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Abstract— This letter studies the problem of online multi-
step-ahead prediction for unknown linear stochastic sys-
tems. Using conditional distribution theory, we derive an
optimal parameterization of the prediction policy as a linear
function of future inputs, past inputs, and past outputs.
Based on this characterization, we propose an online least-
squares algorithm to learn the policy and analyze its regret
relative to the optimal model-based predictor. We show
that the online algorithm achieves logarithmic regret with
respect to the optimal Kalman filter in the multi-step setting.
Furthermore, with new proof techniques, we establish an
almost-sure regret bound that does not rely on fixed failure
probabilities for sufficiently large horizons N. Finally, our
analysis also reveals that, while the regret remains loga-
rithmic in N, its constant factor grows polynomially with the
prediction horizon H, with the polynomial order set by the
largest Jordan block of eigenvalue 1 in the system matrix.

Index Terms— Model-free learning, Multi-step prediction,
Logarithmic Regret

I. INTRODUCTION

OLINE prediction of dynamical system behavior has long
been recognized as a fundamental problem in control

systems [1], robotics [2], computer vision [3], etc. Classical
approaches rely on an accurate model and known noise statis-
tics to propagate system responses and examine the effect of
future control inputs [4]. For instance, the celebrated Kalman
filter provides optimal mean-square-error predictions under
correct modeling assumptions [5]. In many applications [6]–
[8], however, obtaining explicit models and reliable noise
characterizations is impractical, especially when input-output
relationships are complex to identify. This has motivated
growing interest in learning prediction policies directly from
data, without full knowledge of the underlying system.

From model-based prediction to data-driven approaches, a
central challenge is how to parameterize the prediction policy.
Traditional system identification addresses this by first identi-
fying Markov parameters and then solving a nonconvex prob-
lem to extract a system model, upon which a standard Kalman
predictor can be used [9]. Recent advances have provided
non-asymptotic analysis of the identification process by char-
acterizing convergence rates of the identification error [10],
[11] and leveraging multiple trajectories to mitigate potential
state divergence [12]. Nonetheless, mapping from Markov
parameters to a system model is intrinsically nonlinear and
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nonconvex [13], which makes it difficult to establish strong
theoretical guarantees for online prediction performance.

Instead of identifying an explicit model, some recent studies
learn a prediction policy directly from input-output data [14]–
[18]. These methods exploit the Kalman filter’s structure and
parameterize the prediction policy as a linear function of past
inputs and outputs, and then estimate the weights via online
learning. This approach, also known as improper learning,
bypasses the intermediate system identification. Notably, [15]
shows that by employing a truncated autoregressive (AR)
model derived from the Kalman filter, a regret measure (i.e.,
the cumulative loss of the online predictor relative to the
optimal model-based prediction) scales logarithmically with
the time horizon. Thus, with sufficiently long trajectories, the
average prediction error of the online predictor approaches that
of the optimal Kalman filter. Building on this, [16] established
a similar logarithmic regret bound using low-rank approxi-
mation techniques to address slow convergence under heavy
noise. Our recent work [17] has introduced an exponential
forgetting strategy to address the unbalanced regression model
in online prediction while preserving the logarithmic regret.

The aforementioned results [14]–[18] focus primarily on
single-step prediction. In practical scenarios such as path plan-
ning and predictive control [19]–[21], multi-step predictions
are essential to enforce state constraints and optimize control
policies. While empirical studies [22], [23] suggest that recur-
sively applying a single-step predictor can extend the predic-
tion horizon, such autoregressive roll-outs can compound er-
rors and often underperform direct multi-step prediction [24].
Yet, the theory of effective multi-step prediction, especially a
quantitative characterization of performance degradation with
horizon length, remains largely underdeveloped.

In this paper, we focus on model-free online learning of
a multi-step-ahead predictor for linear stochastic systems.
Our contributions are as follows. First, based on conditional
distribution theory, we introduce an autoregressive model that
parameterizes the H-step-ahead prediction policy as a linear
combination of past outputs, past inputs, and future outputs
(Theorem 1). Unlike single-step prediction, the innovation
in H-step-ahead prediction becomes temporally correlated
and non-orthogonal. We further establish that the innova-
tion term coincides with the autoregressive roll-out in [15],
thereby providing a theoretical justification for the heuristic
approach. Second, based on the autoregressive model, we
propose an online least-squares-based learning algorithm for
H-step-ahead prediction. With a backward horizon chosen
proportional to logN , where N denotes the total time horizon,
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we establish that the regret with respect to the optimal model-
based Kalman predictor scales logarithmically in N almost
surely (Theorem 2). The regret remains logarithmic despite
the non-orthogonal innovation process. The prediction horizon
H does not change the order in N ; instead, it appears only
in the constant, which grows polynomially at a rate no larger
than H4κ+1, where κ is the size of the largest Jordan block of
eigenvalue 1 in the system matrix. Compared with the prior
literature [14]–[18], our results give the first explicit regret
scaling in terms of prediction horizon and hold almost surely
rather than merely in probability.

Notation: We use A ≻ B to denote that A− B is positive
definite. We use ∥·∥2, ∥·∥F , and ∥·∥1 to denote the 2-norm,
the Frobenius norm, and the 1-norm, respectively. N (µ, V )
denotes a Gaussian distribution with mean µ and variance V .
ρ(A) denotes the spectral radius of A. poly(x) denotes a
polynomial in x. O(f(x)) indicates the function is of the same
order as f(x), o(f(x)) indicates the function is of a smaller
order than f(x).

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Linear stochastic system and the Kalman filter
Consider the following linear stochastic system

xk+1 = Axk +Buk + wk,

yk = Cxk + vk, k = 0, 1, 2, . . .
(1)

where xk ∈ Rn is the state vector, uk ∈ Rnu is the input
vector, yk ∈ Rm is the output vector, ωk ∼ N (0, Q) and vk ∼
N (0, R) are the process and observation noises, respectively,
and we assume uk ∼ N (0, Inu).

