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Abstract— First order policy optimization has been widely
used in reinforcement learning. It guarantees to find the
optimal policy for the state-feedback linear quadratic
regulator (LQR). However, the performance of policy
optimization remains unclear for the linear quadratic
Gaussian (LQG) control where the LQG cost has spurious
suboptimal stationary points. In this paper, we introduce a
novel perturbed policy gradient (PGD) method to escape a
large class of bad stationary points (including high-order
saddles). In particular, based on the specific structure of
LQG, we introduce a novel reparameterization procedure
which converts the iterate from a high-order saddle to a
strict saddle, from which standard random perturbations
in PGD can escape efficiently. We further characterize the
high-order saddles that can be escaped by our algorithm.

I. INTRODUCTION

In this paper, we revisit the linear quadratic Gaussian
(LQG) control, one of the most fundamental problems
in control theory, from a modern optimization view. In
brief, we focus on a continuous-time linear time-invariant
(LTI) system

ẋ(t) = Ax(t) +Bu(t) + w(t),

y(t) = Cx(t) + v(t),
(1)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp are the state,
control input, and measurement (output) vector at time
t, respectively, and w(t), v(t) are white Gaussian noises
with intensity matrices W ⪰ 0 and V ≻ 0, respectively.
The goal is to design a controller (i.e., policy) based on
partial measurements y(t) to minimize a quadratic cost

J(u) := lim
T→∞

1

T
E

[∫ T

t=0

(
xTQx+ uTRu

)
dt

]
. (2)

A special case is the linear quadratic regulator
(LQR) [1], where we have direct access to the state
x (i.e., y(t) = x(t), v(t) = 0,∀t ∈ R in (1)). It is known
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that the optimal policy for the LQR is in the form of
static state feedback u(t) = Kx(t), where K ∈ Rm×n

is a constant matrix that can be obtained by solving a
Riccati equation [2]. On the other hand, when the state
is not directly observed, the policy that minimizes (2) is
a dynamical controller of the form [3]

ξ̇(t) = AKξ(t) +BKy(t),

u(t) = CKξ(t),
(3)

where the optimal parameters K∗ := (A∗
K, B

∗
K, C

∗
K) can

be obtained by solving two Riccati equations [3], [4]
(see Section II-A). Algorithms for solving Riccati equa-
tions are well-studied, including iterative algorithms [5],
algebraic solution methods [6], and semidefinite opti-
mization [7]. All these methods are model-based and
explicitly rely on the system model (1). Recently, policy
gradient methods have achieved impressive results for
many challenging problems [8]. These methods directly
optimize the quadratic cost (2) as a function of the
policy class K = (AK, BK, CK) via gradient descent
or its variants. They can be further made model-free,
bypassing an explicit estimation of the model (1). The
flexibility of model-free control has stimulated a growing
interest in investigating foundations of policy gradient
methods for classical control problems [9]–[20].

While it is guaranteed to obtain the optimal controller
for LQR or LQG via classical model-based methods, such
optimality guarantee is more difficult when using policy
gradient methods since the cost (2) is typically nonconvex
in the policy space. For LQR, recent work has shown
that although the LQR cost is nonconvex, it is gradient
dominant and coersive, and has a unique stationary point
under very mild conditions, rendering the convergence of
policy gradient methods to the globally optimal controller
[9]–[12]. On the other hand, the LQG cost is neither
gradient dominant nor coersive, and there may exist
spurious saddle points [20], making it challenging for
policy gradient to find the optimal controller.

Saddle points do not always destroy the performance of
policy gradient methods. Suitable perturbed policy gradi-
ent methods are able to escape strict saddle points whose
Hessian has at least one strictly negative eigenvalue [21]–
[23]. However, it is shown in [20, Theorem 4.2] that
the Hessian of the LQG cost at a saddle point can even
degenerate to zero. We denote the saddle point whose



Hessian does not give escaping directions as a high-order
saddle point. Perturbed policy gradient methods [21]–
[23] may thus get stuck and take an exponential number
of iterations to escape high-order saddle points.

All the (strict or high-order) saddle points of LQG
discussed in [20] are due to a loss of controllability and/or
observability for the controller (AK, BK, CK) in (3) (i.e.,
non-minimal controllers). Indeed, any stationary point
corresponds to a full-order minimal controller cannot be
saddle and it is instead globally optimal [20]. Further,
many intrigue landscape properties of LQG are brought
by a classical notion of similarity transformations that
induces a symmetry structure [20]. In this paper, we raise
a natural question of whether this induced symmetry
structure allows us to reveal more information about
high-order saddles of LQG such that suitable perturbed
policy gradient methods can escape those points. We
provide a positive answer to this question.

In particular, we first show that any stationary point
after model reduction remains to be stationary. This
gives a classification of the stationary points: all bad
(suboptimal or saddle) stationary points after model
reduction become lower-order and form new stationary
points with the same LQG cost. We then reveal an
intriguing transfer function G(s) at any stationary point
(AK, BK, CK): 1) if (AK, BK, CK) is globally optimal,
the function G(s) is identically zero, ∀s ∈ C; 2) if G(s)
is not identically zero, we can perturb (AK, BK, CK) to
get a new stationary point with the same LQG cost,
which is a strict saddle with probability one. Standard
perturbed policy gradient (PGD) methods [21], [22] can
thus escape this new strict saddle. We emphasize that
our PGD method include perturbations on two parts: 1)
a novel structural perturbation on the stationary point
(AK, BK, CK); 2) a standard random perturbation on
gradients [22]. This combination enables escaping a
large class of bad stationary points (including high-order
saddles) in LQG.

The rest of this paper is organized as follows. We
present the problem statement in Section II. Our main
results on characterizing stationary points and Hessians
are presented in Section III. Section IV shows empirical
performance of our perturbed policy gradient method. We
conclude the paper in Section V. Technical proofs and
auxiliary computations are postponed to the appendix.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Review of LQG control

The classical LQG control problem is defined as

min
u(t)

J(u)

subject to (1),
(4)

where J(u) is defined in (2) with Q ⪰ 0 and R ≻ 0.
In (4), the input u(t) depends on all past observation y(τ)

with τ < t. We make the following standard assumption.

Assumption 1. (A,B) and (A,W 1/2) are controllable,
and (C,A) and (Q1/2, A) are observable.

The optimal solution to (4) is a dynamical controller
in the form of (3), in which ξ(t) ∈ Rq is the controller
internal state, and AK ∈ Rq×q , BK ∈ Rq×p, CK ∈ Rm×q

specify the dynamics of the controller. While q can be
any positive number, one does not have to use q > n
and the optimal controller has q = n, given by algebraic
Riccati equations (AREs) [3, Thm. 14.7]. Precisely, let
P, S be the unique positive semidefinite solutions to the
following AREs

AP + PAT − PCTV −1CP +W = 0,

ATS + SA− SBR−1BTS +Q = 0.
(5)

Then, the parameters of an optimal controller to (4) are

A⋆
K = A−BM − LC, B⋆

K = L, C⋆
K = −M (6)

where L = PCTV −1, M = R−1BTS. The optimal
solution (A⋆

K, B
⋆
K, C

⋆
K) is not unique in the state-space

domain. Any similarity transformation leads to another
equivalent optimal controller (they correspond to the
same transfer function in the frequency domain).

