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The emergence of autonomous vehicles is expected to revolutionize road transportation in the near

future. Although large-scale numerical simulations and small-scale experiments have shown promis-

ing results, a comprehensive theoretical understanding to smooth traffic flow via autonomous ve-

hicles is lacking. Here, from a control-theoretic perspective, we establish analytical results on the

controllability, stabilizability, and reachability of a mixed traffic system consisting of human-driven

vehicles and autonomous vehicles in a ring road. We show that the mixed traffic system is not com-

pletely controllable, but is stabilizable, indicating that autonomous vehicles can not only suppress

unstable traffic waves but also guide the traffic flow to a higher speed. Accordingly, we establish

the maximum traffic speed achievable via controlling autonomous vehicles. We also design an opti-

mal control strategy for autonomous vehicles to actively dampen undesirable perturbations. These

theoretic findings validate the high potential of autonomous vehicles to smooth traffic flow.

Introduction

Modern societies are increasingly relying on complex road transportation systems to support our daily mobility

needs. In particular big cities, the traffic demand is placing a heavy burden on the existing transportation infrastruc-

tures, sometimes leading to severely congested road networks [1]. Traffic congestion not only results in the loss of fuel

economy and travel efficiency, but also increases the potential risk of traffic accidents and public health [2].

Understanding traffic dynamics is essential if we are to redesign infrastructures, or to guide/control transportation,

to mitigate road congestions and smooth traffic flow [3, 4]. The subject of traffic dynamics has attracted research

interest from many disciplines, including mathematics, physics, and engineering. Since the 1930s, a wide range of

models at both the macroscopic and microscopic levels have been proposed to describe traffic behavior [3]. Based

on these traffic models, many control methods have been introduced and implemented to improve the performance

of road transportation systems [4]. Currently, most control strategies rely on actuators at fixed locations. For

example, variable speed advisory or variable speed limits [5] are commonly implemented through traffic signs on

roadside infrastructure, and ramp metering [6] typically relies on traffic signals located at the freeway entrances.

These strategies are essentially external regulation methods imposed on traffic flow.

As a key ingredient of traffic flow, the motion of vehicles plays a fundamental role in road transportation systems.

In the past decades, major car-manufacturers and technology companies have invested in developing vehicles with

high levels of automation, and some prototypes of autonomous self-driving cars have been tested in real traffic envi-

ronments [7]. The emergence of autonomous vehicles is expected to revolutionize road transportation. In particular,
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(a) (b) (c)

Figure 1: Response profiles to an impulse perturbation in traffic systems on a ring road. Vehicle no.2 has an

initial perturbation, and the parameters of human-driven vehicles are chosen to resemble the wave behavior in the real-world

experiment [23]. (a) All the vehicles are human-driven, where the perturbation is amplified and stop-and go waves will appear

accordingly. (b) Vehicle no.1 is a CACC-equipped vehicle which adjusts its behavior passively according to its direct

preceding vehicle. In this case, the perturbation is not amplified but small traffic waves still persist for a long period. (c)

Vehicle no.1 adopts an optimal control strategy considering the global behavior of the entire mixed traffic flow to mitigate

undesirable perturbations actively. In this case, the perturbation is attenuated, and the traffic flow becomes smooth quickly.

the advancements of autonomous vehicles offer new opportunities for traffic control, where autonomous vehicles can

act as moving actuators to influence traffic flow internally. Most research on the control of traffic flow via autonomous

vehicles has focused on platooning of a series of adjacent vehicles or cooperative adaptive cruise control (CACC) [8, 9].

In the context of platoon control, all involved vehicles are assumed to be autonomous and can be controlled to maintain

a string stable platoon, such that disturbances along the platoon are dissipated. Significant theoretical and practical

advances have been made in designing sophisticated controllers at the platoon level [10–12]. While traffic systems

with fully autonomous vehicles may be of great interest in the far future, the near future will have to meet a mixed

traffic where both autonomous and human-driven vehicles exist. In fact, early autonomous vehicles need to cooperate

in traffic systems where most vehicles are human-driven. This situation is more challenging in terms of theoretical

modeling and stability analysis, and many existing studies are based on numerical simulations [13–15]. One recent

concept is the connected cruise control that considers mixed traffic scenarios where autonomous vehicles can use the

information from multiple human-driven vehicles ahead to make control decisions [16, 17]. More recently, Cui et

al. first pointed out the potential of a single autonomous vehicle in stabilizing mixed traffic flow [18], and they also

implemented simple control strategies to demonstrate the dissipation of stop-and-go waves via a single autonomous

vehicle in real experiments [19]. The control principle is essentially a slow-in fast-out approach, which is an intuitive

method to dampen traffic jams [20]. More sophisticated strategies, such as deep reinforcement learning, have also

recently been investigated to improve traffic flow in mixed traffic scenarios via numerical simulations [21, 22].