In this paper, we make a standard assumption.
Assumption 1: The matrix A is marginally stable, i.e.,

ρ(A) ≤ 1, and the system pair (A,C) is detectable.
If the system parameters (A,B,C,Q,R) are known, we

can apply the Kalman filter [1], [5] to predict the future
outputs. Let Fk ≜ σ (y0, . . . , yk) be the filtration generated
by the observations y0, . . . , yk. Given Fk, we aim to predict
the optimal ŷk+1 in the minimum mean-square error sense:

ŷk+1 ≜ arg min
z∈Fk

E
[
∥yk+1 − z∥22 | Fk

]
. (2)

It is now well-known that the steady-state optimal predictor
takes a recursive form, known as the Kalman filter [5],

x̂k+1 = Ax̂k +Buk + L (yk − ŷk) , x̂0 = 0

ŷk = Cx̂k,
(3)

where L = APCT
(
CPCT+R

)−1
is called the steady-state

Kalman gain with P from the algebraic Riccati equation:

P = APAT +Q−APCT
(
CPCT +R

)−1
CPAT. (4)

It is also shown that the optimal prediction ŷk+1 is equiv-
alent to the expectation of yk+1 conditioned on Fk, i.e.,
ŷk+1 = E {yk+1 | Fk} [1, Section 2]. We note that the general
Kalman filter takes a time-varying form. However, due to the
exponential convergence of the conditioned output process yk
to become steady-state [1], the difference between the time-
varying and steady-state filters remains bounded by a constant.
Similar to [15]–[17], we focus directly on the steady-state
prediction in this paper.

B. Optimal one-step prediction policy
We briefly review here how to utilize the Kalman filter to

build an autoregressive model for single step prediction [15].
Denote ek = yk − ŷk as the innovation at time step k. By
rolling out the Kalman filter (3) backwards for p times, we can
reformulate yk+1 in terms of the past inputs and outputs as

yk+1 = G̃pZk,p + C(A− LC)px̂k−p+1 + ek+1, (5)

where Zk,p ≜
[
yTk−p+1 . . . yTk , u

T
k−p+1 . . . u

T
k

]T
collects the

past outputs and inputs, and G̃p denotes the optimal weights
consisting of G̃p =

[
G̃1,p, G̃2,p

]
, where:

G̃1,p ≜
[
C(A− LC)p−1L, · · · , CL

]
∈ Rm×pm (6a)

G̃2,p ≜
[
C(A− LC)p−1B, · · · , CB

]
∈ Rm×pnu . (6b)

This shows that the optimal steady-state policy for predicting
one-step-ahead output is a linear function of past outputs and
inputs. We here state another technical assumption [15]–[17]:

Assumption 2: The matrix A− LC is diagonalizable.
This assumption is used only to simplify the regret analysis.

It ensures an exponential decay bound ρ ((A− LC)p) ≤
Mρ(A − LC)p with some constant M > 0. There is no
fundamental difficulty without Assumption 2. If A − LC
contains higher-order Jordan blocks, the convergence speed
of (A−LC)p will be ρ ((A− LC)p) = poly(p)ρ(A−LC)p.
Hence, the backward horizon p should be further extended to
account for the slower convergence rate.

C. Problem statement
With observations up to time k, this paper aims to develop

an online multi-step-ahead prediction policy of the form

ỹk+H = fH(y0, . . . , yk, u0, . . . , uk, . . . , uk+H−1) (7)

where the term ỹk+H means the H-step ahead prediction at
time step k. If H = 1, this is reduced to the linear policy for
one-step prediction (5), as established in [15]. Following [15]–
[17], we quantify the performance of the online prediction in
terms of the regret measured against the Kalman filter (3) that
has full system knowledge. Under this setting, the original
benchmark Kalman predictor from (3), i.e.,

ŷk+H = arg min
z∈Fk+H−1

E
[
∥yk+H − z∥22 | Fk+H−1

]
,

will be too strong, since it uses the information up to yk+H−1.
To address this, we consider a modified benchmark, called

the H-step ahead Kalman predictor, defined as

ȳk+H ≜ arg min
z∈Fk

E
[
∥yk+H − z∥22 | Fk

]
. (8)

We aim to minimize the following regret

RN ≜
N∑

k=1

∥yk+H − ỹk+H∥2 −
N∑

k=1

∥yk+H − ȳk+H∥2 , (9)

where ỹk+H is our online model-free prediction (7) and ȳk+H

is the optimal model-based Kalman prediction (8).
We address two fundamental questions in designing (7): 1)

how to parameterize the optimal multi-step-ahead prediction
policy in terms of past outputs and control inputs; and 2) how
to effectively learn this policy online and quantify its regret
(9) relative to the optimal model-based predictor.
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III. MAIN RESULTS

A. Multi-step-ahead regression model

We here derive a closed-form expression of the model-
based optimal H-step ahead predictor and then provide a
parameterization of the optimal prediction policy.

Lemma 1: Consider the linear stochastic system (1) and the
optimal H-step ahead prediction problem (8). The optimal H-
step ahead prediction ȳk+H can be obtained recursively as

x̄k+H = AH−1x̂k+1 +

H−1∑
i=1

Ai−1Buk+i,

ȳk+H = Cx̄k+H ,

(10)

where x̂k+1 ≜ E {xk+1 | Fk} is the standard Kalman state
estimation from (3).

The proof is not difficult, and we present some details in
Appendix A. Lemma 1 shows that the optimal H-step-ahead
predictor can be obtained by first computing the best state esti-
mate x̂k+1 via the standard Kalman filter and then propagating
this estimate forward H − 1 steps using the system dynamics
together with the planned inputs {uk+1, . . . , uk+H−1}. The
predicted output ȳk+H is simply the observation of this rolled-
out state. Hence, optimal multi-step prediction reduces to
applying the Kalman estimator once at the current time,
followed by deterministic roll-out under the known dynamics.

Lemma 1 allows us to obtain an optimal prediction policy as
a linear function of past outputs, past inputs, and future inputs.

Theorem 1: Let rk+H = yk+H − ȳk+H denote the innova-
tion process for the H-step ahead predictor (10). The following
linear regression model holds

yk+H = GpZk,p +CAH−1(A−LC)px̂k−p+1 + rk+H , (11)

where Zk,p ≜
[
yTk−p+1 . . . yTk , u

T
k−p+1 . . . u

T
k+H−1

]T
con-

tains the past outputs, past inputs, and future inputs, and the
regressor weights Gp ≜ [G1,p, G2,p] are of the form:

G1,p ≜
[
CAH−1(A− LC)p−1L, · · · , CAH−1L

]
,

G2,p ≜
[
CAH−1(A− LC)p−1B, · · ·, CAH−1B, · · ·, CB

]
.

Furthermore, we have

rk+H = ek+H +
∑H−1

i=1 CAi−1Lek+H−i, (12)

where ek = yk − ŷk is the innovation in the Kalman filter (3).
We present the proof in Section IV-A. By definition,

the H-step innovation rk+H aggregates past process noise
wk+1, . . . , wk+H−1. The overlap among these noise compo-
nents induces correlations between rk+H and rk+H−l for l <
H . Thus, the usual orthogonality of the one-step innovation
process no longer holds in the H-step-ahead setting. As
established in (12), this non-orthogonal innovation rk+H can
be parameterized as a combination of ek+1, . . . , ek+H .