B. Problem Statement

In this paper, we embrace the spirit of [9]–[12],
[20] and view the LQG problem (4) from a modern
optimization perspective. We consider the policy class
(AK, BK, CK) in (3), and the closed-loop matrix becomes

Acl :=

[
A BCK

BKC AK

]
∈ R(n+q)×(n+q). (7)

The set of internally stabilizing policies [3, Chapter 13] is

Cq :=
{
K=

[
0 CK

BK AK

]
∈ R(m+q)×(p+q)

∣∣∣∣ (7) is stable
}
.

Let Jq(K) : Cq → R denote the corresponding LQG
cost (2) for each stabilizing policy in Cq . It is known [20,
Lemmas 2.3 & 2.4] that this function Jq(K) is real
analytic on Cq and admits efficient computation.

Lemma 1. Fix q ∈ N such that Cq ̸= ∅. Given K ∈ Cq ,
we have

Jq(K) = tr (Qcl,KXK) = tr (Wcl,KYK) , (8)

where XK and YK are the unique positive semidefinite
solutions to the following Lyapunov equations

AclXK +XKA
T
cl +Wcl,K = 0, (9a)

AT
clYK + YKAcl +Qcl,K = 0, (9b)

where Acl is defined in (7) and

Qcl,K :=

[
Q 0
0 CT

KRCK

]
, Wcl,K :=

[
W 0
0 BKV BT

K

]
.



Lemma 1 works for stabilizing controllers of any order
q. In this paper, we are mainly interested in characterizing
the full-order case Cn. Now, given the state dimension n,
we can formulate the LQG problem (4) into a constrained
optimization problem

min
K

Jn(K)

subject to K ∈ Cn.
(10)

An important notion of dynamical controllers is
minimality: a controller (AK, BK, CK) is minimal if
(AK, BK) is controllable and (CK, AK) is observable. As
revealed in [20], the optimization landscape of (10) is
more complicated than that of LQR: 1) the feasible region
Cn can have at most two disconnected components; 2)
the cost function Jn(K) is not coersive and not gradient
dominant, and it can have suboptimal saddle points [20,
Theorem 4.2]. Two nice features are 1) all sub-optimal
saddle points correspond to non-minimal controllers
and 2) all stationary points that correspond to minimal
controllers in Cn are globally optimal [20, Theorem 4.3].

Naive policy gradient methods can thus get stuck
around sub-optimal saddle points. In this paper, we aim
to provide further landscape characterizations of (10)
and introduce a perturbed policy gradient method to
escape bad stationary points of (10). In particular, we first
show that any stationary point of the LQG problem (10)
after model reduction remain to be stationary, and then
characterize the second-order behavior of Jn(K) on a
non-minimal stationary point. This motivates the design
of our perturbed policy gradient method.

III. STATIONARY POINTS AND THEIR HESSIANS

The LQG problem (4) has an inherent symmetry struc-
ture induced by the notion of similarity transformation.
Let GLq denote the set of q × q invertible matrices.
Given q ≥ 1 such that Cq ̸= ∅, the following map
Tq : GLq×Cq → Cq represents similarity transformations

Tq(T,K) :=

[
Im 0
0 T

] [
0 CK

BK AK

] [
Ip 0
0 T

]−1

=

[
0 CKT

−1

TBK TAKT
−1

]
.

(11)

It is well-known that similarity transformations do not
change the behavior of dynamical controllers and thus the
LQG cost (2) is invariant with respect to Tq(T,K), i.e.,
we have Jq(K) = Jq(Tq(T,K)) ,∀K ∈ Cq, T ∈ GLq .

A. Classification of stationary points
The symmetry via similarity transformations brings

rich and complicated landscape properties of (4). Here,
we show that the underlying symmetry also allows a
classification of stationary points of LQG (4). The lemma
below gives an explicit relationship among the gradients
of Jq(K) at K and Tq (T,K).

Lemma 2 ([20, Lemma 4.3]). Let K =

[
0 CK

BK AK

]
∈ Cq .

For any T ∈ GLq , we have

∇Jq|Tq(T,K) =

[
Im 0
0 T−T

]
· ∇Jq|K ·

[
Ip 0
0 TT

]
. (12)

As expected, a direct consequence of Lemma 2 is that
a stationary point K of Jq remains to be stationary over
Cq after any similarity transformation. We can further
derive a classification of the stationary points of Jn over
the set of full-order controllers Cn.

Theorem 1. Let K =

[
0 CK

BK AK

]
∈ Cn be a stationary

point of LQG (4), and let K̂ =

[
0 ĈK

B̂K ÂK

]
∈ Cq be a

minimal realization of K, where q ≤ n is the order of
its minimal realization. Then, the following dynamical
controller with any stable matrix Λ ∈ R(n−q)×(n−q)

K̃ =

 0 ĈK 0

B̂K ÂK 0
0 0 Λ

 ∈ Cn (13)

is a stationary point of (10). If q = n (i.e. K itself is
minimal), then K is globally optimal.

The fact of K̃ (13) being stationary of Jn(K) seems
to be expected, since K̃ and K correspond to the same
transfer function in the frequency domain and K is in
a higher dimensional space Cn than Cq. The technical
proof is not difficult, which combines the classical
Kalman decomposition with Lemma 2 and a result in [20,
Theorem 4.1]. We provide the details in the appendix.
The second part that K is globally optimal if q = n has
been proved in [20, Theorem 4.3].

Theorem 1 shows all stationary points that corre-
spond to non-minimal controllers admit a standard
parameterization as we defined in (13), which splits the
controller state ξ ∈ Rn into 1) the controllable/observable
(associated with ÂK, B̂K, ĈK blocks) part and 2) non-
controllable/non-observable (associated with Λ) part.
Furthermore, Theorem 1 indicates that all bad stationary
points of (4) after model reduction are in the same form
of (13). Thus, policy gradient methods only need to
escape those bad saddle points of the form (13). This
motivates our results in the next section.

Remark 1 (Non-minimal globally optimal controllers).
Note that a controller in the form of (13) might still
be globally optimal to (4); See Example 2 below. This
happens when the solutions (A⋆

K, B
⋆
K, C

⋆
K) (6) from the

Riccati equations (5) are not minimal, i.e. (A⋆
K, B

⋆
K) is

not controllable or (C⋆
K, A

⋆
K) is not observable or both.

We conjecture that a random LQG instance should have
(A⋆

K, B
⋆
K, C

⋆
K) in (6) being minimal with probability one.

An exact characterization is left for future work. □



B. Hessian of stationary points

Once a policy gradient method reaches a stationary
point, if the stationary point corresponds to a minimal
controller, it has found a globally optimal solution to (4).
If the stationary point does not correspond to a minimal
controller, we can bring it into the form of (13), for which
we have the following characterization of its hessian.