While the potential of autonomous vehicles has been recognized and demonstrated [18, 19, 21, 22], a comprehensive

theoretical understanding is lacking. In this paper, we provide a theoretical analysis on the potential of autonomous

vehicles in smoothing mixed traffic flow from a complex system viewpoint. In principle, the behavior of traffic

flow emerges from the collective dynamics of many individual human-driven and/or autonomous vehicles [3], where

autonomous vehicles can serve as controllable nodes. In the area of complex systems, controlling the collective behavior

of dynamical agents interacting over networks has a long history, capturing phenomena from flocking of birds or fish to

the synchronization of coupled oscillators [24–26]. From a complex system perspective, we first investigate analytical
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stability results for traffic systems with only human-driven vehicles. After introducing an autonomous vehicle as a

controllable node, we next establish basic notions of controllability and stabilizability of such mixed traffic flow. These

theoretical results reveal the high potential of autonomous vehicles to guide the collective dynamics of mixed traffic

flow to a desired state (e.g., a higher traffic speed). Accordingly, we design an optimal control strategy of autonomous

vehicles to smooth mixed traffic flow. Instead of responding to traffic perturbations passively, the proposed optimal

control strategy considers the global behavior of the entire mixed traffic flow to mitigate undesirable perturbations

actively (see Figure 1 for illustration). Extensive numerical experiments validate our theoretical analysis and clearly

demonstrates the high potential of autonomous vehicles on controlling and smoothing traffic flow.

Results

Theoretical framework of mixed traffic systems. We consider a single-lane ring road of length L and with n

vehicles. As discussed in Cui et al. [18], the ring road setting has several theoretical advantages for modeling a traffic

system, including 1) the existence of experiment results that can be used to calibrate model parameters [23], 2) perfect

control of average traffic density, and 3) correspondence with an infinite straight road with periodic traffic dynamics.

We denote the position of the i-th vehicle as pi(t) along the ring road, and its velocity is denoted as vi(t) = ṗi(t). The

spacing of vehicle i, i.e., the distance between two adjacent vehicles, is defined as si(t) = pi−1(t)−pi(t). Note that we

ignore the vehicle length without loss of generality. For simplicity, we assume that there is one autonomous vehicle

and the rest are human-driven vehicles. The autonomous vehicle is indexed as no. 1. The scenario with multiple

autonomous vehicles will be discussed at the end of this section.

Real-world human car-following behaviors are typically modeled by nonlinear processes [3, 4] v̇i(t) =

F (si(t), ṡi(t), vi(t)), but stability analysis around an equilibrium point can be performed via a linearization [27].

From a global complex system viewpoint, we arrive at the following canonical linear dynamics (see Methods)

ẋ(t) = Ax(t) +Bu(t), (1)

where u(t) ∈ R denotes the control input of the autonomous vehicle on the traffic system dynamics; the vector

x(t) =
[
xT1 (t), xT2 (t), . . . , xTn(t)

]T
∈ R2n captures the error state of n vehicles at time t; the error state of vehicle i

is defined as xi(t) =
[
si(t)− s∗, vi(t)− v∗

]T
with s∗, v∗ being the equilibrium spacing and velocity of each human-

driven vehicle, i = 2, . . . , n, and x1(t) =
[
s1(t)− s∗c , v1(t)− v∗

]T
denotes the error state of the autonomous vehicle

with s∗c being a tunable spacing. Note that for human-driven vehicles, the equilibrium traffic state (s∗, v∗) satisfies

F (s∗, 0, v∗) = 0, which implies a certain relationship between the equilibrium spacing and equilibrium velocity (see

Supplementary Note 1). Considering the ring road setting of mixed traffic systems, the matrices A and B in (1) are

A =



C1 0 . . . . . . 0 C2

A2 A1 0 . . . . . . 0

0 A2 A1 0 . . . 0
...

. . .
. . .

. . .
. . .

...

0 . . . 0 A2 A1 0

0 . . . . . . 0 A2 A1


, B =



B1

B2

B2

...

B2


, (2)
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𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
𝐷𝐷𝑇𝑇𝑇𝑇𝐷𝐷𝑇𝑇𝐷𝐷𝑇𝑇𝐹𝐹𝐷𝐷

𝑉𝑉𝐷𝐷𝑉𝑇𝑇𝑇𝑇𝐹𝐹𝐷𝐷 1

𝑉𝑉𝐷𝐷𝑉𝑇𝑇𝑇𝑇𝐹𝐹𝐷𝐷 2

𝑉𝑉𝐷𝐷𝑉𝑇𝑇𝑇𝑇𝐹𝐹𝐷𝐷 𝑇𝑇 − 1
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𝑉𝑉𝐷𝐷𝑉𝑇𝑇𝑇𝑇𝐹𝐹𝐷𝐷 𝑇𝑇 + 1