In [15], an H-step autoregressive (AR) model (without
control inputs) is obtained by rolling out the one-step AR
model H times, and its innovation ϵk+H satisfies ϵk+H =
ek+H +

∑H−1
i=1 CAi−1Lek+H−i, which coincides with (12).

This observation highlights that including control inputs does

not introduce additional uncertainty into the innovation pro-
cess. Furthermore, (12) provides an equivalent parameteriza-
tion of rk+H as a summation of temporally uncorrelated one-
step innovations ek across time. These properties are essential
in our online learning algorithm and its regret analysis.

B. Online learning and regret guarantee
From the linear regression (11), the H-step-ahead output

yk+H is a linear function of the past outputs, past inputs, and
future inputs, perturbed by a bias term depending on x̂k−p+1

and an innovation process rk+H . Following [14]–[17], we can
estimate Gp via least squares by regressing yt+H onto the
regressor Zt,p, t ≤ k (past inputs/outputs and future inputs).

Least-squares. We estimate Gk,p by ridge regression:

G̃k,p = argmin
G

k−H∑
t=p

∥yt+H −GZt,p∥2F + λ ∥G∥2F , (13)

where λ > 0 is a regularization parameter. At each time step
k, by solving (13), we can obtain a closed form of G̃k,p as

G̃k,p =
∑k−H

t=p yt+HZT
t,pV

−1
k−H,p, (14)

where Vk−H,p ≜ λI+
∑k−H

t=p Zt,pZ
T
t,p is called the Gram ma-

trix, which contains all collected past available samples Zt,p.
We then predict the future observation by

ỹk+H = G̃k,pZk,p. (15)

Controlling bias. For nonexplosive systems ρ(A) ≤ 1, the
bias term x̂k−p+1 in (11) retains the state from previous time
steps, potentially growing at a polynomial rate. A persistent
bias error bk+H,p ≜ CAH−1(A − LC)px̂k−p+1 at each
step k could result in linear regret. Fortunately, Lemma 1
and classical theory guarantee that

∥∥AH−1(A− LC)p
∥∥
2
≤

c1H
κ−1ρ(A − CL)p, with ρ(A − LC) < 1. This property

allows us to control the accumulation of bias errors AH−1(A−
LC)px̂k−p+1 only with p = O(logH log k). We implement
this via the standard doubling trick [25] (as in [15]): partition
time into epochs of doubling length, and keep p fixed within
each epoch while increasing it between epochs. We note that
the prediction policy in [24] chooses p = 1, which will induce
a significant bias and degrade the prediction performance.

Recursive updates within an epoch. At each time step k,
we update the prediction ỹk+H using (15) and then observe
the new observation yk+1. Within each epoch, the predictor
can be computed recursively

Vk−H,p = Vk−H−1,p + Zk−H,pZ
T
k−H,p, (16a)

G̃k,p = G̃k−1,p + (yk − ỹk)Z
T
k−H,pV

−1
k−H,p. (16b)

A key distinction from the traditional one-step prediction [14]–
[18] is the update delay: the prediction ỹk+H is not used
immediately to update G at time k; due to the H-step horizon,
it contributes to the correction H steps later.

The model-free multi-step-ahead prediction is summarized
in Algorithm 1. We have the following regret guarantee.

Theorem 2: Consider the linear stochastic system (1). Sup-
pose Assumptions 1 and 2 hold. For a fixed H-step-ahead
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Algorithm 1 H-step-ahead Online Prediction (HOP)
1: Input: parameter β, λ, Tinit , NE

{Warm Up:}
2: for k = 1 to Tinit + 1 do
3: Observe yk, Generate uk+H−1;
4: end for

{Recursive Online Prediction:}
5: for l = 1 to NE do
6: Initialize Tl=2l−1Tinit + 1, p=β log Tl,
7: Compute VTl−H,p and G̃Tl,p;
8: for k = Tl to 2Tl − 2 do
9: Predict ỹk+H = G̃k,pZk,p;

10: Observe yk+1, Generate uk+H ;
11: Update Vk−H+1,p and G̃k+1,p as (16).
12: end for
13: end for

prediction, we choose the parameters in Algorithm 1 as

β =
O(κ+ logH)

log(1/ρ(A− LC))
, (17)

where κ represents the order of the largest Jordan block of
eigenvalue 1 in matrix A. Almost for sure, we have

RN ≤ MH4κ+1β3O
(
log7 N

)
, (18)

where M is a constant related to the system parameters.
We outline the proof in Section IV and highlight the key

technical differences compared with the literature [14]–[17].
Theorem 2 provides the first logarithmic regret for online

multi-step-ahead prediction with respect to the optimal model-
based predictor. When A has Jordan blocks at eigenvalue 1, the
regret remains logarithmic in N , but its constant scales polyno-
mially with the prediction horizon H , with degree determined
by the size of the largest such block. This logarithmic regret
holds true despite the innovation rk+H being non-orthogonal.
Compared with [14]–[18], our result gives the first explicit
polynomial scaling of the regret in the prediction horizon H .

Moreover, our bound holds almost surely, i.e., it does not
depend on a fixed failure probability δ ∈ (0, 1). The key idea
for this property is that for fixed δ, the original regret in the
literature [15]–[17] will scale with poly log 1

δ . For sufficiently
large N , we only need to let δ = 1

N , then the above bound
can be obtained. This property coincides with the empirical
result that the norm of a long Gaussian random process is
“very close” to the norm of its expectation [26]. To the best
of our knowledge, this is the first almost sure bound for online
prediction, although a similar technique has also been utilized
in online LQR [27].

IV. TECHNICAL PROOFS

A. Proof of Theorem 1
First, since x̂k+1 ≜ E {xk+1 | Fk} is the standard Kalman’s

state estimation from (3), we can roll the standard Kalman fil-
ter backwards for p times and get x̂k+1 = (A−LC)px̂k+1−p+∑p−1

l=0 (A−LC)l(Lyk−l+Buk−l). Then the regression model
(11) is a direct consequence of the recursive update (10)
combined with the above recursive relation.

In the following, we establish the relationship (12), and only
consider the steady-state innovation process. Denote x̃k+1 ≜
xk+1− x̂k+1 as the one-step optimal state prediction error for
Kalman filter (3), then we have

E
{
x̃k+1x̃

T
k+1

}
= P, ∀k ∈ N,

where P is from (4), and the following recursion holds

x̃k = (A− LC)x̃k−1 + wk−1 − Lvk−1.

By comparing yk+H and ȳk+H directly, we obtain

rk+H = CAH−1x̃k+1 + vk+H +

H−1∑
i=1

CAi−1wk+H−i. (19)

Consider the structure of ek = Cx̃k + vk. We have

ek+H =C(A−LC)x̃k+H−1+Cwk+H−1−CLvk+H−1+vk+H .