Theorem 2. Consider a stationary point of Jn(K) over
Cn in the form of

K̃ =

 0 ĈK 0

B̂K ÂK 0
0 0 Λ

 ∈ Cn, (14)

with ÂK ∈ Rq×q, B̂K ∈ Rq×p, ĈK ∈ Rm×q, stable Λ ∈
R(n−q)×(n−q) and q ≤ n. Let Xop ∈ Sn+q

+ and Yop ∈
Sn+q
+ be the unique positive semidefinite solutions to the

Lyapunov equations (9a) and (9b) with K̂=

[
0 ĈK

B̂K ÂK

]
∈

Cq, respectively. Define a transfer function of size p×m

G(s) := Ccl(sI −AT
cl
)−1Bcl. (15)

where A
cl

is defined in (7) with the K̂ above, and Ccl :=
C̄Xop + V B̄T

K , Bcl := YopB̄ + C̄T
KR, with

C̄=
[
C 0

]
∈Rp×(n+q), B̄=

[
B
0

]
∈R(n+q)×m, (16)

C̄K=
[
0 ĈK

]
∈Rm×(n+q), B̄K=

[
0

B̂K

]
∈R(n+q)×p.

The following statements hold.

1) If K̃ in (14) is globally optimal in Cn, then the
function G(s) in (15) is identically zero ∀s ∈ C.

2) If G(s) in (15) is not a zero function, then K̃ is
a strict saddle point (the Hessian of Jn(K) at K̃
is indefinite) with probability one when randomly
choosing a stable and symmetric Λ ∈ Sn−q .

3) Let Z be the set of zeros of G(s), i.e.,Z =
{s ∈ C | G(s) = 0} . Given a stable and symmetric
Λ ∈ Sn−q, let eig(−Λ) denote the set of (distinct)
eigenvalues of −Λ. If eig(−Λ) ⊈ Z , then the
Hessian of Jn(K) at K̃ is indefinite.

Proof. Statements 1) and 2) are direct consequences of
Statement 3). We give simple arguments below.
3)⇒ 1): If K̃ in (14) is globally optimal in Cn, then

the Hessian of Jn(K) at K̃ must be positive semidefinite.
If G(s) is not identically zero, then its zero set Z is a
set of finite points due to the fundamental theorem of
algebra1. Then, there exists a symmetric Λ ∈ Sn−q such
that eig(−Λ) ⊈ Z , and thus its Hessian at K̃ is indefinite.
This is contradicted with K̃ being globally optimal.

1Every non-zero, single-variable, degree n polynomial with complex
coefficients has, counted with multiplicity, exactly n complex roots.

3)⇒ 2): If G(s) is not an identically zero function,
then its zero set Z is a set of finite points. When choosing
a stable and symmetric Λ ∈ Sn−q randomly, we have
eig(−Λ) ⊈ Z holds with probability one. Thus, K̃ is a
strict saddle point with probability one.

The proof of Statement 3) exploits the bilinear property
of the Hessian and the non-controllable/non-observable
property to identify a two-by-two hessian block[

Hess K̃(∆
(1),∆(1)) Hess K̃(∆

(1),∆(2))
Hess K̃(∆

(1),∆(2)) Hess K̃(∆
(2),∆(2))

]
∈ S2

in which the diagonal entries are always zero. Using the
Hessian calculation in [20, Lemma 4.3], we then prove
that if eig(−Λ) ⊈ Z , then the off-diagonal entries are
non-zero. The Hessian of Jn(·) at K̃ is thus indefinite.
Details are presented in the appendix.

Our Theorem 2 includes the recent result [20, Theorem
4.2] as a special case in which the authors only consider
a zero controller K = 0. Our main proof in the appendix,
however, is motivated by that in [20, Theorem 4.2] with
more complicated and careful calculations.

If the transfer function G(s) is not identically zero,
then K̃ in (14) is a strict saddle point with probability
one when randomly choosing Λ. Thus, we can apply the
perturbed policy gradient method for “escaping saddle”
[22], so that the policy gradient iterations do not get
stuck around these sub-optimal saddle points. We note
that when G(s) is not identically zero, K̃ in (14) may still
have a zero Hessian (i.e., high-order saddle) if Λ is chosen
such that eig(−Λ) ⊆ Z; an explicit example is given
Example 3 below. Therefore, our proposed perturbed
policy gradient method for the LQG problem (4) includes
perturbations on Λ as well as on the gradients. More
details are given in Section IV.

Remark 2 (Sufficiency of G(s) ≡ 0 for global optimality
and its interpretation). Theorem 2 holds with q = n, so
G(s) ≡ 0,∀s ∈ C is also true when K comes from the
Riccati equations. In this case, we expect that G(s) in
(15) should have a nice control-theoretic interpretation.
It is interesting to further investigate whether G(s) ≡
0,∀s ∈ C is sufficient (or some other suitable conditions
are needed) to certify the global optimality of K̃. □

We conclude this section by presenting three explicit
LQG examples to illustrate Theorem 2.

Example 1. We first consider the famous Doyle’s LQG
example [24], which has system matrices

A =

[
1 1
0 1

]
, B =

[
0
1

]
, C =

[
1 0

]
,

and performance weights

W = 5

[
1 1
1 1

]
, V = 1, Q = 5

[
1 1
1 1

]
, R = 1.



The globally optimal LQG controller from (6) is

A⋆
K =

[
−4 1
−10 −4

]
, B⋆

K =

[
5
5

]
, C⋆

K =
[
−5 −5

]
.

The Hessian J2(K) at K⋆ =

[
0 C⋆

K

B⋆
K A⋆

K

]
∈ C2 is

positive semidefinite and has eigenvalues λ1 = 8.1111×
105, λ2 = 6133.9, λ3 = 131.2, λ4 = 6.36, λ5 =
· · · = λ8 = 0 (see Appendix C for details). Four zero
eigenvalues are expected due to the symmetry induced
by the similarity transformation [20, Lemma 4.6]. We
further compute the matrices in (16) (their values can be
found in the appendix), and we have

(C̄Xop + V B̄T
K)(sI −AT

cl
)−1YopB̄

=
−12.5s3 − 604.2s2 − 1712s− 566.7

s4 + 6s3 + 11s2 + 6s+ 1
,

and
(C̄Xop + V B̄T

K)(sI −AT
cl
)−1C̄T

KR

=
12.5s3 + 604.2s2 + 1713s+ 566.7

s4 + 6s3 + 11s2 + 6s+ 1
.

Thus, we have

G(s)=(C̄Xop+V B̄T
K)(sI−AT

cl
)−1(YopB̄+C̄T

KR) ≡ 0.

This result that G(s) being identically zero is expected
from Theorem 2 since K⋆ is globally optimal. □

We then consider [20, Example 7] for which the
globally optimal LQG controller is non-minimal in Cn.

Example 2. Consider an LQG instance with matrices

A =

[
0 −1
1 0

]
, B =

[
1
0

]
, C =

[
1 −1

]
and performance weights

W =

[
1 −1
−1 16

]
, V = 1, Q =

[
4 0
0 0

]
, R = 1.

The globally optimal controller from (6) is given by

A⋆
K =

[
−3 0
5 −4

]
, B⋆

K =

[
1
−4

]
, C⋆

K =
[
−2 0

]
.

It is easy to verify that (C∗
K, A

∗
K) is not observable. The

Hessian of J2(K) at K⋆ ∈ C2 is positive semidefinite
with eigenvalues as λ1 = 581.5529, λ2 = 7.1879, λ3 =
0.2592, λ4 = · · · = λ8 = 0. (See Appendix D for
details). Four zero eigenvalues are expected, due to
the symmetry by similarity transformations, and the
other zero is caused by the unobservablility of (C∗

K, A
∗
K).

