problem (2) is always strictly proper.

For closed-loop stability, we can also consider a proper dynamical controller as follows

ξ̇(t) = AKξ(t) +BKy(t),

u(t) = CKξ(t) +DKy(t),
(65)

parameterized by four matrices AK, BK, CK, DK with compatible dimensions. Similarly, we define
the set of proper stabilizing controllers as

Ĉq :=

{
K =

[
DK CK

BK AK

]
∈ R(p+q)×(m+q)

∣∣∣∣[A+BDKC BCK

BKC AK

]
is stable

}
. (66)
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By this definition, we always have Cq ⊆ Ĉq, which is consistent with the fact that the set of strictly
proper stabilizing controllers is a subset of the set of proper stabilizing controllers. But we note
that ∀K ∈ Ĉq with DK 6= 0, the resulting LQG cost J(K) in (2) is infinite, despite that K internally
stabilizes the plant.

Similar to Lemma 3.1, the observation in Lemma C.1 is obvious. Unlike Cn that might have two
path-connected components, Ĉn is always path-connected, as stated in Theorem C.1.

Lemma C.1. Under Assumption 1, the set Ĉn is non-empty, open, unbounded and non-convex.

Theorem C.1. Under Assumption 1, Ĉn is always path-connected.

The proof of Theorem C.1 is almost identical to Theorem 3.1. By replacing the constraint
R = 0m×p with R ∈ Rm×p in the definitions of Fn, Gn and Φ(·), it is not difficult to verify that the
results in Proposition 3.1 and Proposition 3.2 still hold for Ĉn. Unlike Cn−1 might be empty, we
always have Ĉn−1 6= ∅ under Assumption 1 [49]. By adapting the proof in Theorem 3.3, Theorem C.1
is now obvious.

Example 9 (Connectivity of proper stabilizing controllers). Consider the linear system (58) in
Appendix B.3. We have shown that Cn−1 = ∅ for strictly proper reduced-order dynamical controllers.
Here, it is easy to verify that the following proper reduced-order dynamical controller

AK = 1, BK = −3, CK = 2, DK = −2,

internally stabilizes the system, i.e., the eigenvalues of0 1 0
1 DK CK

0 BK AK


have all negative real parts, indicating that Ĉn−1 6= ∅. Thus, Ĉn is path-connected.

Similarly, one can verify that the set of proper stabilizing controllers for the system in Example 2
is path-connected. Indeed, using the Routh–Hurwitz stability criterion, we derive that

Ĉ1 =

{
K =

[
DK CK

BK AK

]
∈ R2×2

∣∣∣∣[A+BDKC BCK

BKC AK

]
is stable

}
=

{
K =

[
DK CK

BK AK

]
∈ R2×2

∣∣∣∣AK +DK < −1, BKCK < AK +AKDK

}
.

This set is path-connected.
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