Together with

CLek+H−1 = CLCx̃k+H−1 + CLvk+H−1,

we further have

ek+H + CLek+H−1 = CAx̃k+H−1 + vk+H + Cwk+H−1.

With a similar procedure, we have a recursive deduction below

ek+H +
∑H−1

i=1 CAi−1Lek+H−i

=CAx̃k+H−1 + vk+H + Cwk+H−1 +
∑H−1

i=2 CAi−1Lek+H−i

=CAH−1x̃k+1 + vk+H +
∑H−1

i=1 CAi−1wk+H−i

.

Combining this with (19) leads to the desired relationship (12).

B. Proof of Theorem 2

We here outline the proof of Theorem 2 in four main steps.
More details for each step are postponed to the appendix.

1) Regret decompose: With [15, Theorem 1], the regret
RN is dominated by LN ≜

∑N
k=Tinit

∥ỹk+H − ȳk+H∥22 ., i.e.,
RN = LN+o(LN ). Hence, in the following proof, we mainly
analyze the scaling law of LN with respect to N and H . We
further decompose each ỹk+H − ȳk+H into three parts,

ỹk+H − ŷk+H =

k−H∑
l=p

bl+H,pZ
T
l,pV

−1
k−H,pZk,p − bk+H,p︸ ︷︷ ︸

Bias error

+

k−H∑
l=p

rl+HZT
l,pV

−1
k−H,pZk,p︸ ︷︷ ︸

Regression error

−λGpV
−1
k−H,pZk,p︸ ︷︷ ︸

Regularization error

.

We further denote Bk,p ≜
∥∥∥∑k−H

l=p bl+H,pZ
T
l,pV

− 1
2

k−H,p

∥∥∥2
2

as

the bias factor, Ek,p ≜
∥∥∥∑k−H

l=p rl+H,pZ
T
l,pV

− 1
2

k−H,p

∥∥∥2
2

as the

regression factor, Gk,p ≜
∥∥∥λGpV

− 1
2

k−H,p

∥∥∥2
2

as the regularization

factor, VN,p ≜
∑N

k=Tinit

∥∥∥V − 1
2

k−H,pZk,p

∥∥∥2
2

as the accumulation
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factor, and bN+H,p =
∑N

k=Tinit
∥bk+H,p∥22 as the accumulation

of bias. Then we can further decompose the term LN into

LN ≤ 4
(
max
k≤N

(Bk,p + Ek,p + Gk,p)
)
· VN,p+4bN+H,p. (20)

Note that from the expression of Gp, we can obtain that Gk,p ≤
MH2κ

1−ρ(A−LC) does not scale with N . Thus, in the following
proof, we discuss bias factor Bk,p, regression factor Ek,p, and
accumulation factor VN,p.

2) Suppress bk+H,p with large enough β : We state a lemma
for bias factor Bk,p and accumulation of bias bN+H,p.

Lemma 2: Suppose Assumptions 1 and 2 hold. For any
fixed β satisfying the condition in Theorem 2, we have

bN+H,p≤M log2 N, and max
Tinit≤k≤N

Bk,p≤M logN (21)

holds almost for sure.
To prove this lemma, we first fix a failure probability δ, and

we can guarantee that the system state x̂k scales polynomially
with k with high probability, i.e.,

P
{
∥x̂k∥22 ≤ Mk2κ log

1

δ
, ∀k ∈ N

}
≥ 1− δ. (22)

Then the bias factor satisfies Bk,p ≤
∑k−H

l=p ∥bl+H,p∥22 ≤∥∥CAH−1(A−LC)p
∥∥2
2

∑k−H
l=p ∥x̂k−p+1∥22 . With an exponen-

tial decay of (A−LC)p, and further letting δ = 1
N , we obtain

P
{
max
k≤N

Bk,p ≤ M logN

}
≥ 1− 1

N
,

holds for any fixed N . More details are given in Appendix C.
3) Decouple martingale process: We have the following

lemma for regression factor Ek,p
Lemma 3: Suppose Assumption 1 holds. For any fixed β

satisfying the condition in Theorem 2, we have

max
Tinit≤k≤N

Ek,p≤MH2κβ log2 N (23)

holds almost for sure.
From (12), we can divide the innovation into the summation

of H unrelated innovations ek, then the regression factor can
be further relaxed into

Ek,p ≤H

H−1∑
i=1

∥∥CAi−1L
∥∥2
2

∥∥∥ k−H∑
l=p

el+H−iZ
T
l,pV

− 1
2

k−H,p

∥∥∥2
2

+H
∥∥∥ k−H∑

l=p

el+HZT
l,pV

− 1
2

k−H,p

∥∥∥2
2
.

For each self-normalized martingale terms, we can apply [15,
Theorem 3] to show that for each 0 ≤ i ≤ H − 1∥∥∥ k−H∑

l=p

el+H−iZ
T
l,pV

− 1
2

k−H,p

∥∥∥2
2
≤ log

H

δ
+ log

detVk−H,p

detλI

holds uniformly for all k with high probability 1 − δ/H .
Similarly, with the almost sure bound for detVk−H,p as
maxk≤N log detVk−H,p ≤ Mβ log2 N , this lemma is proved
by choosing δ = 1

N . See Appendix D for details.

4) Concentration of accumulation: We have the following
lemma for accumulation factor VN,p

Lemma 4: Suppose Assumption 1 holds. For any fixed β
satisfying the condition in Theorem 2, we have

VN,p≤MH2κ+1β2 log5 N (24)

holds almost for sure.
Without loss of generality, we directly assume N =

2NETinit, where NE is the number of epochs. Then we can
decompose the VN,p into

VN,p≤ max
Tinit≤k≤N

∥∥∥V − 1
2

k−H,pV
1
2

k,p

∥∥∥2
2
×

NE∑
l=1

2Tl−2∑
k=Tl

∥∥∥V − 1
2

k,pl
Zk,pl

∥∥∥2
2
,

where the subscript of pl is to highlight the p varies with epoch
number l. For the second part, we can directly bound it by the
concentration inequality∑2Tl−2

k=Tl

∥∥∥V − 1
2

k,pl
Zk,pl

∥∥∥2
2
≤ log

(
detV2Tl−2,pl

/ detVTl−1,pl

)
.

