
1

Scalable Design of Structured Controllers using
Chordal Decomposition

Yang Zheng, Student Member, IEEE, Richard P. Mason and Antonis Papachristodoulou, Senior Member, IEEE

Abstract—We consider the problem of designing static feed-
back gains subject to a priori structural constraints, which is a
non-convex problem in general. Previous work has focused on
either characterizing special structures that result into convex
formulations, or employing certain techniques to allow convex
relaxations of the original problem. In this paper, by exploiting
the underlying sparsity properties of the problem, and using
chordal decomposition, we propose a scalable algorithm to obtain
structured feedback gains to stabilize a large-scale system. We
first extend the chordal decomposition theorem for positive
semidefinite matrices to the case of matrices with block-chordal
sparsity. Then, a block-diagonal Lyapunov matrix assumption
is used to convert the design of structured feedback gains into
a convex problem, which inherits the sparsity pattern of the
original problem. Combining these two results, we propose a
sequential design method to obtain structured feedback gains
clique-by-clique over a clique tree of the block-chordal matrix,
which only needs local information and helps ensure privacy
of model data. Several illustrative examples demonstrate the
efficiency and scalability of the proposed sequential design
method.

Index Terms—Scalable design, structured feedback gains,
chordal decomposition, large-scale systems.

I. INTRODUCTION

CONTROLLER synthesis for interconnected systems,
where multiple subsystems are interacting over a net-

work with limited communication, has received considerable
attention in recent years [1]–[4]. This problem arises in several
applications, such as the smart grid [5], unmanned aerial
vehicles [6], and automated highways [7]. One key challenge
in the case of decentralized systems is the design of structured
control policies based on local information, aiming to stabilize
the overall system and further minimize a certain cost function.

The general problem of designing linear feedback gains with
structured constraints is NP-hard [8]. Previous approaches to
synthesize decentralized controllers with information struc-
tures can be categorized into three cases: 1) finding exact
solutions for special classes of structures [4], [9], [10]; 2)
seeking tractable design approaches, using convex approx-
imations [11], [12]; and 3) obtaining suboptimal solutions
using non-convex optimization [13], [14]. In the first case,
for the class of systems that are quadratically invariant, it
is possible to find optimal decentralized controllers in the

Y. Zheng is supported by the Clarendon Scholarship and the Jason Hu
Scholarship. R. P. Mason was supported by an EPSRC studentship under
the Life Sciences Interface Doctoral Training Centre, grant EP/F500394/1.
A. Papachristodoulou is funded in part by EPSRC projects EP/M002454/1,
EP/J012041/1, and EP/J010537/1.

Y. Zheng, R. P. Mason and A. Paparchristodoulou are with the Department
of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ,
U.K. (e-mail: {yang.zheng,richard.mason,antonis@eng.ox.ac.uk}.)

frequency domain via a Youla parametrization [4], which in
general results in infinite-dimensional convex programs. In
another special class of structures modeled by partially ordered
sets [9], Shah and Parrilo derived explicit state-space solutions
by solving a number of uncoupled Ricatti equations when the
performance metric was the H2 norm. More recently, Kim
and Lall [10] presented a new factorization condition to split
the overall decentralized control problem into independent
subproblems, which can be explicitly solved. In the second
case, the strategy is to derive a convex relaxation of the
original problem, and obtain an approximate solution. For ex-
ample, decentralized control can be cast as a rank-constrained
semidefinite programming problem in the discrete-time and
linear-quadratic setting: a convex relaxation can be obtained
by dropping the rank constraint [11]. An alternative convex
optimization objective is formulated in [12], which has the
potential to solve problems with arbitrary structures. The third
case concerns approaches which try to search for structured
controllers by directly solving the original non-convex prob-
lem, using, e.g., augmented Lagrangian [13] and alternating
direction method of multipliers (ADMM) approaches [14].
Additionally, the notions of implementability and realizability
over arbitrary graphs have been introduced in [15], where
the Youla parametrization is used to characterize the set of
stabilizing controllers that are implementable.

The aforementioned diverse body of research provides pow-
erful tools for structured controller synthesis of decentralized
systems. However, there is less focus on the algorithmic
aspects that could make these methods practical for real-
istic large-scale systems, e.g., systems having thousands of
nodes interacting over a network. Consequently, most of the
examples in the literature are relatively small-scale systems.
In contrast, some practical decentralized systems, such as
the electrical power grid [16] and mass transportation sys-
tems [17], could involve thousands of states and controls or
more. Also, many of previous works implicitly assume there
exists a central entity to collect the complete model data and
perform centralized computation, which relatively ignore the
privacy concerns. Here, we consider the problem of designing
static state feedback gains with a priori structural constraints,
and propose a sequential algorithm based on local model
information for designing large-scale structured controllers via
chordal decomposition, bringing together positive semidefinite
matrices and chordal sparsity.

Chordal graphs are very well studied objects in graph
theory [18], [19]: an undirected graph is chordal if every
cycle of length greater than or equal to four has a chord.
Several important problems, which are hard on general graphs,

2

can be solved in polynomial time when the graph is chordal,
e.g., graph colouring and finding maximal cliques [20]. Also,
chordal graph theory has been widely applied to a number
of fields. For example, the properties of chordal graphs were
exploited to facilitate the solution of sparse linear systems
via sparse Cholesky factorization in [21]. For problems in
inference and machine learning, chordal graphs have been
applied to maximum likelihood estimation for sparse graphical
models [22], and to generalize the message passing algorithms
to graphs with cycles [23]. In the field of semidefinite pro-
gramming (SDP), Grone et al. [24] and Agler et al. [25]
proved two important results which relate chordal graphs to
sparse positive semidefinite matrices, equivalently reducing
the problem of checking whether a sparse chordal matrix is
positive semidefinite (or completable to a positive semidefinite
matrix) to checking whether special submatrices are positive
semidefinite. Moreover, Fukuda et al. [26] and Kim et al.
[27] showed that the results in [24], [25] could be used to
decompose the semidefinite constraints of primal and dual
SDPs, respectively. These results have been recently applied
to stability analysis of large-scale linear systems in [28],
obtaining significantly faster solutions than using standard
methods. Moreover, Andersen et al. have used ideas from
chordal graphs to improve the efficiency of robust stability
analysis of large-scale interconnected uncertain systems [29].

In this paper, we develop a scalable sequential design algo-
rithm based on local model information to synthesize struc-
tured feedback gains for large-scale decentralized systems. We
use two directed graphs to represent the networked system:
a plant graph and a communication graph. This naturally
results in block structured constraints in controller synthesis.
This structured controller design is relaxed into a convex
problem, leading to a decomposition of subsystems over
the maximal cliques of the underlying graph. Our approach
exploits block matrices with chordal structure to efficiently
compute structured feedback gains for large-scale systems. A
preliminary version of this paper was appeared in [30]. The
main contributions of this paper are as follows:

1) We note that block-positive semidefinite matrices with
chordal sparsity can be decomposed into an equivalent
set of small-size block-positive semidefinite matrices
with additional equality constraints. This is a direct
extension of the decomposition by Agler et al. [25] to
the case of block-chordal matrices. This result is more
convenient for applications in the analysis and synthesis
of networked systems, since it allows us to directly focus
on the sparsity in terms of block entries (subsystems).

2) We apply block-chordal decomposition to design struc-
tured controllers for large-scale systems in a sequen-
tial fashion. This method first uses a block-diagonal
Lyapunov matrix assumption to convert the design of
structured feedback gains into a convex problem that
inherits the sparsity pattern of the original problem.
Then, by equally splitting the effects of overlapping
subsystems in the chordal decomposition, we propose a
sequential method to solve the structured feedback gains
clique-by-clique over a clique tree.

3) The sequential method not only greatly reduces the
computational effort, making it scalable to large-scale
systems, but also only needs the information of local
network models, which helps preserve the model data
privacy. This means the subsystems only need to share
their dynamic models with their direct neighbours in
a clique tree, not globally or centrally. The price of
these advantages is that working with only local network
models certainly introduces conservatism. We provide
discussions on how to reduce the conservatism, and
present possible extensions to some synthesis problems
with performance guarantees.

The rest of this paper is organized as follows. In Section II
we introduce the necessary background on chordal graphs,
sparsity structures and large-scale systems over graphs. The
results on the decomposition of block-chordal matrices are
presented in Section III. In Section IV, we introduce a sim-
ple assumption to convert the design of structured feedback
gains into a convex problem. Then, we propose a scalable
sequential design algorithm to solve structured feedback gains
in Section V. Several illustrative examples are presented in
Section VII. We conclude the paper in Section VIII.

Notation: R denotes the set of real numbers. The set of
m × n real matrices is denoted by Rm×n, and the set of
symmetric matrices of order n is denoted by Sn. Given a
symmetric matrix X ∈ Sn, X � (�) 0 means that the matrix
is positive (semi-) definite. The relation X1 � (or �) X2 for
symmetric matrices means that X1 − X2 � (or �) 0. The
transpose of matrix C is denoted by CT . Let C ∈ Rm×n and
D ∈ Rp×q; then C ⊗ D denotes the Kronecker product of
C and D. For two matrices of the same dimension, C,D ∈
Rm×n, we denote the Hadamard product as C ◦ D, where
each element is defined as (C ◦D)ij = CijDij . In this paper,
I(0) denotes an identity matrix (a zero matrix) of dimension
compatible and clear from the context. diag(C1, . . . , CN) is a
block diagonal matrix with blocks Ci on its main diagonal.

II. PRELIMINARIES AND PROBLEM STATEMENT

We begin this section with a brief introduction on chordal
graphs and sparsity structures. For a more comprehensive
treatment, please refer to [18], [19]. The last part of this section
presents the problem statement.

A. Chordal Graphs

A directed graph G is represented by a set of N vertices V =
{1, 2, . . . , N} and a set of directed edges E ⊆ V×V: there is a
directed edge from i to j if (i, j) ∈ E . It is assumed that graph
G has no self-loops, i.e., (i, i) /∈ E . For each vertex i ∈ V , we
define the set of its neighbours as Ni = {j ∈ V | (j, i) ∈ E}. A
graph G is called undirected if (i, j) ∈ E ⇔ (j, i) ∈ E . A cycle
of length k in G is a sequence of pairwise distinct vertices
(v1, v2, . . . , vk) such that (vk, v1) ∈ E and (vi, vi+1) ∈ E for
i = 1, . . . , k−1. A chord is an edge joining two non-adjacent
vertices in a cycle.