Consider two reduced-order controllers

K1 =

[
0 −2
1 −3

]
∈ C1, K2 =

[
0 0.5

−4 −3

]
∈ C1,

both of which are globally optimal. Thus, the following

two full-order controllers

K̃1 =

 0 −2 0

1 −3 0
0 0 Λ

 , K̃2 =

 0 0.5 0

−4 −3 0
0 0 Λ

 ,

are globally optimal as well. From Theorem 2, we expect
G(s) ≡ 0 for both K̃1 and K̃2. For both of them, we
can compute (details are in Appendix D) that

(C̄Xop + V B̄T
K)(sI −AT

cl
)−1YopB̄ =

26.5s+ 56.5

(s+ 1)2

(C̄Xop + V B̄T
K)(sI −AT

cl
)−1C̄T

KR = −26.5s+ 56.5

(s+ 1)2
.

Thus, we have the expected result from Theorem 2 that
G(s) = (C̄Xop+V B̄T

K)(sI−AT
cl
)−1(YopB̄+C̄T

KR) ≡ 0.

Finally, we consider an LQG problem with a high-order
saddle point. This high-order saddle point is predicted
in Theorem 2 and [20, Theorem 4.2].

Example 3. Consider an LQG instance with an open-
loop stable system, in which the problem data are

A =

[
−0.5 0
0.5 −1

]
, B =

[
−1
1

]
, C =

[
− 1

6
11
12

]
,

with weight matrices W = Q = I2, V = R = 1.
Since this example is open-loop stable, [20, Theorem

4.2] guarantees that K̃ =

[
0 0

0 Λ

]
∈ C2 with any stable

Λ ∈ R2×2 is a stationary point. At this controller, we
can compute that the transfer function in (15) is

G(s) =
5(2s− 1)

108(2s2 + 3s+ 1)
.

The zero set Z = {0.5} contains a single value. For any
stable Λ with eig(−Λ) ⊈ Z , the Hessian is indefinite by
Theorem 2. For instance, with Λ = −diag(0.5, 0.1), the
Hessian is indefinite with eigenvalues λ1 = 0.0561, λ2 =
−0.0561, λi = 0, i = 3, . . . , 8. However, we can check
that if Λ = −0.5I2, (i.e. AK = −0.5I2, BK = 0, CK =
0), its Hessian is degenerated to zero, implying that it
is a high-order saddle. Our proposed perturbed gradient
descent algorithm in the next section can escape this
type of high-order saddles efficiently.

IV. PERTURBED POLICY GRADIENT METHOD

Inspired by Theorems 1 and 2, we introduce a novel
perturbed policy gradient method that combines a struc-
tural perturbation on Λ in (14) with a standard perturba-
tion on gradients [21], [22]. Numerical results confirm
that our perturbed policy gradient method can escape
high-order saddles more efficiently, than either vanilla
policy gradient or standard perturbed policy gradient [22].



A. Algorithm setup

Recent work has established that variations of gradient
descent can escape strict saddle-points – points at which
the minimum eigenvalue of the Hessian is strictly nega-
tive. For example, stochastic gradient descent [21], gra-
dient descent with appropriate random perturbation [22]
or with cubic regularization sub-oracle [23] are proven
to escape strict saddles and visit an approximate local
minimum in polynomial time with high probability.

Our method combines the standard perturbed gradient
descent [22, Algorithm 2] with an additional oracle
of random structural perturbation on Λ. Our perturbed
policy gradient descent is listed in Algorithm 1. We note
that Algorithm 1 is a prototype algorithm in the sense
that some quantities (e.g., order-reduction, gradient and
Hessian Lipschitz constants) of the LQG problem require
more investigations. Convergence conditions and further
quantitative analysis of our algorithm are also left for
future work.

The high-level ideas are described below.

• When the gradient of a controller Kt is close to zero,
we check whether it is minimal, i.e., the smallest Han-
kel singular value of the controllability/observability
matrix is bounded away from zero (for the connec-
tion with Hankel singular values and controllabil-
ity/observability, please refer [3, Chapter 7]).

• If Kt is controllable and observable (i.e., minimal),
it is close to be globally optimal by Theorem 1. We
terminate the algorithm.

• If Kt is non-minimal, we perform a minimal realization
(e.g., Kalman decomposition or balance realization) to
get a controller in the form of (13).

• We then choose a symmetric and stable Λ randomly.
From Theorem 2, we expect that the resulting controller
is close to a strict saddle point.

• We apply a random perturbation on the gradients. The
random perturbation is i.i.d. Gaussian variables, with
small magnitudes, added to each entry of AK, BK, CK

such that the controller is still stabilizing. We run a
few gradient descent iterations afterwards. We expect
that these gradient descent iterations will escape from
the strict saddle point.

• We terminate the algorithm when the algorithm reaches
the predefined number of steps T .

Algorithm 1 can escape a large class of (but not all)
high-order saddles at which G(s) in (15) is not identically
zero. When Algorithm 1 terminates, it is likely to produce
an approximately global minimum or return a point at
which the transfer function G(s) in (15) is close to zero.
In the later case, the point may not be globally optimal,
and this is related to the sufficiency of G(s) ≡ 0 for
global optimality in Remark 2.

Algorithm 1 Perturbed policy gradient

Require: 1) Loss J(K) with its gradient. 2) Thresholds
gth, ι. 3) Constant T , τ , step size η. 4) Func-
tion λHan,min(K) that returns the minimum singular
value of the Hankel matrix of K. 5) Function
reduce_order(K) that finds the approximate order
of K.

1: Set t = 0, tperturb = −τ−1 and initialize a stabilizing
controller K0.

2: while t ≤ T do
3: if ∥∇J(Kt)∥ ≤ gth and λHan,min(Kt) ≥ ι then
4: output K
5: else if ∥∇J(Kt)∥ ≤ gth and λHan,min(Kt) ≤ ι and

t− tperturb > τ then
6: K̂t, qt ← reduce_order(Kt) where qt is the

order after model reduction;
7: Λt ← λIn−qt with λ < 0 randomly selected;
8: Kt ← diag(K̂t,Λt) as in (14) (Theorem 2);
9: Kt ← Kt + ξt with ξt uniformly sampled from

BKt
(r);

10: tperturb ← t;
11: end if
12: Kt+1 ← Kt − η∇J(Kt);
13: t← t+ 1;
14: end while

B. Numerical results

We implement Algorithm 1, and consider Example 3
for numerical comparison with three other algorithms:

1) Vanilla policy gradient;
2) Standard perturbed policy gradient [22] (with no

perturbation on dynamics Λ, i.e., no Lines 6-8 in
Algorithm 1);

3) Perturb the dynamics Λ but with no perturbation on
gradients (i.e., no Line 9 in Algorithm 1.).

The globally optimal controller from (6) for the LQG
instance in Example 3 is

A⋆
K=

[
−1.10 0.13
1.19 −1.64

]
, B⋆

K=

[
0.11
0.45

]
, C⋆

K=[0.62−0.22] .