While for the bound maxTinit≤k≤N

∥∥∥V − 1
2

k−H,pV
1
2

k,p

∥∥∥2
2
, note that∥∥∥V − 1

2

k−H,pV
1
2

k,p

∥∥∥2
2
≤ 1+

∑k
l=k−H+1 Zl,pV

−1
k−H,pZ

T
l,p, and hence

we need the following H-step AR representation of Zk,p,
which is derived as

Zk,p =

d∑
i=1

a
(H)
i−1Zk−H+i−d,p + δk,p +

H−1∑
j=1

a
(j)
d−1δk−j,p,

where each a
(j)
i−1 is obtained from the coefficient of minimal

polynomial of A and d is the dimension of minimal poly-
nomial of A. We can further show that a

(j)
i−1 ≤ jκ−1, and

hence finally provide a bound maxTinit≤k≤N

∥∥∥V − 1
2

k−H,pV
1
2

k,p

∥∥∥2
2
≤

MH2κ+1β log2 N holds almost for sure.
Proof of Theorem 2: We can now directly combine (20)

and Lemmas 2 to 4 to establish the desired regret bound in
(18), where we have eliminated the low-order terms.

V. NUMERICAL EXPERIMENTS

We here provide numerical experiments to verify the per-
formance of the proposed HOP in Algorithm 1. We consider a
modified dynamical system model from [15, Section V] with
control inputs. The system parameters are given by

A =

1 0.5 0
0 1 0.5
0 0 0.9

 , B =

00
1

 , C =
[
1 0 0

]
,

and Q = 0.01 ∗ I3, R = 0.01. The control input uk is
randomly generated from i.i.d. standard Gaussian distribution,
i.e., uk ∼ N (0, 1). The hyperparameter is chosen to be β = 2,
and Tinit = 400, the number of epochs is 3.

In Figure 1, we provide the comparison of regret RN with
different ahead prediction step H , where H are chosen to be
2, 4, 5, 6 respectively. We can see that the regret remains log-
arithmic despite different H . For a marginally stable system,
the regret scales nonlinearly with the increase of H , which is
consistent with the polynomial scaling claim in Theorem 2.
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Fig. 1. Comparison of regret RN across prediction horizons H ∈
{2, 4, 5, 6}. The regret remains logarithmic for all H. The multiplicative
constant increases nonlinearly with H.

TABLE I
COMPARISON OF RN SCALING WITH H FOR MARGINALLY STABLE

SYSTEM AND OPEN-LOOP STABLE SYSTEMS.

Ahead step H 2 4 6 8 10 12
RN (ρ(A) = 1) 30.7 123.7 410.9 1035 2280 4600
RN (ρ(A) = 0.6) 2.84 3.49 3.60 4.48 5.08 4.78

To further verify the scaling property of RN with respect
to H , we also consider an open-loop stable system. The
system matrix A is chosen to be A =

[
0.6 0.5 0
0 0.6 0.5
0 0 0.6

]
, and

the parameters B,C,Q,R remain the same as those in the
previous experiment. The regrets for the marginally stable
system and the open-loop stable system with different H are
listed in Table I. We can see that for the open-loop stable
system, the regret RN scales roughly linearly with H , and
even experiences a saturation effect for large enough H . While
for marginally stable systems, RN scales polynomially with
H , with the polynomial order between H2 and H3. These
results are consistent with our analysis in Theorem 2, though
the polynomial exponent there may be conservative.

VI. CONCLUSION

In this letter, we address the problem of multi-step-ahead
prediction for unknown linear stochastic systems. We have
derived an optimal parameterization of the H-step predictor
as a linear combination of future inputs, past inputs, and past
outputs. We have proposed an online least–squares-based al-
gorithm to learn this policy. Our algorithm achieves an almost-
sure logarithmic regret bound with respect to the optimal
model-based H-step predictor. The dependence on the time
horizon N is logarithmic, while the multiplicative constant
scales polynomially with the prediction horizon H . Future
directions include designing online feedback laws to stabilize
a linear stochastic system with regret guarantees relative to an
optimal LQR/LQG controller.
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APPENDIX

A. Proof of Lemma 1

It is known that the optimal prediction (8) is equivalent to
the conditional expectation [1, Section 2], i.e.,

ȳk+H = E {yk+H | Fk} .

We thus only need to compute this condition expectation. Let
f(x) be the probability distribution function of a random
variable x. The Chapman-Kolmogorov (C-K) equation says
that

f (xk+2 |Fk) =

∫
f (xk+2 |xk+1) f (xk+1 |Fk) dxk+1. (25)

From the system dynamics (1), we have

f (xk+1 |xk) = N (Axk +Buk, Q) .

Classical Kalman filtering theory guarantees that the steady-
state estimation [1] satisfies

f (xk+1 | Fk) = N (x̂k+1, P ) ,

where P is the unique positive semidefinite solution to the
ARE (4). Calculating the integral (25), we have

f (xk+2 | Fk) = N
(
Ax̂k+1 +Buk+1, APAT +Q

)
.

Performing the integral (25) for H−1 times recursively leads
to

f (xk+H | Fk) = N (x̄k+H , PH) ,

where the mean x̄k+H is defined in (10) and the covariance
P (H) takes the form as

PH = AH−1P
(
AH−1

)T
+
∑H−1

i=1 Ai−1Q(Ai−1)T. (26)

Since we have E {yk+H | Fk} = CE {xk+H | Fk}, the proof
is now completed.

B. Details for Regret decomposition

With classical results in online linear regression techniques
[15], [16], we first divide the regret RN into two parts, i.e.,

RN ≜
N∑

k=Tinit

∥yk+H − ỹk+H∥22 −
N∑

k=Tinit

∥yk+H − ȳk+H∥22

=

N∑
k=Tinit

∥ȳk+H − ỹk+H∥22︸ ︷︷ ︸
LN

+2

N∑
k=Tinit

rTk+H(ȳk+H−ỹk+H)︸ ︷︷ ︸
cross term

.

The first part is the accumulation of the gap ȳk − ỹk, while
the second part is a cross term between the innovation rk+H

and the gap ȳk − ỹk. Since rk+H can be decoupled into the

summation of H i.i.d. Gaussian sequences, from the self-
normalized martingale theory [28], it is standard to bound

N∑
k=Tinit

rTk+H (ȳk+H − ỹk+H) = Õ
(√

LN

)
= o (LN ) , (27)

i.e., the cross term is dominated by the accumulation term LN .
Then following standard linear regression techniques [14],

[28], we can divide the gap ȳk+H − ỹk+H at each time step
k as:

• 1) the regularization error induced by λI ,
• 2) the regression error induced by Gaussian innovation

rk+H ,
• 3) the bias error induced by bk+H,p = CAH−1(A −

KC)px̂k−p+1.