Definition 1: (Chordal Graph) An undirected graph is
chordal if every cycle of length greater than or equal to 4
has a chord.

3

2 4

1 3 ={1, 2, 3}

 ={2, 3, 4}2 4

1 3

(a) (b) (c)

Fig. 1: Example of chordal extension and clique tree: (a) nonchordal graph,
(b) chordal graph, (c) clique tree.

An immediate consequence of this definition is that all
acyclic undirected graphs, undirected graphs with no cycles
of length greater than three, and complete graphs are chordal.
A clique of graph G = (V, E) is a subset of vertices C ⊆ V
such that (i, j) ∈ E for any distinct vertices i, j ∈ C, i.e.,
the subgraph induced by C is complete. The clique is called
maximal if it is not a subset of another clique. A related notion
is that of a simplicial vertex. A vertex v of an undirected
graph is called simplicial if the subgraph induced by all of its
neighbours is complete.

Proposition 1: [19] Every chordal graph has at least one
simplicial vertex.

Let G = (V, E) be a connected chordal graph with set of
maximal cliques Γ = {C1, C2, . . . , Cp}. These cliques can be
further arranged in a clique tree T = (Γ,Ξ) with Ξ ⊆ Γ× Γ,
which satisfies the running intersection property, i.e., Ci∩Cj ⊆
Ck if clique Ck lies on the path between cliques Ci and Cj
in the tree [18]. Note that there exist efficient algorithms to
find the cliques as well as a clique tree for a chordal graph
(corresponding procedures are given in Appendix A for the
sake of completeness). Given a connected chordal graph, some
maximal cliques have overlapping vertices, i.e., Ci∩Cj 6= ∅ for
some distinct cliques in Γ. Let C be an arbitrary subset of V
and define a set J(C) = {(i, j) ∈ C × C | i ≤ j}. Then, given
a clique tree T = (Γ,Ξ) that satisfies the running intersection
property, we denote the minimal set of overlapping elements
by Λ = {(i, j, k, l) | (i, j) ∈ J(Ck ∩ Cl), (Ck, Cl) ∈ Ξ}.

Nonchordal graphs G = (V, E) can be chordal extended,
i.e., we can construct a chordal graph Gex = (V, E ′) by
adding additional edges to E , such that Gex is chordal. Finding
chordal extensions with minimal number of edges corresponds
to sparse Cholesky factorization with minimum fill-ins, which
is known to be NP-complete [31]. However, several heuristics,
such as the minimum degree ordering followed by a symbolic
Cholesky factorization, are known to generate a good chordal
extension efficiently [19] (see the Appendix A).

Fig. 1 illustrates these notions. It is easy to see that the graph
in Fig. 1(b) is a chordal extension of that in Fig. 1(a). In this
example, there are two maximal cliques C1 = {1, 2, 3}, C2 =
{2, 3, 4}, and a clique tree is shown in Fig. 1(c). For this clique
tree, we have Λ = {(2, 2, 1, 2), (2, 3, 1, 2), (3, 3, 1, 2)}. Also,
vertices 1 and 4 are simplicial vertices, since their neighbours
{2, 3} induce a complete subgraph.

B. Sparsity Structures

Since we consider decentralized systems represented by
directed graphs, we need to characterize matrices with certain
sparsity structures. Given a directed graph G = (V, E) with

Fig. 2: Illustration of Proposition 2 for the graph shown in Fig. 1(b). X ∈
SN1,+(E, 0) can be decomposed as a sum of Xi , where Xi ∈ SCi1,+, i = 1, 2.

no self-loops, we define Ê = E ∪ {(i, i), i ∈ V}. The set of
matrices with a sparsity structure defined by G is denoted as

RNm,n(E , 0) = {X ∈ RmN×nN | Xij = 0 if (j, i) /∈ Ê},

where each entry Xij is a block of size m× n. If each block
is square, i.e., m = n, we simplify the notation RNn,n(E , 0) to
RNn (E , 0). If G is undirected, we further define the following
sets of symmetric (block) matrices with particular sparsity as

SNn (E , 0) = {X ∈ SnN | Xij = 0 if (j, i) /∈ Ê},
SNn,+(E , 0) = {X ∈ SNn (E , 0) | X � 0},
SCn = {X ∈ SnN | Xij = 0 if (i, j) /∈ C × C} for C ⊆ V,
SCn,+ = {X ∈ SCn | X � 0}.

where Xii ∈ Sn, and Xij ∈ Rn×n, i 6= j. Moreover, it will be
convenient to define (block) submatrices based on the subsets
of V . Given a block matrix X ∈ RmN×nN and two subsets
C1, C2 ⊆ V , we define

X(C1, C2) =

{
X̂ ∈ RmN×nN | X̂ij = Xij if (i, j) ∈ C1 × C2,

otherwise, X̂ij = 0

}
.

Note that X(C1, C2) contains many blocks with all entries
equal to zero. To eliminate these zero blocks, we construct
the submatrix XC1,C2 by eliminating the rows of X not in
C1 and the columns of X not in C2. When C1 = C2, we let
XC1 = XC1,C2 . Let Eij be the N×N matrix with 1 in (i, j)th
entry and 0 elsewhere. Then, {Eij} forms a basis for RN×N .
Further, we observe the following identity.

X(C1, C2) =
∑

(i,j)∈C1×C2

(Eij ⊗Xij),∀ C1, C2 ⊆ V.

The notation above is a natural extension to the notation
in [24]–[28], for block matrices. When each entry is a scalar,
i.e., n = 1, we have the following result first proved by Agler
et al. [25]:

Proposition 2: Let G = (V, E) be a chordal graph with a
set of maximal cliques Γ = {C1, C2, . . . , Cp}. X ∈ SN1 (E , 0)
is positive semidefinite if and only if there exists a set of
matrices Xk ∈ SCk1,+, k = 1, . . . , p which decompose X as
X =

∑p
k=1Xk.

A direct application of this result is to decompose a
large semidefinite constraint into a set of small semidefinite
constraints with additional equality constraints, which can
improve the efficiency of computing Newton steps for some
SDP problems [27]. A dual result of Proposition 2 is a theorem
by Grone et al. [24], which has been successfully used to
decompose primal SDPs (see [26] for details).

4

To help illustrate some of the notation, consider the graph
in Fig. 1(b) and we have the following matrices:

X =

X11 X12 X13 0
X21 X22 X23 X24

X31 X32 X33 X34

0 X42 X43 X44

 ∈ RNn (E , 0),

X(C1, C1) =

X11 X12 X13 0
X21 X22 X23 0
X31 X32 X33 0

0 0 0 0

 .
Fig. 2 gives an illustration of Proposition 2 for the chordal
graph shown in Fig. 1(b). There are two maximal cliques in
this graph. Hence, the matrix X ∈ SN1,+(E , 0) is decomposed
into two semidefinite matrices X1 ∈ SC11,+, X2 ∈ SC21,+. Note
that Λ = {(2, 2, 1, 2), (2, 3, 1, 2), (3, 3, 1, 2)} describes the
overlapping elements between X1 and X2.

C. Problem Statement: Large-scale Systems over Graphs

We consider interconnected systems of heterogeneous sub-
systems over graphs with vertex set V: each vertex in V
represents a subsystem and a corresponding controller. In
reality, a large-scale system consists of two underlying graph
structures (see the example of hierarchical systems in Fig. 3):
• a plant graph Gp = (V, Ep), which determines the

dynamic coupling of the plants;
• a communication graph Gc = (V, Ec), which indicates

the allowable communication of the controllers.
In general, Gp and Gc are different directed graphs. Some

previous work focused on special graph structures. For ex-
ample, it is assumed that Gp is contained in the transitive
closure of Gc in [2]; Gp,Gc shared the same graph structure
in [15]. Shah and Parrilo assumed these graphs could be
modelled by partial order sets [9]. Note that for dynamically
decoupled plants, such as in the platoon control problem
[32], Gp has no edges. Also, Gc would have no edges if
there exists no communication between subsystems (referred
as fully decentralized systems).

For each subsystem i ∈ V , the state xi(t) ∈ Rn evolves
according to

ẋi(t) = Aiixi(t) +
∑
j∈Npi

Aijxj(t) +Biui(t),

where ui(t) ∈ Rm is the control input, and Npi denotes the
neighbours of vertex vi in Gp, i.e., those vertices that exert
influence on the dynamics of vertex i. The overall state-space
system is then given by

ẋ(t) = Ax(t) +Bu(t), (1)

where x(t) = [x1(t)T , . . . , xN (t)T]T and similarly for u(t).
We also have A ∈ RNn (Ep, 0), and B = diag{B1, . . . , BN}.

Our goal is to stabilize (1) by designing the control input
u(t) based on the limited communication defined by graph
Gc. In this paper, static state feedback is used, as in [13],
[14]. Additionally, we assume communication conditions are

2 4

1

3

5
76

8

(a)

2 4

1

3

5
76

8

(b)

Fig. 3: Example of hierarchical systems. (a) Plant graph Gp = (V, Ep); here,
only dynamics of subsystems in the upper layer have influence on those in the
lower layer. (b) Communication graph Gc = (V, Ec); here, only the nodes
in the upper layer can use the state information of nodes in the lower layer.

perfect, i.e., there are no time-delays or bandwidth restrictions.
As a result, we are looking for controllers of the form

ui(t) = kiixi(t) +
∑
j∈Nci

kijxj(t), (2)

where Nci denotes the neighbours of vertex i in graph Gc,
i.e., those vertices that send their state information to vertex
i. Similarly, the compact form of the overall controller is

u(t) = Kx(t), K ∈ RNm,n(Ec, 0), (3)

and the closed-loop system is

ẋ(t) = (A+BK)x(t),

A ∈ RNn (Ep, 0),K ∈ RNm,n(Ec, 0).
(4)

Concisely, the problem considered in this paper is as follows

Find K ∈ RNm,n(Ec, 0),

such that A+BK is asymptotically stable.
(5)

Note that without structural constraints, there exist many
well-known methods to centrally synthesize the controller in
(5). However, sparsity constraints arise naturally for decen-
tralized control system design. In general, such seemingly
mild and natural requirements can actually make the problem
challenging [9], [13]. Some previous work imposed either
special structures or used certain relaxation techniques to solve
this problem, as well as to minimize a certain cost function
(typically H2 or H∞ norm) [4], [9]–[13]. Also, we notice
that many of previous works require the complete model
information of all the subsystems in a network (full A and
B), implicitly assuming the existence of a central entity.