To illustrate the performance of different algorithms, we
initialize the controller at

AK,0= -0.5I2, BK,0=

[
0

0.01

]
, CK,0=

[
0, -0.01

]
. (17)

As discussed in Example 3, this initial point is close to
a high-order saddle AK = −0.5I2, BK = 0, CK = 0. We
add a perturbation to the first iteration and run gradient
descent with the fixed step size. The perturbations are
different, as discussed at the beginning of this section.

The results are shown in Figure 1: the left sub-figure
shows the suboptimality gap, and the right one shows
the norm of graidents at each iteration. Our Algorithm 1



Fig. 1: Comparison of different perturbed and Vanilla policy
gradient (PG) methods: Our Algorithm 1, Vanilla GD, standard
PGD in [22] (with no perturbation on dynamics Λ), and PGD
with perturbation on dynamics Λ only. These algorithms all start
from the same point (17) near a high-order saddle, and applied
fixed step-size gradient descent iterations. Left: suboptimality
J(Kt)−J⋆

J⋆ ; Right: norm of gradients ∥∇J(Kt)∥.

implements both perturbations: 1) identifying an one-
dimensional Λ as in the standard form (14) and change
it randomly, and 2) randomly perturb all variables with
a small quantity 0.01. As shown in Figure 1, our
Algorithm 1 can escape this high-order saddle faster
than the other three algorithms, including the standard
PGD in [22] (in which no perturbation on Λ was applied).

V. CONCLUSIONS

We have proposed a novel PGD algorithm (cf. Al-
gorithm 1) to escape high-order saddles of LQG. Our
PGD algorithm combines the inherent structure of LQG
control with standard perturbation on gradients. We have
shown the structure of all stationary points after model
reduction (cf. Theorem 1). We have also introduced a
reparameterization procedure with an intriguing transfer
function G(s) at any stationary point (cf. Theorem 2).
If G(s) ̸≡ 0, we can certify that the high-order saddle
can be made as a strict saddle by the reparameterization.
Numerical simulations confirmed that Algorithm 1 com-
bining the reparameterization with random perturbation
on gradients can accelerate the speed of escaping high-
order saddles. Ongoing and future directions include
quantitative analysis of Algorithm 1. We are also inter-
ested in the sufficiency of G(s) ≡ 0 (or other conditions
are needed) for global optimality of LQG (see Remark 2).
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APPENDIX

In this appendix, we complete the proofs to Theorems 1 and 2, and present some further details on the Hessian
computations in Examples 1 to 3.

A. Proof of Theorem 1
Our proof for Theorem 1 is built on the classical Kalman decomposition for linear time-invariant (LTI) systems

and a recent result in [20, Theorem 4.1]. We first recall the celebrated Kalman canonical decomposition.

Theorem 3 (Kalman decomposition [3, Theorem 3.10]). Given any LTI system of the form

ẋ = Ax+Bu

y = Cx+Du,
(18)

there exists a nonsingular coordinate transformation x̃ = Tx such that
˙̃xco
˙̃xcō
˙̃xc̄o
˙̃xc̄ō

 =


Ãco 0 Ã13 0

Ã21 Ãcō Ã23 Ã24

0 0 Ãc̄o 0

0 0 Ã43 Ãc̄ō



x̃co

x̃cō

x̃c̄o

x̃c̄ō

+


B̃co

B̃cō

0
0

u

y =
[
C̃co 0 C̃c̄o 0

] 
x̃co

x̃cō

x̃c̄o

x̃c̄ō

+Du,

(19)

where the vector x̃co is controllable and observable, x̃cō is controllable but unobservable, x̃c̄o is observable but
uncontrollable, and x̃c̄ō is uncontrollable and unobservable. Moreover, the transfer matrix from u to y is given by

G(s) = C(sI −A)−1B +D = C̃co(sI − Ãco)
−1B̃co +D.

The dimension of x̃co is the same as the dimension of the minimal realization of G(s). The result in [20, Theorem
4.1] states that any stationary point of Jq can be augmented to be a stationary point of Jq+q′ for any q′ > 0 over
Cq+q′ with the same LQG cost.

Theorem 4 ( [20, Theorem 4.1] ). Let q ≥ 1 be arbitrary. Suppose there exists K̂ =

[
0 ĈK

B̂K ÂK

]
∈ Cq such that

∇Jq(K̂) = 0. Then for any q′ ≥ 1 and any stable Λ ∈ Rq′×q′ , the following controller

K̃ =

 0 ĈK 0

B̂K ÂK 0
0 0 Λ

 ∈ Cq+q′

is a stationary point of Jq+q′ over Cq+q′ satisfying Jq+q′
(
K̃
)
= Jq(K̂).

We are now ready to prove Theorem 1.

Proof of Theorem 1: Let K =

[
0 CK

BK AK

]
∈ Cn be a stationary point of LQG (4). According to Theorem 3, we

can perform a Kalman decomposition using a similarity transformation T , i.e.,[
0 CK

BK AK

]
→
[

0 CKT
−1

TBK TAKT
−1

]
=

[
0 C̃K

B̃K ÃK

]
= K̃

where the system (ÃK, B̃K, C̃K, 0) is in the standard Kalman decomposition of the form (19). By Lemma 2, we
further have

∇Jn|K̃ =

[
Im 0
0 T−T

]
· ∇Jq|K ·

[
Ip 0
0 TT

]
= 0.

Therefore, the new point K̂ in the Kalman decomposition remains to be a stationary point of Jn in Cn. This is
expected since K̃ and K corresponds to the same transfer function.

Denote the controllable and observable components in K̃ =

[
0 C̃K

B̃K ÃK

]
∈ Cn as K̃co =

[
0 C̃K,co

B̃K,co ÃK,co

]
∈ Cq,

where q is the dimension of controllable and observable states (i.e., the dimension of its minimal realization). Since



K̃ is a stationary point of Jn(K) over Cn, the directional derivatives of Jn(K) at K̃co are all zero. Therefore, it is
not difficult to see that K̃co is a stationary point of Jq(K) over Cq .

Now, given an arbitrary minimal realization of K as K̂ =

[
0 ĈK

B̂K ÂK

]
∈ Cq, there exists a unique similarity

transformation Tq ∈ Rq×q [3, Theorem 3.17] such that[
0 ĈK

B̂K ÂK

]
=

[
0 C̃K,coT

−1
q

TqB̃K,co TqÃK,coT
−1
q

]
.

Lemma 2 ensures that this minimal realization K̂ ∈ Cq is a stationary point of Jq(K) since K̃co is stationary.
Applying Theorem 4 with q′ = n− q leads to the desired result in (13).

The statement that K is globally optimal when q = n has been shown in [20, Theorem 4.3] where the authors
have shown that all minimal full-order stationary points are in the form (6) up to a similarity transformation. This
completes the proof. □

B. Proof of Theorem 2

Before presenting the proof, we recall a few definitions. We define a linear space

Vq :=

{[
DK CK

BK AK

]
∈ R(m+q)×(p+q)

∣∣∣∣ DK = 0m×p

}
. (20)

Let K be any controller in Cn ⊂ Vn, and we use HessK : Vn × Vn → R to denote the bilinear form of the Hessian
of Jn at K, so that for any ∆ ∈ Vn, we have

Jn(K+∆) = Jn(K) + tr
(
∇Jq(K)T∆

)
+

1

2
HessK(∆,∆) + o(∥∆∥2F ) (21)

as ∥∆∥F → 0. Obviously, HessK is symmetric in the sense that HessK(x, y) = HessK(y, x) for all x, y ∈ Vn.
We recall [20, Lemma 4.3] that presents the hessian calculations of the LQG problem (4) by solving three

Lyapunov equations.