In particular, we rewrite the gap ỹk+H − ȳk+H as

ỹk+H − ŷk+H =

k−H∑
l=p

bl+H,pZ
T
l,pV

−1
k−H,pZk,p − bk+H,p︸ ︷︷ ︸

Bias error

+

k−H∑
l=p

rl+HZT
l,pV

−1
k−H,pZk,p︸ ︷︷ ︸

Regression error

−λGpV
−1
k−H,pZk,p︸ ︷︷ ︸

Regularization error

. (28)

The main difference between (28) and the decomposition in
[15], [16] is that the innovation rk+H is inherently correlated,
i.e., E

{
rk+HrTk+H−l

}
̸= 0, ∀l < H , which requires some

decoupling techniques. Due to the time delay, the bias term
will be affected by AH−1, which requires a longer past horizon
to suppress. Furthermore, the delay induced asymmetry, i.e.,
the cross between V

− 1
2

k−H,pZk,p will further complicate the
analysis process. Following a simple argument, we have the
following bound.

LN =
N∑

k=Tinit

∥ỹk+H − ȳk+H∥22

≤4
(
max
k≤N

(Bk,p + Ek,p + Gk,p)
)
· VN,p + 4bN,p, (29)

where the factors are defined as

Bk,p≜
∥∥∥Bk,pZ̄k−H,pV

− 1
2

k−H,p

∥∥∥2
2
, Ek,p≜

∥∥∥Rk,pZ̄
T
k−H,pV

− 1
2

k−H,p

∥∥∥2
2
,

Gk,p ≜
∥∥∥λGpD

−2
p V

− 1
2

k−H,p

∥∥∥2
2
, VN,p ≜

N∑
k=Tinit

∥∥∥V − 1
2

k−H,pZk,p

∥∥∥2
2
,

bN+H,p =
∑N

k=Tinit
∥bk+H,p∥22. In the terms above, Bk,p ≜[

bp+H,p, . . . , bk,p
]
, Rk,p ≜

[
rp+H , . . . , rk

]
, Z̄k−H,p ≜[

Zp,p, . . . , Zk−H,p

]
are the collections of all past bias bl,p,

innovations rl, and samples Zl,p, respectively 1. Without loss
of generality, we directly assume N = 2NETinit, where NE is
the number of epochs.

1For a specific k in different epochs, the parameter p will be different due
to the doubling trick. In Algorithm 1, we always have p ≤ β log k.
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C. Proof for Lemma 2 and selection of β
We first provide an almost sure bound for the bias factors

and derive the requirement for β. Note that at each epoch l,
for any Tl ≤ k ≤ 2Tl − 2 there is

Bk,p =
∥∥∥Bk,pZ̄

T
k−H,pV̄

−1
k−H,pZ̄k−H,pB

T
k,p

∥∥∥2
2
≤

k∑
i=p+H

∥bi,p∥22

≤
k∑

i=p+H

∥∥CAH−1(A− LC)p
∥∥2
2
∥x̂i−p−H+1∥22 ,

where p = β log(Tl − 1). Denote Γk ≜ E
{
x̂kx̂

T
k

}
, with

Lemma 5, we have that for a fixed probability δ and for all
k ∈ N, there is

∥x̂k∥22 ≤
(
2n+ 3 log

k2

δ

)
∥Γk∥22

≤
(
2n+ 3 log

k2

δ

)(
∥Q∥2 + ∥B∥22

) k−1∑
i=0

∥∥Ai
∥∥2
2

uniformly holds for all k with probability at least 1− π2δ
6 . Note

that
∥∥Ai

∥∥2
2
≤ Mi2κ−2, where M is a constant only related

to system parameters, together with
∥∥CAH−1(A− LC)p

∥∥2
2
≤

MH2κ−2ρ(A− LC)2p, we first have that the inequality

Bk,p ≤ MH2κ−2ρ(A− LC)2pk2κ log
1

δ
,

holds for all k uniformly with probability 1− π2δ
6 . The above

inequality holds due to log k ≤ k. We then choose β =
M1

log(1/ρ(A−LC)) , where M1 is a parameter to be determined.
Then we have

Bk,p ≤MH2κ−2k2κρ(A− LC)
2M1 log k

2
log(1/ρ(A−LC)) log

1

δ

≤MH2κ−2 2
2M1k2κ

k2M1
log

1

δ
,

holds for all k uniformly with probability 1− π2δ
6 , where the

first inequality is from doubling trick. i.e., p ≥ β log k
2 . Hence

we only need to choose M1 > κ+ logH , then there is

P
{
Bk,p ≤ M log

1

δ
, ∀k ≥ Tinit

}
≥ 1− π2δ

6
.

For any fixed N , we choose δ = 1
N , then we further have

P
{
max
k≤N

Bk,p ≤ M logN

}
≥ 1− π2

6N
.

With the large enough N , we can conclude that
maxk≤N Bk,p ≤ MH logN holds almost surely. Moreover,
for the term bN,p, note that the value of p varies with the
epoch index l. Then we divide bN,p apart. Similar to the
previous analysis, we have

bN,p =

NE∑
l=1

2Tl−2∑
k=Tl

∥bk+H,p∥22 ≤ log(N/Tinit)

log 2
M log

1

δ

holds uniformly for all N with high probability 1 − π2δ
6 .

Therefore by letting δ = 1
N , we can conclude that bN,p ≤

M log2 N holds almost surely. We have completed the proof

that it is sufficient to guarantee the uniform boundedness of
bias error only with the parameter β chosen to be proportional
to 1/ log ρ(A− LC) and κ+ logH .

D. Proof of Lemma 3
From Theorem 1, we first have

rk+H = ek+H +

H−1∑
i=1

CAi−1Lek+H−i.

Then we denote Ep:k ≜
[
ep, . . . , ek

]
, we obtain that

Rk,p = Ep+H:k +

H−1∑
i=1

CAi−1LEp+H−i:k−i

With the Cauchy-Schwarz inequality, we further have

Ek,p ≤H
∥∥∥Ep+H:kZ̄

T
k−H,pV̄

− 1
2

k−H,p

∥∥∥2
2
+H

H−1∑
i=1

∥∥CAi−1L
∥∥2
2

×
∥∥∥Ep+H−i:k−iZ̄

T
k−H,pV̄

− 1
2

k−H,p

∥∥∥2
2
.