However, the sparsity in matrices A,K have the potential
to bring certain benefits from the perspective of numerical
computations. The speed and accuracy of numerically com-
puting a controller can actually be improved if this sparsity
is taken advantage of. Besides, it is favourable to exploit the
sparsity in graphs Gp,Gc such that the feedback gains can be
computed locally, which helps ensure model privacy because
each subsystems only need to share its dynamic model with

5

a small subset of other subsystems, and there is no need
of a central entity that knows the overall system. In this
paper, we focus on the structured stabilization problem (5),
and propose a scalable sequential algorithm based on local
model information for large-scale decentralized systems, by
exploiting properties between the chordal graphs and sparse
positive semidefinite matrices.

III. DECOMPOSITION OF BLOCK MATRICES WITH
CHORDAL STRUCTURE

The main objective of this paper is to facilitate the controller
synthesis by decomposing the graphs Gp and Gc using chordal
decomposition. Since the problem data in problem (5) is block
structured in Gp and Gc, we state a key result which extends
the results in Proposition 2 (Agler’s theorem) [25] into block
matrices before presenting the scalable algorithm.

Proposition 3: Let G = (V, E) be a chordal graph with
Γ = {C1, C2, . . . , Cp} its set of maximal cliques. The following
statements are equivalent.

1) X = [Xij]N×N ∈ SNn (E , 0) is positive semidefinite, i.e.,
X ∈ SNn,+(E , 0).

2) There exists a set of matrices Xk ∈ SCkn,+ such that

X =

p∑
k=1

Xk.

3) The system of linear matrix inequalities (LMIs)

Xk − Lk(z) � 0, k = 1, 2, . . . , p, (6)

is feasible, where Xk ∈ SCkn (k = 1, . . . , p) satisfies X =∑p
k=1Xk, z is a collection of matrices {zijkl ∈ Rn×n |

(i, j, k, l) ∈ Λ}, and

Lk(z) =
∑

(i,j,l)|(i,j,k,l)∈Λ

(Eij ⊗ zijkl + Eji ⊗ zTijkl)−∑
(i,j,h)|(i,j,h,k)∈Λ

(Eij ⊗ zijhk + Eji ⊗ zTijhk).

This proposition can be proved by adapting the proofs in
[25], [33], [34]. Here, we briefly state two methods1 to prove
Proposition 3 (the detailed proof is omitted for conciseness2).
One method is based on the graph interpretation for matrix
X in terms of each scalar entry: we consider the case in
which all of the blocks Xij are dense, indicating the subgraph
corresponding to each block is complete; then, the super-graph
for X is also chordal with trivial cliques, meaning the decom-
position follows the results of Proposition 2 [25]. Another way
is to adapt the inductive proof of [33], [34] in a block-wise
fashion. Note that the proof in [33], [34] follows the idea
of sparse Cholesky decomposition for positive semidefinite
matrices with chordal sparsity [19, Section 9], [21].

Proposition 3 does not impose any restrictions on the size
of each block, i.e., n can be any integer. In fact, the first two

1The authors would like to thank one anonymous reviewer for pointing out
the first method. We are also grateful to another reviewer for bringing Rf. [33]
to our attention and for the encouragement of investigating sparse Cholesky
decomposition.

2The interested reader can refer to a detailed proof in our short note http:
//users.ox.ac.uk/∼ball4503/proof.pdf, which adapts the method in [34].

statements extend the results in Proposition 2, where n = 1,
to the block matrix level.

Remark 1: The result in Proposition 3 presents an attrac-
tive connection between chordal graphs and block-positive
semidefinite matrices. This is important for decomposing
semidefinite programs, and therefore improving the compu-
tational efficiency of structured feedback gains for large-scale
systems. Also, this proposition allows us to solely focus on the
connection of subsystems and ignore the details within each
subsystem, which is more convenient for applications in the
analysis and synthesis of networked systems.

We conclude this section by applying Proposition 3 to the
chordal graph G = (V, E) shown in Fig. 1 (b), which indicates
(7) is equivalent to the feasibility of (8) or (9).

X =

X11 X12 X13 0
XT

12 X22 X23 X24

XT
13 XT

23 X33 X34

0 XT
24 XT

34 X44

 ∈ SNn,+(E , 0). (7)

X11 X12 X13 0

XT
12 Y1 Y2 0

XT
13 Y T2 Y3 0

0 0 0 0

 ∈ SC1n,+

0 0 0 0

0 Z1 Z2 X24

0 ZT2 Z3 X34

0 XT
24 XT

34 X44

 ∈ SC2n,+

Yi + Zi = Xii, i = {1, 3}, Y2 + Z2 = X23

. (8)

X11 X12 X13 0

XT
12 X22 − z2212 X23 − z2312 0

XT
13 XT

23 − zT2312 X33 − z3312 0

0 0 0 0

 � 0

0 0 0 0

0 z2212 z2312 X24

0 zT2312 z3312 X34

0 XT
24 XT

34 X44

 � 0

. (9)

IV. DESIGN OF STRUCTURED FEEDBACK GAINS USING
CONVEX RELAXATION

In this section, we present a relaxation technique to convert
problem (5) into an LMI which inherits the problem’s sparsity
properties. By this way, the scalable design algorithm that uses
chordal decomposition can be applied.

Recall that conditions for stability can be equivalently
expressed as the following inequalities{

QAT +AQ+RTBT +BR ≺ 0

RQ−1 ∈ RNm,n(Ec, 0), Q � 0
. (10)

The steps to obtain the above condition (10) are well known,
and involve the use of a Lyapunov function as

V (x) = xTPx,

where P is a positive definite matrix of compatible dimen-
sions; Q = P−1, and R = KQ.

http://users.ox.ac.uk/~ball4503/proof.pdf
http://users.ox.ac.uk/~ball4503/proof.pdf

6

Algorithm 1 Computing structured gains in a centralized way

Input: Matrices A ∈ RNn (Ep, 0), B = diag{B1, . . . , BN},
graphs Gp = (V, Ep),Gc = (V, Ec).

Output: Structured feedback gains K ∈ RNm,n(Ec, 0).
Step 0. Obtain the size of subsystems m,n, graph size N .
Step 1. Construct the basis matrices:

In (12), Q and R ∈ RNm,n(Ec, 0) have up to c1 =
Nn(n + 1)/2 and c2 = mn |Ec| free variables, re-
spectively. Let E1, . . . , Ec1 be basis matrices for Q and
F1, . . . , Fc2 be basis matrices for R. Compute basis matrices
H1, . . . ,Hc1+c2 ∈ S2nN as

Hi =

[
−Ei

EiA
T +AEi

]
, i = 1, . . . , c1.

Hc1+j =

[
0

FTj B
T +BFj

]
, j = 1, . . . , c2.

Step 2. Convert the problem into a standard SDP form.
We may reformulate (12) as

maximize bT y

subject to
c1+c2∑
i=1

yiHi + Z = H0 (13)

Z � 0

where y ∈ Rc1+c2 , b = 0, and H0 = −εI, ε > 0. The dual
SDP to (13) is

minimize H0 •X
subject to Hi •X = bi, i = 1, . . . , c1 + c2 (14)

X � 0

where Hi•X = Tr(HT
i X). Note (14) and (13) are standard

primal and dual SDPs.
Step 3. Solve (13) to obtain vector y using SeDuMi [35].
Step 4. Convert vector y into matrices Q and R.
Step 5. Return structured feedback gains K = RQ−1.

The structural constraint of communication graph Gc, which
is nonlinear, can be relaxed if we assume that Q (and hence
Q−1) is block diagonal with block sizes compatible to those
of the subsystems, which results in the following equivalence:

RQ−1 ∈ RNm,n(Ec, 0)⇔ R ∈ RNm,n(Ec, 0). (11)

This assumption convexifies the problem (10) into
QAT +AQ+RTBT +BR ≺ 0

R ∈ RNm,n(Ec, 0)

Q � 0, Q is block diagonal
, (12)

but this is still centralized. We have Algorithm 1 to solve it.
Our assumption that the closed-loop system admits a block

diagonal Lyapunov function would introduce conservativeness
for general large-scale systems. However, examples of large-
scale systems, such as transportation networks and power
systems, are positive systems, whose stability is equivalent to
the existence of diagonal Lyapunov functions [36]. Tanaka and
Langbort further proved that this introduces no conservatism

when computing the H∞ norm of positive systems [37].
Therefore, our assumption is practical and acceptable, but
more importantly, it endows that the resulting convex problem
(12) has the same sparsity pattern with (5), which allows the
subsequent chordal decomposition.

Remark 2: The convex problem (12) can be solved to obtain
structured feedback gains using general conic solvers, such
as SeDuMi [35] and SDPA [38]. However, both the com-
putational efficiency and quality of the solution will degrade
for larger systems, since the size of the resulting SDP scales
as nN . We notice that (12) inherits the sparsity pattern of
(5). There are some techniques in interior-point methods [27],
[39] and first-order methods [40], [41] that exploit chordal
sparsity to improve the efficiency of solving sparse SDPs.
Some existing packages are SparseCoLO [27], SMCP [39],
SDPA-C [38] and CDCS [42]. Using these techniques, the
efficiency of solving (12) can be improved. However, these
methods require the complete model information of the overall
system, implicitly assuming a central entity exists. Also, note
that an efficient distributed algorithm was proposed to solve a
special coupled SDP in [43]. In the next section, we establish
a scalable sequential algorithm based on Proposition 3 to solve
(12) locally for sparse Gp and Gc.