Lemma 3 ( [20, Lemma 4.3]). Fix q ≥ 1 such that Cq ̸= ∅. Let K =

[
0 CK

BK AK

]
∈ Cq. Then for any ∆ =[

0 ∆CK

∆BK
∆AK

]
∈ Vq , we have

HessK(∆,∆) = 2 tr

(
2

[
0 B∆CK

∆BK
C ∆AK

]
X ′

K,∆ · YK + 2

[
0 0

0 CK
TR∆CK

]
·X ′

K,∆

+

[
0 0
0 ∆BK

V∆T
BK

]
YK +

[
0 0
0 ∆T

CK
R∆CK

]
XK

)
,

where XK and YK are the solutions to the Lyapunov equations (9a) and (9b), and X ′
K,∆ ∈ R(n+q)×(n+q) is the

solution to the following Lyapunov equation[
A BCK

BKC AK

]
X ′

K,∆ +X ′
K,∆

[
A BCK

BKC AK

]T
+M1(XK,∆) = 0, (22)

with

M1(XK,∆) :=

[
0 B∆CK

∆BK
C ∆AK

]
XK +XK

[
0 B∆CK

∆BK
C ∆AK

]T
+

[
0 0

0 BKV∆T
BK

+∆BK
V BK

T

]
.

We are now ready to prove the main technical result in Theorem 2. Our proof is motivated by that of [20, Theorem
4.2] with more complicated and careful computation. The main idea is to exploit the bilinear property of the Hessian
and the non-controllable/non-observable property to identify a two-by-two hessian block[

Hess K̃(∆
(1),∆(1)) Hess K̃(∆

(1),∆(2))
Hess K̃(∆

(1),∆(2)) Hess K̃(∆
(2),∆(2))

]
∈ S2

in which the diagonal entries are always zero. Using the Hessian calculation in Lemma 3, we then prove that if
eig(−Λ) ⊈ Z , then the off-diagonal entries are non-zero. The Hessian of Jn(K) at K̃ is thus indefinite.



Proof of Theorem 2: Consider a direction as

∆ =

 0 0 ∆C

0 0 0
∆B 0 ∆A

 ∈ Vn, with ∆A ∈ R(n−q)×(n−q),∆B ∈ R(n−q)×p,∆C ∈ Rm×(n−q).

The corresponding controller K̃+∆ in frequency domain is[
ĈK ∆C

](
sI −

[
ÂK 0
0 Λ +∆A

])−1 [
B̂K

∆D

]
=
[
ĈK ∆C

] [sI − ÂK 0
0 sI − Λ−∆A

]−1 [
B̂K

∆D

]
= ĈK(sI − ÂK)

−1B̂K +∆C(sI − Λ−∆A)
−1∆B .

We let

∆(1) =

 0 0 ∆C

0 0 0
0 0 0

 ,∆(2) =

 0 0 0

0 0 0
∆B 0 0

 ,∆(3) =

 0 0 0

0 0 0
0 0 ∆A

 .

Now it is clear that the controllers K̃+ t∆(i), i = 1, 2, 3 and K̃+ t(∆(i) +∆(3)), i = 1, 2 correspond to the same
transfer function in the frequency domain. Therefore, for all sufficiently small t, we have

Jn(K̃) = Jn(K̃+ t∆(1)) = Jn(K̃+ t∆(2)) = Jn(K̃+ t∆(3))

= Jn(K̃+ t(∆(1) +∆(3))) = Jn(K̃+ t(∆(2) +∆(3))).

This implies that
Hess K̃(∆

(i),∆(i)) = 0, ∀i = 1, 2, 3,

and
Hess K̃(∆

(1) +∆(3),∆(1) +∆(3)) = Hess K̃(∆
(2) +∆(3),∆(2) +∆(3)) = 0.

Then, by the bilinearity of the Hessian, we have

Hess K̃(∆,∆) = Hess K̃(∆
(1) +∆(2) +∆(3),∆(1) +∆(2) +∆(3))

= Hess K̃(∆
(1) +∆(2),∆(1) +∆(2)) + 2Hess K̃(∆

(3),∆(1) +∆(2)) + Hess K̃(∆
(3),∆(3))

= Hess K̃(∆
(1) +∆(2),∆(1) +∆(2)).

We also have

Hess K̃(∆
(1),∆(2)) =

1

2
Hess K̃(∆

(1) +∆(2),∆(1) +∆(2))−Hess K̃(∆
(1),∆(1))−Hess K̃(∆

(2),∆(2))

=
1

2
Hess K̃(∆

(1) +∆(2),∆(1) +∆(2))

=
1

2
Hess K̃(∆,∆).

If there exists a direction ∆ =

 0 0 ∆C

0 0 0
∆B 0 ∆A

 ∈ Vn, such that Hess K̃(∆,∆) ̸= 0, then Hess K̃ must be indefinite

since there is a two-by-two block [
Hess K̃(∆

(1),∆(1)) Hess K̃(∆
(1),∆(2))

Hess K̃(∆
(1),∆(2)) Hess K̃(∆

(2),∆(2))

]
(23)

which has zero diagonal entries and non-zero off-diagonal entries.
The rest of the proof is show that if Λ is symmetric and eig(−Λ) ⊈ Z with Z defined in Theorem 2, we can

indeed find a direction ∆ such that Hess K̃(∆,∆) ̸= 0.
Computation of Hess K̃(∆,∆): Consider the controller K̃ and a direction ∆̂ as

K̃ =

 0 ĈK 0

B̂K ÂK 0
0 0 Λ

 ∈ Cn, ∆̂ =

 0 0 ∆C

0 0 0
∆B 0 0

 ∈ Vn.
where Λ is an (n− q)× (n− q) stable symmetric matrix.



We let XK̃ and YK̃ be the unique positive semidefinite solutions to the Lyapunov equations[
A BCK̃

BK̃C AK̃

]
XK̃ +XK̃

[
A BCK̃

BK̃C AK̃

]T
+

[
W 0
0 BK̃V BT

K̃

]
= 0, (24a)[

A BCK̃
BK̃C AK̃

]T
YK̃ + YK̃

[
A BCK̃

BK̃C AK̃

]
+

[
Q 0
0 CT

K̃
RCK̃

]
= 0. (24b)

Note that (24a) reads as A BĈK 0

B̂KC ÂK 0
0 0 Λ

XK̃ +XK̃

 A BĈK 0

B̂KC ÂK 0
0 0 Λ

T

+

W 0 0

0 B̂KV (B̂K)
T 0

0 0 0

 = 0. (25)

Then, the solutions XK̃ and YK̃ to the Lyapunov equations (24a) and (24b) are in the form of

XK̃ =

[
Xop 0
0 0

]
∈ S2n+ ,

YK̃ =

[
Yop 0
0 0

]
∈ S2n+

where Xop ∈ Sn+q
+ is the unique positive semidefinite solution to the left-upper Lyapunov equation in (25), i.e.,[

A BĈK

B̂KC ÂK

]
Xop +Xop

[
A BĈK

B̂KC ÂK

]T
+

[
W 0

0 B̂KV (B̂K)
T

]
= 0,

which is the same as (9a), and Yop ∈ Sn+q
+ is the unique positive semidefinite solution to (9b).