𝑉𝑉𝐷𝐷𝑉𝑇𝑇𝑇𝑇𝐹𝐹𝐷𝐷 𝐷𝐷
𝐴𝐴𝑉𝑉

…
…

…
… 𝑀𝑀𝐹𝐹𝐷𝐷𝑇𝑇𝐹𝐹𝐷𝐷

𝐷𝐷𝑇𝑇𝑇𝑇𝐷𝐷𝑇𝑇𝐷𝐷𝑇𝑇𝐹𝐹𝐷𝐷

Figure 2: Model establishment schematic, AV: autonomous vehicle; HDV: human-driven vehicle. (a) The ring road

traffic scenario that includes one autonomous vehicle (blue) and n− 1 human-driven vehicles (green). (b) A simplified

network system schematic. Purple arrows indicate the interaction between adjacent vehicles, meaning that each human-driven

vehicle considers the state of its preceding vehicle only. Orange arrows show the information flow of the whole system,

assuming that the traffic state is observable to the autonomous vehicle. (c) The system matrix A of the mixed traffic

dynamics, as shown in (2).

where each block matrix is given by

A1 =

 0 −1

α1 −α2

 , A2 =

0 1

0 α3

 , C1 =

0 −1

0 0

 , C2 =

0 1

0 0

 , B1 =

0

1

 , B2 =

0

0

 , (3)

with parameters α1 = ∂F
∂s , α2 = ∂F

∂ṡ −
∂F
∂v , α3 = ∂F

∂ṡ evaluated at the equilibrium state (s∗, v∗). Considering the real

driver behavior, we should have α1 > 0, α2 > 0 and α3 > 0. It can be shown that ring road traffic with common

car-following dynamics can be linearized into the form of (1)—(3) (see Supplementary Note 1). In (1), the evolution

of each vehicle’s state is determined by its own state and the state of its direct preceding vehicle only; see Figure 2

for a schematic model. In the following, we provide a theoretical analysis on the potential of the autonomous vehicle

on smoothing the mixed traffic flow and design an optimal control input u(t) for the autonomous vehicle.

Stability of traffic systems with human-driven vehicles only. If all the vehicles are driven by human, the traffic

system dynamics (1) can be simplified into

ẋ(t) = Âx(t), (4)

where

Â =



A1 0 . . . . . . 0 A2

A2 A1 0 . . . . . . 0

0 A2 A1 0 . . . 0
...

. . .
. . .

. . .
. . .

...

0 . . . 0 A2 A1 0

0 . . . . . . 0 A2 A1


.
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(a) (b) (c)

(d) (e) (f)

Figure 3: Response profiles to a random initial perturbation in traffic systems on a ring road. (a) Eigenvalue

distribution for different n when α = 1.0, β = 1.5 in the OVM model. In this case, the stability criterion (5) is satisfied. A

zero eigenvalue (red diamond) always exists irrespectively of n and the rest eigenvalues have negative real parts. (b)-(c)

Time-domain simulations corresponding to the stable traffic system in (a) with n = 20. All the vehicles have a random initial

perturbation from equilibrium, and the perturbation vanishes as the traffic system evolves. (d) Eigenvalue distribution for

different n when α = 0.6, β = 0.9 in the OVM model. In this case, the stability criterion (5) is not satisfied. A zero eigenvalue

(red diamond) exists and some eigenvalues have positive real parts when n increases, indicating that the traffic system

becomes unstable. (e)-(f) Time-domain simulations corresponding to the unstable traffic system in (d) with n = 20, where the

traffic wave persists and is amplified.

Since Â is block circulant, it can be diagonalized into a block diagonal matrix [28, 29] where each block is of size two.

Then, we can show that there always exists a zero eigenvalue which corresponds to the ring road structure, indicating

a constant value in the system evolution (see Methods). In addition, from the block diagonalization, we can derive

the following analytical criterion for the other eigenvalues to have negative real parts, which guarantees stability of

the traffic system (4) with any finite n (i.e., small perturbations will be attenuated in the system evolution)

α2
2 − α2

3 − 2α1 ≥ 0. (5)

This result is consistent with the result in [18] where frequency analysis was used. The optimal-velocity model

(OVM) is widely-used to describe human car-following dynamics (see Supplementary Note 1), and is given by

F (si(t), ṡi(t), vi(t)) = α(V (si(t)) − vi(t)) + βṡi(t), where α and β represent the driver’s sensitivity to velocity er-

rors and V (s) denotes an optimal velocity function according to the spacing si(t) [30]. For this car-following model,

the stability criterion (5) is reduced to α + 2β ≥ V̇ (s∗). To guarantee stability, this inequality indicates that human

drivers should have a quicker response to velocity deviations than the sensitivity of the optimal velocity function with

respect to spacing in the equilibrium; otherwise, the traffic system may become unstable and small perturbations

would cause stop-and-go waves; see Figure 3 for an illustration of stable and unstable traffic systems.
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Controllability and stabilizability of mixed traffic systems. It is revealed that a traffic system with human-driven

vehicles may be unstable and stop-and-go waves occur accordingly. Here, we address the potential of autonomous vehi-

cles to suppress the instability of mixed traffic flow. Specifically, we consider two fundamental concepts, controllability

and stabilizability, of the mixed traffic system (1).