V. THE SCALABLE SOLUTION VIA CHORDAL
DECOMPOSITION

We are now ready to introduce a sequential method to obtain
structured feedback gains based on the convex problem (12),
which is scalable for sparse decentralized systems. First, we
present a way to form a chordal characterization of system
data in (12), directly leading to decomposition of the positive
semidefinite constraints by applying Proposition 3. A sequen-
tial method is then derived by a priori equally dividing the
overlapping elements in the decomposed subsystems, which
is able to compute the feedback gains locally in a clique-by-
clique fashion. Finally, we discuss the feasibility and complex-
ity of the proposed sequential design method.

A. Chordal Characterization of System Data

The matrices A,K in original problem (5) have a sparsity
pattern given by the directed graphs Gp and Gc, respectively.
However, the sparsity pattern in the Lyapunov condition (12)
is one of an undirected super-graph covering both Gp and Gc.
Due to the assumption of block diagonal Q, we have

AQ ∈ RNn (Ep, 0), BR ∈ RNn (Ec, 0). (15)

To handle the symmetry in the Lyapunov condition, we
introduce mirror graphs as follows.

Definition 2: (Mirror Graph) Let G = (V, E) be a directed
graph. We define Em as a set of reverse edges of G obtained by
reversing the order of nodes in all the pairs in E . The mirror
of G denoted by Gm =M(G) is a directed graph in the form
Gm = (V, Em) with the same set of nodes V and the set of
reverse edges Em.

As an example, it is easy to see that the graphs in Fig. 3
(a) and (b) are mirror graphs of each other. Then, we have

QAT ∈ RNn (Epm, 0), RTBT ∈ RNn (Ecm, 0), (16)

7

i) Gp

��

Gc

��
ii) Gpm

!!

Gcm

}}
iii) Gs

��
iv) Gex

Fig. 4: Illustrative diagram for the steps of chordal characterization. i) Define
Gp,Gc for plant and communication structure; ii) Get mirror graphs Gpm,Gcm;
iii) Define a super-graph Gs to characterise the whole structure; iv) Finally,
obtain Gex by making a chordal extension to Gs.

where Gpm = (V, Epm),Gcm = (V, Ecm) are the mirror graphs of
Gp and Gc, respectively. We further define a undirected super-
graph Gs = (V, Es) to cover both the dynamical coupling of
plants and communication connections of controllers:

Gs = Gp ∪ Gpm ∪ Gc ∪ Gcm, (17)

where Es = Ep ∪Epm ∪Ec ∪Ecm. Combining (15) and (16), we
have

QAT +AQ+RTBT +BR ∈ SNn (Es, 0).

Next, we construct a chordal graph Gex = (V, Eex) by
making a chordal extension to Gs. Define a graph G0 = (V, E0)
which only contains nodes, but no edges. Then, (12) can be
rewritten into (18),
−(QAT +AQ+RTBT +BR+ εI) ∈ SNn,+(Eex, 0)

Q− εI ∈ SNn,+(E0, 0)

R ∈ RNm,n(Ec, 0)
(18)

where ε > 0 is a constant number. See Fig. 4 for an illustration
of the above steps. For example, Fig. 5 (a) shows a chordal
graph Gex for the system shown in Fig. 3.

As stated in the preliminaries, it is hard to find a chordal
extension with the minimal number of additional edges [31].
But there exist several simple heuristics, such as the minimum
degree ordering followed by a symbolic Cholesky factor-
ization, to efficiently generate a good approximation (see
Procedure 1 in the Appendix). Note also that many systems
do not need chordal extension, e.g., chains, trees and banded
graphs, since they are already chordal.

B. Decomposition of the Positive Semidefinite Constraints

Having established the chordal characterization, we now
turn to apply the results in Proposition 3 to decompose the
positive semidefinite constraints in (18).

Let Γ = {C1, C2, . . . , Cp} be the set of maximal cliques in
graph Gex, and T = (Γ,Ξ) with Ξ ⊆ Γ×Γ be a clique tree that
satisfies the running intersection property. The corresponding
minimal set of overlapping elements is denoted by Λ. In (18),
for notational simplicity, define

JQ,R = −(QAT +AQ+RTBT +BR+ εI).

Then, according to the first two statements in Proposition 3,
we can equivalently reduce (18) into (19).

∑p
k=1 Jk = JQ,R,

Jk ∈ SCkn,+, k = 1, . . . , p

Q− εI ∈ SNn,+(E0, 0)

R ∈ RNm,n(Ec, 0)

. (19)

Further, according to the third statement in Proposition 3, (18)
is also equivalent to (20).

Jk − Lk(z) � 0, k = 1, 2, . . . , p

Q− εI ∈ SNn,+(E0, 0)

R ∈ RNm,n(Ec, 0)

(20)

where Jk ∈ SCkn satisfies JQ,R =
∑p
k=1 Jk, z is a collection

of matrices {zijkl ∈ Rn×n | (i, j, k, l) ∈ Λ}, and Lk(z) is
defined in (6).

The key feature in both (19) and (20) is that they only
involve a set of positive semidefinite constraints of small
size (corresponding to the maximal cliques) rather than one
large positive semidefinite constraint in (18). The price is that
additional equality constraints are added in (19) and the set
of positive semidefinite constraints is coupled in (20). These
constraints and coupling can be further relaxed, resulting in
the sequential design method in the next subsection. Cliques
and a corresponding clique tree play central roles the upcom-
ing sequential design. For the sake of completeness, in the
Appendix, we present two efficient algorithms (i.e., Maximal
clique search and Maximum-weight spanning tree) to compute
cliques and a clique tree, respectively (see Procedures 2 and 3).

C. Sequential Design Method over a Clique Tree

Our sequential design method involves solving the feedback
gains that only correspond to one maximal clique each time.
The order of the design sequence corresponds to a clique tree
that satisfies the running intersection property.

1) Basic ideas of sequential design: Note that the additional
equality constraints in (19) and coupling term in (20) only
affect the set of overlapping elements Λ in graph Gex. If there
are no elements in Λ, which means the maximal cliques are
disjoint, then the design of structured feedback gains for a
large-scale system can be naturally decomposed into several
small sub-problems according to the maximal cliques.

For the case where Λ is non-empty, the idea to decompose
(5) is that we equally split the coupling dynamic effect into
several parts according to the maximal cliques that contain
those overlapping elements. Essentially, we a priori choose the
overlapping elements for the equality constraints

∑p
k=1 Jk =

JQ,R in (19) such that this constraint is satisfied.To illustrate
this idea, consider the chordal graph G = (V, E) in Fig. 1(b).
In (8), we choose

Y1 = Z1 =
1

2
X22, Y2 = Z2 =

1

2
X23, Y3 = Z3 =

1

2
X33.

Then, the feasibility of (8) is reduced to the feasibility of (21)
and (22). Similarly, we can specifically choose z in (9) to
obtain (21) and (22).

8

2 4

1

3

5
76

8

(a)

(b)

 ={4,8}

 ={1,3,4} ={2,5} ={2,3,6}

 ={1,2,3}

 ={3,4,7}

 ={1,3,4}

Fig. 5: Chordal extension and clique tree for the hierarchical system in Fig. 3.
(a) Chordal graph Gex, where two undirected edges (black ones) are added.
(b) a clique tree. For the breadth-first tree traversal, we start from the root
node C1, and then explore the neighbouring cliques C2, C3, C4 in the second
layer before moving to the next level neighbours C5, C6.

X11 X12 X13

XT
12 0.5X22 0.5X23

XT
13 0.5XT

23 0.5X33

 � 0, (21)

0.5X22 0.5X23 X24

0.5XT
23 0.5X33 X34

XT
24 XT

34 X44

 � 0. (22)

Note that for the problem of synthesizing structured con-
trollers over graphs, each entry Xij contains elements of Q and
R defined in (10), which can be tuned such that (21) and (22)
are satisfied. According to the clique tree in Fig. 1(c), we can
first solve the clique C1 (i.e., (21)), and then solve the clique C2
(i.e., (22)) by embedding the corresponding parameters from
C1 into the overlapping elements.

2) Framework for sequential design over a clique tree:
Here, we introduce a formal description of the aforementioned
ideas for decentralized systems over general graphs.

Step 1: Obtain averaging factor for overlapping elements
Given Γ = {C1, C2, . . . , Cp} as the set of maximal cliques

in graph Gex, we define γ ∈ SN as the number of times nodes
and edges in Γ are repeated, i.e.,{

γii = the times node i appears in Γ

γij = the times edge (i, j) appears in Γ
.

It is easy to check γ ∈ SN1 (Eex, 0). Correspondingly, we define
an averaging factor γ′ ∈ SN1 (Eex, 0) for graph Gex asγ′ij =

1

γij
, if γij 6= 0

γ′ij = 0, otherwise
.

Then the averaging factor for decomposing the overlapping
elements is defined as β = γ′ ⊗ 1n×n ∈ SNn (Eex, 0),where
1n×n is an n× n matrix with all entries being 1.

Step 2: Derive a set of LMIs over maximal cliques.
In this step, we a priori choose Jk in (19) as

Jk = JQ,R(Ck, Ck) ◦ β(Ck, Ck), k = 1, . . . , p. (23)

Based on this construction, we have
∑p
k=1 Jk = JQ,R. Thus,

(19) is reduced into a set of small-size LMIs Lk, k = 1, . . . , p
over maximal cliques, where each Lk is defined as

Lk :

JQ,R(Ck, Ck) ◦ β(Ck, Ck) � 0,

Qj − εI � 0, j ∈ Ck,
R(Ck, Ck) ∈ RNm,n(Ec, 0).

(24)

Step 3: Sequential solution over a clique tree
The dimension of Lk is the size of the corresponding

maximal clique. But there may exist some common design
parameters among different Lk. Here, we can sequentially
solve them clique-by-clique over a clique tree T . Starting from
the root clique in T , we perform a tree traversal by embedding
the overlapping parameters from cliques on the layer above.
Thanks to the running intersection property, the ordering of the
maximal cliques suggested by T guarantees that there always
exist free parameters in Lk when computing feedback gains
sequentially. There are two major strategies for tree traversal:
• Depth-first, which starts at the root, and explores as far

as possible along each branch before backtracking.
• Breadth-first, which starts at the root, and explores the

neighbour nodes first before moving to the next level.
For our problem, any strategy for tree traversal with low

complexity is applicable. Here, breath-fist strategy is used in
our simulations. Take Fig. 5 as an example to demonstrate this
strategy. We first solve the root clique C1 = {1, 2, 3} to get the
feedback gains in nodes 1, 2, 3. Embedding these gains to the
cliques in the second layer of the clique tree, i.e., C2, C3, C4,
we can get the feedback gains corresponding to nodes 6, 4 and
5, respectively. Algorithm 2 summarizes the detailed steps for
the sequential design method (breadth-first strategy is used).