We next use Lemma 3 to compute the hessian Hess K̃(∆̂, ∆̂). For this computation, we note that

∆BK
=

[
0q×p

∆B

]
∈ Rn×p,

∆CK
=
[
0m×q ∆C

]
∈ Rm×n

and that [
0 0
0 ∆BK

V∆T
BK

]
YK̃ =

 0 0 0
0 0 0

0 0 ∆BV∆T
B

[Yop 0
0 0

]
≡ 0

[
0 0
0 ∆T

CK
R∆CK

]
X̃K =

[
0 0
0 ∆T

CK
R∆CK

] [
Xop 0
0 0

]
≡ 0.

Therefore, by Lemma 3, we can see that

Hess K̃(∆̂, ∆̂) = 4 tr

([
0 B∆CK

∆BK
C 0

]
X ′

K̃,∆̂

[
Yop 0
0 0

])
+ 4 tr

([
0 0
0 CT

K̃
R∆CK

]
X ′

K̃,∆̂

)
, (26)

where X ′
K̃,∆̂

is the solution to the following Lyapunov equation A BĈK 0

B̂KC ÂK 0
0 0 Λ

X ′
K̃,∆̂

+X ′
K̃,∆

 A BĈK 0

B̂KC ÂK 0
0 0 Λ

T

+M1(XK̃, ∆̂) = 0, (27)



In (27), the matrix M1(XK̃, ∆̂) is defined as

M1(XK̃, ∆̂)

=

 0 0 B∆C

0 0 0
∆BC 0 0

[Xop 0
0 0

]
+

[
Xop 0
0 0

] 0 0 B∆C

0 0 0
∆BC 0 0

T

+

 0 0 0

0 0 B̂KV∆T
B

0 ∆BV (B̂K)
T 0


=

[
0 Xop(∆BC̄)T

∆BC̄Xop 0

]
+

[
0 B̄KV∆T

B

∆BV B̄T
K 0

]
=

[
0(n+q)×(n+q) (XopC̄

T + B̄KV )∆T
B

∆B(C̄Xop + V B̄T
K) 0(n−q)×(n−q)

]
∈ S2n,

where we have used the definition in (16), i.e.,

C̄ =
[
C 0

]
∈ Rp×(n+q), B̄ =

[
B
0

]
∈ R(n+q)×m, B̄K =

[
0

B̂K

]
∈ R(n+q)×p.

For notational convenience, we define

Acl =

[
A BĈK

B̂KC ÂK

]
∈ R(n+q)×(n+q).

Then, the solution to the Lyapunov equation (27) becomes

X ′
K̃,∆

=

∫ ∞

0

([
eAclt 0
0 eΛt

] [
0(n+q)×(n+q) (XopC̄

T + B̄KV )∆T
B

∆B(C̄Xop + V B̄T
K) 0(n−q)×(n−q)

] [
eAclt 0
0 eΛt

]T)
dt

=

∫ ∞

0

[
0(n+q)×(n+q) eAclt(XopC̄

T + B̄KV )∆T
Be

ΛTt

eΛt∆B(C̄Xop + V B̄T
K)e

AT
clt 0(n−q)×(n−q)

]
dt.

(28)

Now we have

tr

([
0(n+q)×(n+q) B̄∆C

∆BC̄ 0

]
X ′

K̃,∆̂

[
Yop 0
0 0

])
=

∫ ∞

0

tr

([
0 B̄∆C

∆BC̄ 0

][
0 eAclt(XopC̄

T + B̄KV )∆T
Be

ΛTt

eΛt∆B(C̄Xop + V B̄T
K)e

AT
clt 0

] [
Yop 0
0 0

])
dt

=

∫ ∞

0

tr
(
B̄∆Ce

Λt∆B(C̄Xop + V B̄T
K)e

AT
cltYop

)
dt.

(29)

For the second part in (26), we have[
0n×n 0
0 CT

K̃
R∆CK

]
=

[
0n×n 0

0
[
ĈK 0

]T
R
[
0 ∆C

]] =

 0 0 0

0 0 (ĈK)
TR∆C

0 0 0

 .

Then, we have

tr

 0 0 0

0 0 (ĈK)
TR∆C

0 0 0

X ′
K̃,∆̂


=

∫ ∞

0

tr

([
0(n+q)×(n+q) C̄T

KR∆C

0 0

] [
0(n+q)×(n+q) eAclt(XopC̄

T + B̄KV )∆T
Be

ΛTt

⋆ 0(n−q)×(n−q)

])
dt

=

∫ ∞

0

tr
(
C̄T

KR∆Ce
Λt∆B(C̄Xop + V B̄T

K)e
AT

clt
)
dt,

(30)

where we have defined
C̄K =

[
0 ĈK

]
∈ Rm×(n+q)



Substituting (29) and (30) into (26) leads to

Hess K̃(∆̂, ∆̂) =4

∫ ∞

0

tr
(
B̄∆Ce

Λt∆B(C̄Xop + V B̄T
K)e

AT
cltYop

)
dt

+ 4

∫ ∞

0

tr
(
C̄T

KR∆Ce
Λt∆B(C̄Xop + V B̄T

K)e
AT

clt
)
dt

=4

∫ ∞

0

tr
(
∆Ce

Λt∆B(C̄Xop + V B̄T
K)e

AT
clt(YopB̄ + C̄T

KR)
)
dt

(31)

Let λ ∈ eig(−Λ)\Z . Since λ /∈ Z , there exists some i, j such that

G(λ) := e
(p)
i

T
(C̄Xop + V B̄T

K)(λI −AT
cl
)−1(YopB̄ + C̄T

KR))e
(m)
j ̸= 0, (32)

where e
(p)
i ∈ Rp is the i-th element of the standard basis in Rp and e

(m)
j ∈ Rm the j-th element of the standard

basis in Rm.
We consider a symmetric Λ ∈ Sn−q , then it can be diagonalized with real eigenvalues

TΛT−1 =

[
−λ 0
0 ∗

]
∈ Sn−q.

We then choose a special direction

∆̂ =

 0 0 ∆C

0 0 0
∆B 0 0

 ∈ Vn,
with

∆C = e
(m)
j

(
e
(n−q)
1

)T
T−1, ∆B = Te

(n−q)
1

(
e
(p)
i

)T
For this choice, we have

∆Ce
Λt∆B = e−λte

(m)
j

(
e
(p)
i

)T
,

leading to

Hess K̃(∆̂, ∆̂) = 4

∫ ∞

0

eTi (C̄Xop + V B̄T
K)(λI −AT

cl
)−1(YopB̄ + C̄T

KR))ejdt

= 4
(
e
(p)
i

)T
(C̄Xop + V B̄T

K)(λI −AT
cl
)−1(YopB̄ + C̄T

KR))e
(m)
j ,

= 4G(λ),

(33)

which is not zero by (32). We thus have an indefinite 2-by-2 hessian block in (23). This completes the proof. □

C. Hessian Computations in Examples 1 to 3

Here, we present some details about the Hessian calculations in Examples 1 to 3. For all the Hessian calculation
below, we use the standard basis in Vn.