Due to the conditional independence between ek and
Zk−l,p, ∀l > 0, with [15, Theorem 3], we have∥∥∥R̄− 1

2Ep+H−i:k−iZ̄
T
k−H,pV

− 1
2

k−H,p

∥∥∥2
2

≤ m log 5 + log
H

δ
+ log

detVk−H,p

detλI
.

holds for all k ≥ Tinit and 1 ≤ i ≤ H − 1 uniformly with
probability at least 1 − δ, where R̄ ≜ CPCT + R is the
covariance of innovation ek Then we provide an almost sure
bound for the matrix Vk−H,p. Without loss of generality, we
only need to consider the uniform bound of Vk,p for all k ≥
Tinit. First note that Vk,p = λI +

∑k
l=p Zl,pZ

T
l,p, then denote

ΓZ
k,p ≜ E

{
Zk,pZ

T
k,p

}
, we have∥∥ΓZ

k,p

∥∥2
2
≤E

{
ZT
k,pZk,p

}
=tr
( k∑

i=k−p+1

E
{
yiy

T
i

}
+

k+H−1∑
i=k−p+1

E
{
uiu

T
i

})
≤ptr(R) + (p+H)nu

+ tr
(
CTC

k∑
i=k−p+1

i−1∑
l=0

Al(Q+BBT)(Al)T
)

≤mp ∥R∥2 + (p+H)nu + npM

k−1∑
l=0

l2κ−2

≤mp ∥R∥2 + (p+H)nu + npMk2κ−1.

With Lemma 5, we have(
ΓZ
k,p

)− 1
2Zk,pZ

T
k,p

(
ΓZ
k,p

)− 1
2≤
(
2(mp+(p+H)nu)+3log

k2

δ

)
I

holds for all k ≥ Tinit uniformly with probability 1 − π2δ
6 ,

together with the condition p ≤ β log k, we can obtain that
for each k ≤ N , there is

Z̄k,pZ̄
T
k,p =

k∑
l=p

Zl,pZ
T
l,p ≤

(
Mβ2k2κ log2 k log

1

δ

)
I
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holds uniformly with probability 1 − π2δ
6 . For any N , we

further choose δ = 1
N , then we can obtain that

Z̄k,pZ̄
T
k,p ≤

(
Mβ2N2κ+1

)
I, ∀k ≤ N

holds uniformly with probability at least 1− π2

6N . Furthermore,
we can obtain

log detVk−H,p ≤ log det
(
λI + Z̄k,pZ̄

T
k,p

)
≤ (mp+ (p+H)nu) log(Mβ2N2κ+1),

and for sufficiently large N , the above bound holds almost for
sure. Then for the term Ek,p, we further have that

Ek,p ≤H

(
m log 5 + log

H

δ
+ log

detVk−H,p

detλI

)
×
∥∥R̄∥∥2

2

(
1 +

H−1∑
i=1

∥C∥22 ∥L∥
2
2

∥∥Ai−1
∥∥2
2

)

≤MH

(
1 +

H−1∑
i=1

i2κ−2

)

×
(
log

H

δ
+ (mp+ (p+H)nu) log(MβN2κ+1)

)
,

uniformly holds for all k ≤ N with probability at least 1− δ.
Similarly, for fixed N , with p ≤ β logN , we choose δ =
1
N , then we have the term log H

δ = logHN dominated by
p log(MβN2κ+1) ≤ β log2 N . We finally have that

max
k≤N

Ek,p ≤ MH2κβ log2 N,

holds almost for sure.

E. Proof of Lemma 4
We first relax the term VN,p as

VN,p≤ max
Tinit≤k≤N

∥∥∥V − 1
2

k−H,pV
1
2

k,p

∥∥∥2
2
×

NE∑
l=1

2Tl−2∑
k=Tl

∥∥∥V − 1
2

k,pl
Zk,pl

∥∥∥2
2
,

and we first consider the uniform boundedness of∥∥∥V − 1
2

k−H,pV
1
2

k,p

∥∥∥2
2
. Note that

Vk,p = Vk−H,p +

k∑
l=k−H+1

Zl,pZ
T
l,p.

Then we have

V
− 1

2

k−H,pVk,pV
− 1

2

k−H,p =I + V
− 1

2

k−H,p

( k∑
l=k−H+1

Zl,pZ
T
l,p

)
V

− 1
2

k−H,p.

Therefore we can bound the
∥∥∥V − 1

2

k−H,pV
1
2

k,p

∥∥∥2
2

by

∥∥∥V − 1
2

k−H,pV
1
2

k,p

∥∥∥2
2
≤ 1 +

k∑
l=k−H+1

ZT
l,pV

−1
k−H,pZl,p

To bound ZT
l,pV

−1
k−H,pZl,p for l > k−H , we need to consider

the successive representation of Zl,p with Zs,p, s < l.
Consider the minimal polynomial of A as

Ad = ad−1A
d−1 + · · ·+ a0,

and the companion matrix of A can be written as

A =


0 0 · · · 0 a0
1 0 · · · 0 a1
...

...
...

. . .
...

0 0 · · · 1 ad−1

 ,

where d is the dimension of the minimal polynomial of A.
Then similar to [15, Lemma 2], we first derive the innovation
representation of output yk as

yk = CAdx̂k−d +

d∑
i=1

CAi−1Buk−i+ek+

d∑
i=1

CAi−1Lek−i.

Then, with the minimal polynomial of A, we can derive the
successive representation of the yk as

yk = ad−1yk−1 + . . .+ a0yk−d + δk

where

δk =

d∑
s=0

Lsek−s +

d∑
s=1

Ksuk−s,

Ls = −ad−sIm + CAs−1L−
s−1∑
t=1

ad−s+tCAt−1L, L0 = I,

Ks = CAs−1B −
s−1∑
l=1

ad−s+lCAl−1B.

Then for the augmented form, further denote Ẽk,p =[
eTk−p+1, . . . , e

T
k

]T
, Ũk,p =

[
uT
k−p+1, . . . , u

T
k

]T
, we can

rewrite Zk,p as

Zk,p = ad−1Zk−1,p + . . .+ a0Zk−d,p + δk,p. (30)

The term δk,p takes the form as δk,p =
[
δ
(1)T
k,p , δ

(2)T
k,p

]T
, with

δ
(1)
k,p =

d∑
s=0

diagp (Ls) Ẽk−s,p +

d∑
s=1

diagp (Ks) Ũk−s,p,

and δ
(2)
k,p = Ũk+H−1,p+H−

∑d−1
s=0 asŨk+H−1+s−d,p+H , where

diagp (L) = diag
(
L, . . . , L︸ ︷︷ ︸

p

)
. Furthermore, we denote a

(s)
l

as the (l + 1, d)-th element of matrix As. Then substitute
the successive representation of Zk−1,p into eq. (30), we can
obtain

Zk,p = a
(2)
d−1Zk−2,p+ . . .+a

(2)
0 Zk−d−1,p+δk,p+a

(1)
d−1δk−1,p.