For the breadth-first strategy, the maximal cliques in the
same layer can be computed in a parallel way in addition to
sequentially. This is due to the fact that all the overlapping
elements among such cliques belong to the neighbouring
clique in the upper layer where the parameters have already
been computed. Besides, any clique can serve as a root clique
due to the structure of the clique tree, which means that this
sequential design can start from any maximal clique and then
explore other maximal cliques.

Remark 3: In the proposed sequential method, the maximal
cliques (determined by the chordal extended graph Gex) play
an important role regarding both efficiency and feasibility. It
is desirable to find a chordal extension with minimal number
of added edges, where the sizes of maximal cliques are
small, thus improving efficiency. On the other hand, we can
iteratively merge two cliques if these two cliques share many
common nodes, resulting a hierarchy of sequential solutions,
which can improve the feasibility in general. Note that the
merging strategy was discussed in [26], [41].

Remark 4: Our sequential method heavily depends on a
clique tree of the chordal graph as well. The structure of clique
tree may affect the feasibility of our approach due to the equal
splitting strategy. Given a chordal graph, its clique tree is not
unique. In principle, we can search for a clique tree with small
tree depth (i.e., small number of layers), since it would reduce
the iterations of message-passing. The detailed relationship

9

Algorithm 2 Sequential design method over a clique tree

Input: Matrices A ∈ RNn (Ep, 0), B = diag{B1, . . . , BN},
graphs Gp = (V, Ep),Gc = (V, Ec).

Output: Structured feedback gains K ∈ RNm,n(Ec, 0).
Phase 1. Graph operation (global information).

1.1 Get mirror graphs Gpm,Gcm, and super-graph Gs;
1.2 Get a chordal graph Gex using Procedure 1;
1.3 Get a set of maximal cliques Γ = {C1, . . . , Cp} and

a clique tree T = (Γ,Ξ) for Gex using Procedures 2 and 3;
1.4 Obtain the number of layers in the clique tree n1, and

Compute the averaging-factor β;
Phase 2. Sequentially solve (24) over T (local information).

For i = 1 : n1 do
For each maximal clique Ck in i-th layer, do

1) Get dynamic matrices ACk , BCk of this clique;
2) Get basis matrices E1, . . . , Ec1 for the free vari-

ables of QCk , and F1, . . . , Fc2 for those of RCk ; Compute
basis matrices H1, . . . ,Hc1+c2 ∈ S2n|Ck| as

Hi =

[
−Ei

βCk ◦ (EiA
T
Ck +ACkEi)

]
, i = 1, . . . , c1,

Hc1+j =

[
0

βCk ◦ (BTCkF
T
j +BCkFj)

]
, j = 1, . . . , c2,

where βCk is the averaging factor of clique Ck.
3) Convert the problem into a standard SDP form;
We can reformulate (24) as

minimize H0 •X
subject to Hi •X = bi, i = 1, . . . , c1 + c2, (25)

X � 0,

where bi = 0, and

H0 = −
[
−Q′Ck + εI

βCk ◦ (T1 + T2 + εI)

]
. (26)

In (26), T1, T2 are defined as T1 = BTCkR
′T
Ck+BCkR

′
Ck , T2 =

ACkQ
′
Ck +Q′CkA

T
Ck , and Q′Ck , R

′
Ck denote the embedding of

overlapping parameters from the layer above.
4) Solve (25) using an SDP solver to obtain param-

eters QCk , RCk of clique Ck .
end for

end for
Step 3. Return structured feedback gains K = RQ−1.

between a clique tree and the feasibility of the sequential
design is beyond the scope of current work. We notice that
the clique tree structure has also been used to compute search
directions distributedly for SDPs in [43].

D. Feasibility and Complexity of the Sequential Design over
a Clique Tree

We now turn to the feasibility analysis and complexity
analysis of the proposed sequential design method.

1) Feasibility analysis of the sequential design: A neces-
sary condition for the feasibility of the original problem (5) is
that every pair (Aii, Bi) is controllable, which is also sufficient

for special types of systems, such as decoupled systems, some
hierarchical systems and partially nested systems [2]. In this
paper, rather than explicitly restricting the types of systems,
we consider the assumption that the closed-loop system admits
a block diagonal Lyapunov function, i.e., (12) is feasible.

As for the feasibility of the proposed sequential design, we
have the following result.

Proposition 4: The feasibility of sequential design approach
is equivalent to feasibility of the following problems.

(QCkA
T
Ck +ACkQCk +RTCkB

T
Ck +BCkRCk) ◦ βCk ≺ 0, (27)

where Ck, k = 1, . . . , p are the maximal cliques of Gex, and

ACk =

[
Ap Apn
Anp An

]
, BCk =

[
Bp

Bn

]
QCk =

[
Qe

Qf

]
, RCk =

[
Re Rf1

Rf3 Rf2

]
Qf � 0, Qf is block diagonal.

. (28)

In (28), Ap, Bp represent the node dynamics in the previously
computed clique in the upper layer (Qe, Re are the corre-
sponding embedding parameters); An, Bn denote the node
dynamics of the current layer (Qf , Rf2 are the corresponding
free parameters); and Apn, Anp are the coupling dynamics
between these nodes (Rf1, Rf3 represent the free parameters).

Proof: The proposed sequential design tries to solve Lk in
(24) sequentially according to the order suggested by a clique
tree. In every step, there are some parameters from the cliques
in the upper layer which need to be embeded into Lk. We can
see that (27) is a concise reformulation of Lk, where the zero
rows and columns are removed. This observation validates
Proposition 4.

2) Complexity analysis of the sequential design: Here, we
have the following remark.

Remark 5: The computational cost of solving the SDPs in
Algorithm 2 scales linearly with the graph size (i.e., O(N)),
if the size of the largest maximal clique in Gex is bounded
and independent of graph size. The proof of this statement
is intuitive. In Algorithm 2, the size of the resulting SDPs
is determined by the size of the maximal cliques. Since the
size of the largest maximal clique in Gex is bounded and
independent of the graph size, we know that the computa-
tional complexity of each small-scale problem Lk in (24) is
constant. Also, chordal graphs can have at most N maximal
cliques [19]. Thus, the computational complexity of solving
the SDP sequentially scales linearly with the graph size.

VI. DISCUSSION AND EXTENSION OF THE SEQUENTIAL
DESIGN

This section summarizes the key features of the proposed
sequential design using chordal decomposition, in which both
the positive sides (scalability and local computation ability)
and negative sides (conservatism) are discussed. Also, we
provide some extensions to consider performance guarantees.

A. Discussion on Complexity and Local Computation Ability

In general, the proposed sequential design consists of two
phases (see Algorithm 2):

10

• Graph operations, i.e., chordal extension of the undirected
super-graph Gs, and searching maximal cliques and a
clique tree (chordal decomposition);

• Solving the resulting SDPs (24) clique-by-clique over the
clique tree.

There are two favourable features in this method: 1) low
complexity, which is scalable to large sparse decentralized
systems; 2) local computation ability, which helps preserve
the privacy of model data for the subsystems.

1) Complexity issue: The graph operations (chordal exten-
sion and chordal decomposition) are well-studied in graph
theory, and there exist some efficient algorithms to compute
them, which are usually of low time complexity. We notice
that most of them scale linearly with the number of nodes and
edges in the graph (see the algorithms in the Appendix A).
The most time-consuming part, therefore, lies in the process
of solving the SDPs (24). For this issue, Remark 5 shows that
the computational cost of solving the SDPs (24) scales linearly
with the graph size when the system has a bonded size for the
largest maximal clique in Gex. It should be noted that there are
some common graphs that satisfy the assumption in Remark
5, e.g.,

1) chains (the size of the largest maximal clique is two);
2) trees (the size of the largest maximal clique is two);
3) banded graphs (the size of the largest maximal clique

corresponds to the bandwidth);
4) certain block graphs (the size of the largest maximal

clique corresponds to the size of the largest blocks).

Some engineering systems do have sparse graphs with small
maximum clique size, such as platoon formation [7] and the
smart grid [44]. For example, the chordal sparsity in the smart
grid was exploited to reduce the complexity for semidefinite
relaxations of optimal power flow problems in [44].

2) Local model information: In addition to reducing com-
putation effort, another advantage of our method is the ability
to preserve model data privacy for the subsystems. In our
method, only the graph operations need global information,
and the feedback gains can be computed locally within each
clique in a sequential order. Besides, the global information
only corresponds to the connectivity of dynamic coupling and
communication between subsystems, and the detailed dynamic
model of each subsystem can be kept private. Therefore, as
opposed to previous works [11]–[14] which implicitly need the
complete global model of the overall system, our method only
requires the subsystems share their dynamic model within each
clique locally. This feature makes our method more flexible
in practice for large-scale systems, where privacy is important
or global model information is hard to collect.

B. Discussion on the Conservatism of the Sequential Design

The aforementioned benefits of sequential design come
at a price, particularly due to the introduction of conser-
vatism. There are two points that make our method conser-
vative/restrictive compared to the original problem (5): a) the
block-diagonal Lyapunov matrix assumption (see Section IV);
b) the equal splitting strategy (see Section V-C).

1) Block-diagonal Lyapunov matrix assumption: This as-
sumption requires that the closed-loop system admits a block-
diagonal Lyapunov function. One related concept is so-called
diagonal stability or block diagonal stability, which is to
search for a diagonal (or block diagonal) Lyapunov function
to certify stability. This is an interesting problem that attracted
considerable research attention in the literature (see [45]–
[47]). Typically, additional structural requirements are added
to guarantee (block) diagonal stability, two of which are: 1)
positive systems, where the system matrix A is Metzler; 2)
hierarchical systems with a directed acyclic graph topology,
where there exists a permutation matrix P such that PTAP
is a lower block-triangular matrix. The first type of system
adds nonnegative constraints on certain entries, while the
second type of system introduces sparsity requirements on the
connections of subsystems. It is well-known that the stability
of positive systems is equivalent to the existence of diagonal
Lyapunov functions, which has been widely used to facilitate
controller design [36]. Also, stable block-triangular system
matrices admit a block-diagonal Lyapunov function [47].
These two types of systems are able to represent a wide
range of engineering applications: in the former case, examples
include irrigation networks, air-traffic flows and chemical
networks [36], [37]; in the latter case, it includes poset-causal
systems [9]. Hence, we argue that the block-diagonal matrix
assumption is practical and acceptable (note it also results in
a convex problem preserving the original sparsity pattern).