1) Example 1: The Hessian of J2(K) at the optimal controller K⋆ ==

 0 −5 −5
5 −4 1
5 −10 −4

 ∈ C2 is

HessK⋆ =



1.1321 −0.9375 0.9375 1.0889 −0.9056 −1.1321 −1.2916 1.0889
−0.9375 0.7871 −0.7871 −0.8980 0.7571 0.9375 1.0517 −0.8980
0.9375 −0.7871 0.7871 0.8980 −0.7571 −0.9375 −1.0517 0.8980
1.0889 −0.8980 0.8980 1.0488 −0.8685 −1.0889 −1.2492 1.0488
−0.9056 0.7571 −0.7571 −0.8685 0.7293 0.9056 1.0208 −0.8685
−1.1321 0.9375 −0.9375 −1.0889 0.9056 1.1321 1.2916 −1.0889
−1.2916 1.0517 −1.0517 −1.2492 1.0208 1.2916 1.5084 −1.2492
1.0889 −0.8980 0.8980 1.0488 −0.8685 −1.0889 −1.2492 1.0488


× 105

which is positive semidefinite and has eigenvalues

λ1 = 8.1111× 105, λ2 = 6133.9, λ3 = 131.2, λ4 = 6.36, λ5 = · · · = λ8 = 0.



We further compute the matrices in (16) as follows

C̄ =
[
1 0 0 0

]
, B̄ =


0
1
0
0

 , C̄K =
[
0 0 −5 −5

]
, B̄K =


0
0
5
5

 , Acl=


1 1 0 0
0 1 −5 −5
5 0 −4 1
5 0 −10 −4


and the unique solutions to Lyapunov equations (9a) and (9b) are

Xop=
1

6


680 −695 650 −725
−695 985 −725 925
650 −725 650 −725
−725 925 −725 925

 ,

Yop=
1

6


985 −695 −925 725
−695 680 725 −650
−925 725 925 −725
725 −650 −725 650

 .

Then, we can compute

(C̄Xop + V B̄T
K)(sI −AT

cl
)−1YopB̄ =

−12.5s3 − 604.2s2 − 1712s− 566.7

s4 + 6s3 + 11s2 + 6s+ 1
,

(C̄Xop + V B̄T
K)(sI −AT

cl
)−1C̄T

KR =
12.5s3 + 604.2s2 + 1713s+ 566.7

s4 + 6s3 + 11s2 + 6s+ 1
.

Thus, we have G(s)=(C̄Xop+V B̄T
K)(sI−AT

cl
)−1(YopB̄+C̄T

KR)) ≡ 0. This result that G(s) being identically
zero is expected from Theorem 2 since K⋆ is globally optimal.

2) Example 2: In this example, the globally optimal controller from Riccati equation is non-minimal, at which the
Hessian is

HessK⋆ =



230 0 −115 73.5 0 208 −136.5 0
0 0 0 0 0 0 0 0
−115 0 57.5 −36.75 0 −104 68.25 0
73.5 0 −36.75 24.5 0 63.75 −44 0
0 0 0 0 0 0 0 0

208 0 −104 63.75 0 195.5 −122.25 0
−136.5 0 68.25 −44 0 −122.25 81.5 0

0 0 0 0 0 0 0 0


.

This hessian is positive semidefinite and has eigenvalues

λ1 = 581.5529, λ2 = 7.1879, λ3 = 0.2592, λ4 = · · · = λ8 = 0.

We have shown the following two non-minimal full-order controllers

K̃1 =

 0 −2 0

1 −3 0
0 0 Λ

 , K̃2 =

 0 0.5 0

−4 −3 0
0 0 Λ

 ,

are also globally optimal to the LQG problem in Example 2. The Hessian at these two controllers are

Hess K̃1
=



230 0 −115 73.5 0 0 0 0
0 0 0 0 0 0 0 0
−115 0 57.5 −36.75 0 0 0 0
73.5 0 −36.75 24.5 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


,



with eigenvalues λ1 = 311.0647, λ2 = 0.9353, λi = 0, i = 3, . . . 8 and

Hess K̃2
=



14.375 0 −115 −18.375 0 0 0 0
0 0 0 0 0 0 0 0
−115 0 920 147 0 0 0 0
−18.375 0 147 24.5 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


,

with eigenvalues λ1 = 957.8879, λ2 = 0.9871, λi = 0, i = 3, . . . 8. We further compute the matrices in (16) as
follows

C̄ =
[
1 −1 0

]
, B̄ =

10
0

 , C̄K =
[
0 0 0.5

]
, B̄K =

 0
0
−4

 , Acl=

 0 −1 0.5
1 0 0
−4 4 −3


and the unique solutions to Lyapunov equations (9a) and (9b) are

Xop=
1

4

 21 −32 −68
−32 81 128
−68 128 272

 , Yop =
1

8

32 0 4
0 16 0
4 0 1

 .

Then, we can compute

(C̄Xop + V B̄T
K)(sI −AT

cl
)−1YopB̄ =

26.5s+ 56.5

(s+ 1)2

(C̄Xop + V B̄T
K)(sI −AT

cl
)−1C̄T

KR = −26.5s+ 56.5

(s+ 1)2
.

Thus, we have G(s)=(C̄Xop+V B̄T
K)(sI−AT

cl
)−1(YopB̄+C̄T

KR)) ≡ 0. This result that G(s) being identically
zero is expected from Theorem 2 since K̃2 is globally optimal.

3) Example 3: The system is open-loop stable. Therefore, according to [20, Theorem 4.2], the zero controller

K̃ =

[
0 0

0 Λ

]
∈ C2 with any stable Λ ∈ R2×2 is a stationary point. We compute the matrices in (16) as

C̄ =
[
− 1

6
11
12

]
, B̄ =

[
−1
1

]
, C̄K =

[
0 0

]
, B̄K =

[
0
0

]
, Acl=

[
−0.5 0
0.5 −1

]
and the unique solutions to (9a) and (9b) are Xop=

1

3

[
3 1
1 2

]
, Yop =

1

6

[
7 1
1 3

]
. Then, we can compute

G(s)=(C̄Xop + V B̄T
K)(sI −AT

cl
)−1(YopB̄ + C̄T

KR)) =
5(2s− 1)

108(2s2 + 3s+ 1)
.

The zero set Z = {0.5} contains a single value. For any stable Λ with eig(−Λ) ⊈ Z , the Hessian is indefinite
by Theorem 2. For instance, with Λ = −diag(0.5, 0.1), the Hessian is

Hess K̃ =



0 0 0 0 0 0 0 0
0 0 0 0 0 −0.0561 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 −0.0561 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


,

which is indefinite with eigenvalues λ1 = 0.0561, λ2 = −0.0561, λi = 0, i = 3, . . . , 8. However, we can check
that if Λ = −0.5I2, (i.e. AK = −0.5I2, BK = 0, CK = 0), its Hessian is degenerated to zero, implying that it
is a high-order saddle.
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