By performing the above recursion for H times, we can obtain

Zk,p =

d∑
i=1

a
(H)
i−1Zk−H+i−d,p + δk,p +

H−1∑
j=1

a
(j)
d−1δk−j,p. (31)

For each k−H+1 ≤ l ≤ k, consider the term ZT
l,pV

−1
k−H,pZl,p,

by substituting the successive representation (31) and applying

9



Cauchy-Schwarz inequality, we can obtain

ZT
l,pV

−1
k−H,pZl,p ≤ (H + 1)

( d∑
i=1

a
(H)
i−1Zl−H+i−d,p

)T
V −1
k−H,p

×
( d∑

i=1

a
(H)
i−1Zl−H+i−d,p

)
+ (H + 1)δTl,pV

−1
k−H,pδl,p

+ (H + 1)

H−1∑
j=1

a
(j)
d−1δ

T
l−j,pV

−1
k−H,pa

(j)
d−1δl−j,p. (32)

To provide a uniform bound for the above terms, we need to
first provide a uniform bound for each δl−j,p. We can verify
that for fixed d, the norm of Ls is uniformly bounded for all
s = 0, . . . , d− 1, Then we have the following bound for δk,p
that

∥δk,p∥22 ≤ Mpmax
k≤N

∥ek∥22 +M(p+H) max
k≤N+H

∥uk∥22

where M is only related to system parameters. With Lemma 5,
for fixed N , we have

P
{
∥ek∥22 ≤ M log

k2

δ
, ∀k ≥ Tinit

}
≥ 1− π2δ

6
.

Then choose δ = 1
N , we have

max
k≤N

∥ek∥22 ≤ 3M logN

almost for sure for any fixed N . Moreover, due to uk ∼
N (0, Inu), we also have

max
k≤N+H

∥uk∥22 ≤ 3M log(N +H)

almost for sure for any fixed N and H . Then together with
p ≤ β logN and N ≫ H , we have

max
k≤N

∥δk,p∥22 ≤ Mβ log2 N

holds almost for sure, where H is eliminated as a low-order
term.

Then we reconsider the term ZT
l,pV

−1
k−H,pZl,p , together with

Vk−H,p ≥ λI , we have

a
(j)
d−1δ

T
l−j,pV

−1
k−H,pa

(j)
d−1δl−j,p ≤

(
a
(j)
d−1

)2
λ

Mβ log2 N

for each 1 ≤ j ≤ H − 1. Moreover, from Woodbury Equality,
there is also

ZT
k,p

(
Vk−1,p + Zk,pZ

T
k,p

)−1
Zk,p =

ZT
k,pV

−1
k−1,pZk,p

1 + ZT
k,pV

−1
k−1,pZk,p

≤ 1.

Hence we have( d∑
i=1

a
(H)
i−1Zl−H+i−d,p

)T
V −1
k−H,p

(
·
)
≤ d

d∑
i=1

(
a
(H)
i−1

)2
where (·) =

∑d
i=1 a

(H)
i−1Zl−H+i−d,p for brevity and

ZT
l,pV

−1
k−H,pZl,p ≤d(H + 1)

d∑
i=1

(
a
(H)
i−1

)2
+ (H + 1)Mβ log2 N

+ (H + 1)

H−1∑
j=1

(
a
(j)
d−1

)2
λ

Mβ log2 N.

Note that the term a
(j)
d−1 is from matrix Aj , and the matrix A

shares the same minimal polynomial with A. Hence we have∥∥Aj
∥∥2
F
≤ Mj2κ−2, and

(
a
(j)
i−1

)2 ≤ Mj2κ−2 uniformly holds
for all i ≤ d and j ≤ H . Finally, we have

max
Tinit≤k≤N

∥∥∥V − 1
2

k−H,pV
1
2

k,p

∥∥∥2
2
≤ MH2κ+1β log2 N

holds almost for sure, where the constant term d
∑d

i=1

(
a
(H)
i−1

)2
will also be dominated by log2 N for large N .

Then we consider the term
∑NE

l=1

∑2Tl−2
k=Tl

∥∥∥V − 1
2

k,pl
Zk,pl

∥∥∥2
2
.

For the accumulation error at the l-th epoch, where Tl =
2l−1Tinit + 1, from [29, Lemma 2] (also [15, Lemma 1]), we
first have the following result for the accumulation error

2Tl−2∑
k=Tl

∥∥∥V − 1
2

k,p Zk,p

∥∥∥2
2
≤ log

det(V2Tl−2,p)

det(VTl−1,p)
.

From Section D, we have

log
det(V2Tl−2,p)

det(VTl−1,p)
≤ log

det(V2Tl−2,p)

det(λI)
≤ Mβ log2 N

almost for sure for each l = 1, . . . , NE , then we have
NE∑
l=1

2Tl−2∑
k=Tl

∥∥∥V − 1
2

k,pl
Zk,pl

∥∥∥2
2
≤ MβNE log2 N

Note that NE = logN/Tinit
log 2 , then we have

NE∑
l=1

2Tl−2∑
k=Tl

∥∥∥V − 1
2

k,pl
Zk,pl

∥∥∥2
2
≤ Mβ log3 N

and

VN,p≤ max
Tinit≤k≤N

∥∥∥V − 1
2

k−1,pV
1
2

k,p

∥∥∥2
2
×

NE∑
l=1

2Tl−2∑
k=Tl

∥∥∥V − 1
2

k,pl
Zk,pl

∥∥∥2
2

≤MH2κ+1β2 log5 N

holds almost for sure for any N .

F. Supplementary Lemma
Lemma 5: For any given δ ∈ (0, 1) and for any Gaussian

random vector sequence Xk satisfies Xk ∼ N (0, Ip(k)), where
p(k) is a function of k, we define event TX as

TX ≜

{
∥Xk∥22 ≤ 2p(k) + 3 log

k2

δ
, ∀k ≥ 1

}
,

then the event EX holds with probability at least 1− π2δ
6 .

Proof: From [30, Lemma 1], for any Gaussian ran-
dom vector Xk ∼ N (0, Ip(k)). For each k ≥ 1, we have
P
{
∥Xk∥22 ≥ p(k) + 2

√
p(k) · t+ 2t2

}
≤ e−t2 . For each

time step k, take t =
√

log k2

δ and with inequality 2ab ≤

a2+ b2, then we have P
{
∥Xk∥22 ≤ 2n+ 3 log k2

δ

}
≥ 1− δ

k2 .

Then, take a union bound over all k, we have

P
{
∥Xk∥22 ≤ 2p(k) + 3 log

k2

δ
, ∀k ≥ 1

}
≥ 1−

∞∑
k=1

δ

k2
,

Then with
∑∞

k=1 1/k
2 = π2/6, this lemma is proved.
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