2) Equal splitting strategy: This idea contributes to a
sequential solution, which is scalable and preserves model
privacy. However, it may compromise the feasibility of (12):
feasibility of the sequential design would lead to feasibility of
(12), while the converse may be not true for general decentral-
ized systems. This is mainly due to the unidirectional solving
process, i.e., the information is non-reversing, passing down
along the clique tree. To ameliorate this problem, two possible
methods are: 1) adding a backtracking process into the solving
process; 2) introducing a ‘negotiating’ process for different
cliques to achieve consensus for the overlapping elements.
These two methods might lead to an iterative solution rather
than a sequential one. Here, the alternating direction method of
multipliers (ADMM) seems to offer a promising computational
framework, as suggested in [40], [43]. When using ADMM,
one challenge is how to preserve the local computation ability,
which is an interesting topic for future work.

Remark 6: Despite the conservatism highlighted above, the
proposed sequential method would be always feasible for two
classes of systems: 1) dynamical decoupled systems and 2)
systems with lower/upper triangular dynamics, if each local
isolated system (Aii, B2i) is controllable. The reason is that
these systems can be stabilized by choosing an isolated gain
Kii = RiiQ

−1
i , i.e., by making the diagonal components

(Aii −B2iKii), i = 1, . . . , N stable.

C. Extensions to Some Performance Guarantees

1) Sparsity invariance: When designing a static state feed-
back controller K, a standard change of variables R = KQ
is commonly used to derive a set of LMIs. However, the

11

sparsity constraints K ∈ RNm,n(Ec, 0) arising in decentralized
systems also results in a new nonlinear constraint RQ−1 ∈
RNm,n(Ec, 0). In general, this makes it difficult to convert the
sparsity constraint of K to the sparsity constraint of R and Q.

Assuming Q is block-diagonal, we have the invariance of
sparsity (see (11)), indicating the sparsity of K is exactly
translated to the sparsity of R. Hence, it is easy to derive
LMI formulations for several synthesis problems with struc-
tural constraints, such as structured LQR, H2, H∞ and pole
clustering. Then, one key point of using our sequential design
is to guarantee the resulting LMI preserves the sparsity pattern,
such that chordal decomposition can still be applied. For
example, given the following linear system,{

ẋ = Ax+B1d+B2u

z = Cx+Du
,

where d denotes the disturbance, and z is the performance
measure, the structured H2 problem is stated as

min
K

‖Tdz‖2

subject to K ∈ RNm,n(Ec, 0)
. (29)

It is well-known that (29) is equivalent to

min
Q,R,W

Tr(W)

subject to (AQ+B2R) + (AQ+B2R)T +B1B
T
1 ≺ 0,[

Q (CQ+DR)T

(CQ+DR) W

]
� 0,

Q � 0, RQ−1 ∈ RNm,n(Ec, 0).
(30)

Using the block-diagonal assumption, we have the sparsity
invariance: RQ−1 ∈ RNm,n(Ec, 0)⇔ R ∈ RNm,n(Ec, 0), which
directly leads to a convex problem. To further use sequential
design, one challenge is to preserve the sparsity pattern by
carefully selecting the weighting matrices C and D.

2) Sequential design with guaranteed minimum decay rate:
One straightforward extension of the sequential design method
is to add guaranteed performance of minimum decay rate,
using the following result:

Lemma 1: Suppose there is a function V and constant α > 0
such that V is positive definite and V̇ (x) ≤ −αV (x) for all
x. Then, there is an M such that every solution of ẋ = f(x)
satisfies ‖x(t)‖ ≤Me−

α
2 t‖x(0)‖.

Under the block-diagonal Lyapunov matrix assumption, it
is easy to derive the following convex problem for the system
described in (1).

(AQ+BR) + (AQ+BR)T + αQ ≺ 0

R ∈ RNm,n(Ec, 0)

Q � 0, Q is block diagonal
. (31)

Also, this formulation has the same sparsity pattern with (12),
and the proposed sequential design can be applied here. If it
is feasible, the resulting controller K = RQ−1 guarantees the
closed-loop system has a certain minimum decay rate.

In addition, to consider practical control efforts, we can add
certain bounds on local feedback gains, such as

Qi � κQI,
[
−κRI RTij
Rij −I

]
≺ 0, (32)

Fig. 6: Hierarchical systems over a circular tree with 4 layers and 3 branches.
Each node has linear dynamics as in (33). The information flow is bottom-up
but only dynamics of nodes in the upper layer have influence on those in the
lower layer.

where κR > 0, κQ > 0 are constant numbers. Then, we have

kTijkij = Q−1
i RTijRijQ

−1
i ≺

κR
κ2
Q

I.

This means the local feedback gains are all upper bounded.
In Section VII-B, a network of coupled inverted pendula is
used to demonstrate the extension of sequential design with
guaranteed decay rate and bounded feedback gains.

VII. ILLUSTRATIVE EXAMPLES

In this section, we present three illustrative examples to
demonstrate the scalability of the proposed sequential design
method3. In particular, we consider special hierarchical sys-
tems, a network of coupled inverted pendula, and general de-
centralized systems over directed graphs. All simulations were
run on a computer with an Intel(R) Core(TM) i7 CPU, 2.8
GHz processor and 8GB of RAM. The SDPs were considered
to be solved when the primal-dual gap had been reduced to
less then 10−9.

A. Hierarchical Systems

Consider the hierarchical system shown in Fig. 3. Here,
motivated by [14], we assume each node is an unstable second
order system coupled with its neighbouring nodes through
an exponentially decaying function of the Euclidean distance
α(i, j) between them,

ẋi =

[
1 1
1 2

]
xi +

∑
j∈Npi

e−α(i,j)xj +

[
0
1

]
ui, (33)

where, α(i, j) is chosen as 1
10 (i− j)2 in the simulations. The

feedback gains are chosen in the form of (2). We first solve
this problem in a centralized way using Algorithm 1, which
took about 0.087 s to get the following stabilizing controller:
• node 1: k11 = −[22.3, 6.07], k12 = −[1.05, 1.09], k13 =
−[0.77, 0.81], k14 = −[0.46, 0.50],

• node 2: k22 = −[9.77, 4.88], k25 = −[0.25, 0.48], k26 =
−[0.09, 0.24],

• node 3: k33 = −[9.75, 4.84], k36 = −[0.23, 0.47], k37 =
−[0.10, 0.23],

• node 4: k44 = −[9.64, 4.79], k47 = −[0.23, 0.46], k48 =
−[0.11, 0.23],

3The numerical examples presented in this section and additional examples
are available from https://github.com/zhengy09/sdsc.

https://github.com/zhengy09/sdsc

12

TABLE I: Computing sequences, structured gains and computing time for the hierarchical system shown in Fig. 3

Seq. Cliques
Embedding
parameters Adjustable parameters Computed gains Time (s)

1 C1 ∅ Q1, Q2, Q3,
R11, R12, R13, R22, R33

k11 = −

[
30.83 7.26

]
, k12 = −

[
1.64 1.30

]
k13 = −

[
1.19 0.98

]
, k22 = −

[
9.05 5.88

]
k33 = −

[
9.99 6.28

] 0.0339

2 C2
Q2, Q3,
R22, R33

Q6, R66, R26, R36

k66 = −
[
6.75 4.51

]
, k26 = −

[
0.08 0.13

]
k36 = −

[
0.06 0.25

] 0.0307

3 C3
Q1, Q3,

R11, R33, R13
Q4, R44 k44 = − [9.15 5.77] 0.0313

4 C4 Q2, R22 Q5, R55, R25 k55 = − [6.64 4.41] , k25 = − [0.12 0.23] 0.0310

5 C5
Q3, Q4,
R33, R44

Q7, R77, R37, R47

k77 = −
[
6.74 4.50

]
, k37 = −

[
0.03 0.13

]
k47 = −

[
0.04 0.29

] 0.0316

6 C6 Q4, R44 Q8, R48 k88 = − [6.57 4.32] , k48 = − [0.01 0.15] 0.0302

Number of layers in the circular tree
0 2 4 6 8 10

T
im

e(
s)

0

200

400

600

800

1000

Centralized way: SeDuMi
Centralized way: SparseCoLO+SeDuMi
Sequential way: SeDuMi

Fig. 7: Time in seconds that Algorithm 1 (called SeDuMi and SparseCo-
LO+SeDuMi, respectively) and Algorithm 2 (called SeDuMi) need, in order
to solve for the structured feedback gains over circular trees.

• node 5: k55 = −[6.57, 4.32],
• node 6: k66 = −[6.58, 4.34],
• node 7: k77 = −[6.58, 4.34],
• node 8: k88 = −[6.55, 4.29].

Then, we used the proposed sequential design method to
solve this problem (using Algorithm 2). The corresponding
chordal extension and clique tree are shown in Fig. 5. TABLE
I lists the solving sequences, computed gains and time con-
sumed for each clique. The total time was 0.233 s using the
sequential design method. For this special small-size problem,
computing the gains in a centralized way was faster than that
using sequential design. However, it took less time for solving
each maximal clique, as listed in TABLE I. The sequential
design method is more beneficial when the system size is large.

To illustrate this point, we considered another class of
hierarchical systems over a circular tree (see Fig. 6). The
dynamics flow is top-down, while the information flow is
bottom-up. Each node is assumed to have dynamics evolving
as in (33). Fig. 7 shows the comparison between Algorithm
1 and Algorithm 2 for different number of layers (where
each node has two branches). Here, we used two different
ways, i.e., SeDuMi and SparseCoLO+SeDuMi, to solve the
resulting SDP in Algorithm 1. SparseCoLO can detect chordal
sparsity in an SDP, and then call SeDuMi to solve the problem.
As shown in Fig. 7, even though chordal sparsity has been
exploited in SparseCoLO, our sequential method is more

Fig. 8: A network of three coupled inverted pendula.

 = {1, 2}

 ={2, 3}

(a) (b)

1 2 3

Fig. 9: Chordal decomposition of the coupled inverted pendula: (a) maximal
cliques; (b) clique tree.

efficient to compute structured gains for large-scale systems.

B. A Practical Example: Coupled Inverted Pendula

Here, we consider a practical example: a network of three
coupled inverted pendula (see Fig. 8), to demonstrate the
extension of sequential design with minimum decay rate and
bounds on the feedback gains. The linearized dynamics around
the equilibrium point can be described as [48]:

Ai =

0 1 0 0

Mi+m
Mil

g 0 ki
Mil

ci+bi
Mil

0 0 0 1

− m
Mi
g 0 − ki

Mi
− ci+biMi

 ,

Aij =

0 0 0 0

0 0
kij
Mil

bij
Mil

0 0 0 0

0 0
kij
Mi

bij
Mi

 , Bi =

0
− 1
Mil

0
1
Mi

 ,
for i = 1, 2, 3; (i, j) = (1, 2), (2, 1), (2, 3), (3, 2), where ki =∑
j∈Npi

kij , bi =
∑
j∈Npi

bij Here, the local state variable is
xi = [θi, θ̇i, yi, ẏi]

T , and ci, bij = bji, kij = kji are friction,
damper and spring coefficients, respectively. We have assumed
that the moment of inertia of the pendula is zero.

13

0 5 10 15 20

Time (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

N
or

m
 o

f e
rr

or
 |x

(t
)|

Centralized
Sequentail
Guaranteed performance

Fig. 10: Exponential decay of ‖x(t)‖ using the centralized computation and
the sequential computation.

The plant graph for this example is a chain of three
nodes. We assume that the communication graph coincides
with its plant graph, indicating each node has access to its
nearest neighbor’s state information. Fig. 9 shows the chordal
decomposition. The parameters in our simulations are M1 =
0.6,M2 = 0.8,M3 = 1,m = 0.1, g = 10, l = 0.5, k12 =
k21 = 0.2, k23 = k32 = 0.4, b12 = b21 = 0.4, b23 =
b32 = 0.2, c1 = 1, c2 = 0.2 and c3 = 1. The requirement of
minimum decay rete is set as α = 0.5 and bounds on feedback
gains are κR = 10 and κQ = 0.1. Then, we can compute the
structured feedback gain by solving (31) centrally. This way
requires all of the model information. Alternatively, we can
solve (31) according to the clique tree shown in Fig. 9 (b):
for clique 1, we only need the model information of node
1 and node 2, while only the models of node 2 and node
3 are required for clique 2. In our simulation, both these
two cases are feasible, and Fig. 10 shows the performance
of the computed structured controllers for the initial condition
x1(0) = [0.2, 0, 0.5, 0], x2(0) = 0 and x3(0) = 0.

C. General Decentralized Systems with Different Sizes of
Largest Maximal Clique

Finally, we present simulation results for decentralized
systems with general directed graphs. It is assumed that each
node is an unstable second order system coupled with its
neighbouring nodes, as shown in (33). In the simulations,
we first generate a random chordal graph G1 = (V, E1)
with a bound on the size of its largest maximal clique, and
then randomly remove some edges of G1 to form the plant
graph Gp. To improve the feasibility, we ensure that the
communication graph satisfies Ep ⊆ Ec ⊆ E1. Under these
constructions, Gp,Gc are general directed graphs such that the
largest maximal clique of Gex has limited size. When this is set
to five, Fig. 11 shows a comparison between the performance
of Algorithm 1 and Algorithm 2 for different graph sizes,
which clearly shows the efficiency of our sequential method
for large-scale systems.

Next, we consider 100-node graphs, and vary the size of
the largest maximal clique. As shown in Fig. 12, the time
consumption increases as the largest maximal clique size
increases for both Algorithms 1 and 2. The efficiency of
the sequential design method becomes worse as the size of

Number of nodes in general decentralized systems
0 100 200 300 400 500 600

T
im

e(
s)

0

500

1000

1500

Centralized way: SeDuMi
Centralized way: SparseCoLO+SeDuMi
Sequential way: SeDuMi

Fig. 11: Time in seconds that Algorithm 1 (called SeDuMi and SparseCo-
LO+SeDuMi, respectively) and Algorithm 2 (called SeDuMi) need, in order
to solve a general decentralized control design problem (the size of largest
maximal clique is five in the extended graph Gex).

Size of the largest maximal clique
0 10 20 30 40

T
im

e(
s)

0

50

100

150

200

250
Centralized way: SeDuMi
Centralized way: SparseCoLO+SeDuMi
Sequential way: SeDuMi

Fig. 12: Algorithm 1 (called SeDuMi and SparseCoLO+SeDuMi, respectively)
versus Algorithm 2 (called SeDuMi) for general systems with 100 nodes, when
varying the size of the largest maximal clique.

largest maximal clique increases, as expected. This illustrates
that the efficiency of the proposed sequential design method
is determined by the size of largest maximal clique in the
extended graph. If this is small and independent of graph size,
the sequential design method scales a lot better.

VIII. CONCLUSION

This paper considered the synthesis of static structured
feedback gains for large-scale decentralized systems over di-
rected graphs. A sequential design method has been proposed
by exploiting the chordal decomposition of block structured
semidefinite matrices, which improves the scalability and helps
preserve model data privacy for large-scale applications. One
future work is to introduce a backtracking or negotiating
process in the sequential design, which is very interesting and
promising as it might not only increase the feasibility but also
provide a way to compute gains that incorporate certain global
constraints. Another direction of future work is to investigate
how to include a performance index, e.g., H2 and H∞, into
the solution that preserves the sparsity pattern.

APPENDIX A
ALGORITHMS FOR CHORDAL GRAPHS

A. Chordal Extension

In practice, a chordal extension can be constructed by com-
puting a symbolic Cholesky factorization, where the amount
of fill-ins (i.e., added edges) depends heavily on the ordering

14

Procedure 1 Chordal extension
Input: Graph Gs = (V, Es).
Output: Chordal graph Gex = (V, Eex) with Es ⊆ Eex

1. Create a positive definite matrix X ∈ SN1,+(Es, 0);
2. Compute a minimum degree ordering α of X;
3. Permute the rows and columns of X according to α;
4. Perform a Cholesky factorization of X to get a factor L;
5. Matrix L + LT has a chordal sparsity pattern that is a
chordal extension of Gs;
6. Return Gex according to the pattern of L+ LT .

Procedure 2 Maximal clique search

Input: Graph Gex = (V, Eex).
Output: A set of maximal cliques Γ = {C1, C2, . . . , Cp}

Obtain a perfect elimination ordering α = {α1, . . . , αN}
Initialization: C0 = ∅
for i = 1 to N do
Ci = {αi} ∪ {u ∈ Nαi | u lies behind αi in α};
if Ci is not a subset of C0 then
Ci is a maximal clique
C0 = Ci

end if
end for

of the nodes. The problem of finding a minimum fill ordering,
which corresponds to finding the minimum number of added
edges, is NP-complete [31]. However, there are effective
heuristics for finding the minimum chordal extension, such as
minimum degree ordering and approximate minimum degree
ordering [19]. The strategy of minimum degree ordering
repeatedly chooses a node of minimum degree in the symbolic
Cholesky factorization. Procedure 1 presents the major steps
for this strategy used in the chordal extension.

Procedure 3 Maximum-weight spanning tree

Input: A weighted Graph G = (V, E).
Output: Maximum-weight spanning tree G′ = (V ′, E ′)

Initialization: V ′ = α, for some arbitrary α ∈ V
while V ′ 6= V do

Find an edge (u, v) with maximum weight such that
u ∈ V ′ and v /∈ V ′;
V ′ = V ′ ∪ v;
E ′ = E ′ ∪ (u, v);

end while

B. Maximal Cliques and Clique Tree

One computational effective way to list the maximal cliques
for a chordal graph is to exploit the properties of so-called
perfect elimination orderings (see Procedure 2). An ordering
α = {α1, . . . , αN} of graph G = (V, E) is a perfect elimina-
tion ordering if, for each i ∈ {1, . . . , N}, αi is a simplicial
vertex of the subgraph induced by Vi = {αi, . . . , αN}. It is
well-known that a graph G is chordal if and only if it has
a perfect elimination ordering [49], which can be computed
in O(|V| + |E|) time. Let Γ = {C1, C2, . . . , Cp} be the set

of maximal cliques for a chordal graph G. To compute a
clique tree over the set of cliques, we first define a weighted
clique graph W(G) with set of nodes Γ and edge weights
wij = |Ci ∩ Cj |. The problem of computing a clique tree that
satisfies the running intersection property can be reduced to
computing a maximum-weight spanning tree in W(G) [18],
which can be carried out using Prim’s algorithm [50] (see
Procedure 3).

ACKNOWLEDGMENT

The authors would like to thank the Associate Editor and
the anonymous reviewers for their valuable comments and sug-
gestions that helped us improve the quality of the manuscript.

REFERENCES

[1] A. Zečević and D. Šiljak, “Control design with arbitrary information
structure constraints,” Automatica, vol. 44, no. 10, pp. 2642–2647, 2008.

[2] J. Swigart and S. Lall, “Optimal controller synthesis for decentralized
systems over graphs via spectral factorization,” Automatic Control, IEEE
Transactions on, vol. 59, no. 9, pp. 2311–2323, 2014.

[3] Y. Zheng, S. Eben Li, J. Wang, D. Cao, and K. Li, “Stability and
scalability of homogeneous vehicular platoon: Study on the influence of
information flow topologies,” Intelligent Transportation Systems, IEEE
Transactions on, vol. 17, no. 1, pp. 14–26, 2016.

[4] M. Rotkowitz and S. Lall, “A characterization of convex problems
in decentralized control,” Automatic Control, IEEE Transactions on,
vol. 51, no. 2, pp. 274–286, 2006.

[5] F. DorIer, M. R. Jovanovic, M. Chertkov, and F. Bullo, “Sparsity-
promoting optimal wide-area control of power networks,” IEEE Trans.
Power Syst., vol. 29, no. 5, pp. 2281–2291, 2014.

[6] D. M. Stipanović, G. Inalhan, R. Teo, and C. J. Tomlin, “Decentral-
ized overlapping control of a formation of unmanned aerial vehicles,”
Automatica, vol. 40, no. 8, pp. 1285–1296, 2004.

[7] Y. Zheng, S. E. Li, K. Li, and L.-Y. Wang, “Stability margin im-
provement of vehicular platoon considering undirected topology and
asymmetric control,” Control Systems Technology, IEEE Transactions
on, vol. pp, no. 99, 2016.

[8] V. Blondel and J. N. Tsitsiklis, “NP-hardness of some linear control
design problems,” SIAM Journal on Control and Optimization, vol. 35,
no. 6, pp. 2118–2127, 1997.

[9] P. Shah and P. Parrilo, “H2-optimal decentralized control over posets:
A state-space solution for state-feedback,” Automatic Control, IEEE
Transactions on, vol. 58, no. 12, pp. 3084–3096, 2013.

[10] J.-H. Kim and S. Lall, “Explicit solutions to separable problems in
optimal cooperative control,” Automatic Control, IEEE Transactions on,
vol. 60, no. 5, pp. 1304–1319, 2015.

[11] G. Fazelnia, R. Madani, and J. Lavaei, “Convex relaxation for optimal
distributed control problem,” in Decision and Control (CDC), 2014 IEEE
53rd Annual Conference on. IEEE, 2014, pp. 896–903.

[12] K. Dvijotham, E. Todorov, and M. Fazel, “Convex structured controller
design in finite horizon,” Control of Network Systems, IEEE Transactions
on, vol. 2, no. 1, pp. 1–10, 2015.

[13] F. Lin, M. Fardad, and M. R. Jovanovic, “Augmented Lagrangian ap-
proach to design of structured optimal state feedback gains,” Automatic
Control, IEEE Transactions on, vol. 56, no. 12, pp. 2923–2929, 2011.

[14] ——, “Design of optimal sparse feedback gains via the alternating
direction method of multipliers,” Automatic Control, IEEE Transactions
on, vol. 58, no. 9, pp. 2426–2431, 2013.

[15] A. Satya Mohan Vamsi and N. Elia, “Optimal distributed controllers re-
alizable over arbitrary networks,” Automatic Control, IEEE Transactions
on, vol. 61, no. 1, pp. 129–144, Jan 2016.

[16] W. Su, H. Eichi, W. Zeng, and M.-Y. Chow, “A survey on the elec-
trification of transportation in a smart grid environment,” Industrial
Informatics, IEEE Transactions on, vol. 8, no. 1, pp. 1–10, 2012.

[17] J. Zhang, F.-Y. Wang, K. Wang, W.-H. Lin, X. Xu, and C. Chen,
“Data-driven intelligent transportation systems: A survey,” Intelligent
Transportation Systems, IEEE Transactions on, vol. 12, no. 4, pp. 1624–
1639, 2011.

[18] J. R. Blair and B. Peyton, “An introduction to chordal graphs and clique
trees,” in Graph theory and sparse matrix computation. Springer, 1993,
pp. 1–29.

15

[19] L. Vandenberghe and M. S. Andersen, “Chordal graphs and semidefinite
optimization,” Foundations and Trends R© in Optimization, vol. 1, no. 4,
pp. 241–433, 2014.

[20] F. Gavril, “Algorithms for minimum coloring, maximum clique, mini-
mum covering by cliques, and maximum independent set of a chordal
graph,” SIAM Journal on Computing, vol. 1, no. 2, pp. 180–187, 1972.

[21] D. J. Rose, “Triangulated graphs and the elimination process,” J. Math.
Anal. Appl., vol. 32, no. 3, pp. 597–609, 1970.

[22] J. Dahl, L. Vandenberghe, and V. Roychowdhury, “Covariance selection
for nonchordal graphs via chordal embedding,” Optimization Methods
& Software, vol. 23, no. 4, pp. 501–520, 2008.

[23] M. J. Wainwright and M. I. Jordan, “Graphical models, exponential fam-
ilies, and variational inference,” Foundations and Trends R© in Machine
Learning, vol. 1, no. 1-2, pp. 1–305, 2008.

[24] R. Grone, C. R. Johnson, E. M. Sá, and H. Wolkowicz, “Positive
definite completions of partial hermitian matrices,” Linear algebra and
its applications, vol. 58, pp. 109–124, 1984.

[25] J. Agler, W. Helton, S. McCullough, and L. Rodman, “Positive semidef-
inite matrices with a given sparsity pattern,” Linear algebra and its
applications, vol. 107, pp. 101–149, 1988.

[26] M. Fukuda, M. Kojima, K. Murota, and K. Nakata, “Exploiting sparsity
in semidefinite programming via matrix completion I: General frame-
work,” SIAM Journal on Optimization, vol. 11, no. 3, pp. 647–674,
2001.

[27] S. Kim, M. Kojima, M. Mevissen, and M. Yamashita, “Exploiting spar-
sity in linear and nonlinear matrix inequalities via positive semidefinite
matrix completion,” Mathematical programming, vol. 129, no. 1, pp.
33–68, 2011.

[28] R. P. Mason and A. Papachristodoulou, “Chordal sparsity, decomposing
SDPs and the Lyapunov equation,” in American Control Conference
(ACC), 2014. IEEE, 2014, pp. 531–537.

[29] M. Andersen, S. Pakazad, A. Hansson, and A. Rantzer, “Robust sta-
bility analysis of sparsely interconnected uncertain systems,” Automatic
Control, IEEE Transactions on, vol. 59, no. 8, pp. 2151–2156, 2014.

[30] Y. Zheng, R. P. Mason, and A. Papachristodoulou, “A chordal decom-
position approach to scalable design of structured feedback gains over
directed graphs,” in IEEE 55th Conference on Decision and Control
(CDC). IEEE, 2016, pp. 6909–6914.

[31] M. Yannakakis, “Computing the minimum fill-in is NP-complete,” SIAM
Journal on Algebraic Discrete Methods, vol. 2, no. 1, pp. 77–79, 1981.

[32] S. E. Li, Y. Zheng, K. Li, and J. Wang, “An overview of vehicular
platoon control under the four-component framework,” in Intelligent
Vehicles Symposium (IV), 2015 IEEE. IEEE, 2015, pp. 286–291.

[33] A. Rantzer, “Distributed performance analysis of heterogeneous system-
s,” in 49th IEEE Conference on Decision and Control (CDC). IEEE,
2010, pp. 2682–2685.

[34] N. Kakimura, “A direct proof for the matrix decomposition of chordal-
structured positive semidefinite matrices,” Linear Algebra and its Appli-
cations, vol. 433, no. 4, pp. 819–823, 2010.

[35] J. F. Sturm, “Using sedumi 1.02, a matlab toolbox for optimization over
symmetric cones,” Optimization methods and software, vol. 11, no. 1-4,
pp. 625–653, 1999.

[36] A. Rantzer, “Scalable control of positive systems,” European Journal of
Control, vol. 24, pp. 72 – 80, 2015.

[37] T. Tanaka and C. Langbort, “The bounded real lemma for internally
positive systems and H-infinity structured static state feedback,” IEEE
transactions on automatic control, vol. 56, no. 9, pp. 2218–2223, 2011.

[38] M. Yamashita, K. Fujisawa, M. Fukuda, K. Kobayashi, K. Nakata,
and M. Nakata, “Latest developments in the SDPA family for solving
large-scale SDPs,” in Handbook on semidefinite, conic and polynomial
optimization. Springer, 2012, pp. 687–713.

[39] M. S. Andersen, J. Dahl, and L. Vandenberghe, “Implementation of
nonsymmetric interior-point methods for linear optimization over sparse
matrix cones,” Mathematical Programming Computation, vol. 2, no. 3-4,
pp. 167–201, 2010.

[40] Y. Zheng, G. Fantuzzi, A. Papachristodoulou, P. Goulart, and A. Wynn,
“Fast ADMM for semidefinite programs with chordal sparsity,” arXiv
preprint arXiv:1609.06068, 2016.

[41] Y. Sun, M. S. Andersen, and L. Vandenberghe, “Decomposition in
conic optimization with partially separable structure,” SIAM Journal on
Optimization, vol. 24, no. 2, pp. 873–897, 2014.

[42] Y. Zheng, G. Fantuzzi, A. Papachristodoulou, P. Goulart, and A. Wynn,
“CDCS: Cone decomposition conic solver, version 1.1,” https://github.
com/giofantuzzi/CDCS, Sep. 2016.

[43] S. K. Pakazad, A. Hansson, M. S. Andersen, and A. Rantzer, “Dis-
tributed semidefinite programming with application to large-scale system
analysis,” arXiv preprint arXiv:1504.07755, 2015.

[44] M. S. Andersen, A. Hansson, and L. Vandenberghe, “Reduced-
complexity semidefinite relaxations of optimal power flow problems,”
IEEE Trans. Power Syst., vol. 29, no. 4, pp. 1855–1863, 2014.

[45] E. Kaszkurewicz and A. Bhaya, Matrix diagonal stability in systems and
computation. Springer Science & Business Media, 2012.

[46] M. Arcak, “Diagonal stability on cactus graphs and application to
network stability analysis,” IEEE Transactions on Automatic Control,
vol. 56, no. 12, pp. 2766–2777, 2011.

[47] A. Sootla and J. Anderson, “On existence of solutions to structured
lyapunov inequalities,” arXiv preprint arXiv:1603.07686, 2016.

[48] M. Razeghi-Jahromi and A. Seyedi, “Stabilization of networked control
systems with sparse observer-controller networks,” IEEE Transactions
on Automatic Control, vol. 60, no. 6, pp. 1686–1691, 2015.

[49] R. E. Tarjan and M. Yannakakis, “Simple linear-time algorithms to
test chordality of graphs, test acyclicity of hypergraphs, and selectively
reduce acyclic hypergraphs,” SIAM Journal on computing, vol. 13, no. 3,
pp. 566–579, 1984.

[50] R. C. Prim, “Shortest connection networks and some generalizations,”
Bell system technical journal, vol. 36, no. 6, pp. 1389–1401, 1957.

https://github.com/giofantuzzi/CDCS
https://github.com/giofantuzzi/CDCS