According to control theory, the controllability of a dynamical system captures the ability to guide the system’s

behavior towards a desired state using appropriate control inputs, and the system is stabilizable if all uncontrollable

modes are stable [31]. Precisely, the linearized mixed traffic system (1) is controllable if and only if the controllability

matrix Qc =
[
B AB A2B . . . A2n−1B

]
has full rank. As explained in the Methods, we prove that the mixed traffic

system is not completely controllable and there always exists at least one uncontrollable mode. Precisely, we prove

that

rank(Qc) =

2n− 1, if α1 − α2α3 + α2
3 6= 0,

n, if α1 − α2α3 + α2
3 = 0.

(6)

Furthermore, irrespectively of the values of α1, α2, α3, we show that one uncontrollable component exactly corresponds

to the sum of each vehicle’s spacing, which remains a constant value during the system evolution and is determined

by the ring road circumference (see Supplementary Note 3). In other words, this uncontrollable mode corresponds

to a zero eigenvalue. When α1 − α2α3 + α2
3 6= 0, the rest of modes are all controllable, and if α1 − α2α3 + α2

3 = 0,

the rest of modes are all stable considering the stability test (5). Therefore, the mixed traffic system (1) is always

stabilizable when there exists a single autonomous vehicle in the system.

Consequently, by choosing an appropriate control input, the autonomous vehicle can not only stabilize the global

traffic flow, but also steer the system to a higher equilibrium traffic speed (a detailed analysis is presented in the next

section). Numerical simulations in Figure 4 confirms our analysis, where the previous unstable traffic system with

human-driven vehicles only (Figure 3(e)) becomes stable (Figure 4(a)), and the traffic speed can be increased from

15 m/s to 16 m/s (Figure 4(b)).

(a) (b)

Figure 4: Stabilizing traffic flow and increasing traffic speed. The scenario is the same as that in Figure 3(e), where

the traffic system with human-driven vehicles only is unstable. (a) The mixed traffic system becomes stable after introducing

an autonomous vehicle with an appropriate control strategy. (b) The traffic flow can be guided to a higher stable velocity via

controlling the autonomous vehicle.



7

Reachability and system final state. We have shown that the mixed traffic system (1) is always stabilizable when

there exists an autonomous vehicle. In fact, we can further predict the system final state, which sheds some insight

on the reachability of the equilibrium traffic state (s∗, v∗). Also, it is explicitly shown that the autonomous vehicle

can indeed increase traffic equilibrium speed v∗.

Recall that we can design the desired spacing s∗c for the autonomous vehicle. We assume a linear state feedback

controller u(t) = −Kx(t), where K =
[
k1,1, k1,2, k2,1, k2,2,, . . . , kn,1, kn,2

]
∈ R1×2n is the feedback gain. As explained

in the Methods, we prove that irrespectively of the initial state x(0), the final state of the stable mixed traffic system

must be in the following form:

[
s∗c + se, v

∗ + ve, s
∗ +

α2 − α3

α1
ve, v

∗ + ve, . . . , s
∗ +

α2 − α3

α1
ve, v

∗ + ve

]T
∈ R2n,

where se and ve are the solution of (7).(
α2 − α3

α1
Σni=2ki,1 + Σni=1ki,2

)
ve + k1,1se = 0, (7a)

(n− 1)

(
α2 − α3

α1
ve + s∗

)
+ se + s∗c = L, (7b)

where α1, α2, α3 are the parameters in car-following dynamics (3), and ki,1, ki,2 are fixed feedback gains of the au-

tonomous vehicle. Indeed, equation (7b) exactly corresponds to the uncontrollable mode, showing that the sum

of each vehicle’s spacing is constant, as discussed in the previous section. To reach the desired equilibrium state

(s∗, v∗), we should have se = 0 and ve = 0, and this leads to the tunable spacing of the autonomous vehicle, i.e.,

s∗c = L− (n− 1)s∗. Under this choice, the final reachable traffic state is

[
L− (n− 1)s∗, v∗, s∗, v∗, . . . , s∗, v∗

]T
∈ R2n.

In principle, since the mixed traffic system (1) is stabilizable, it can be guided to reach any equilibrium state with

traffic speed v∗ via controlling the autonomous vehicle properly. In practice, however, the spacing of the autonomous

vehicle cannot be negative, i.e., s∗c > 0, which is equivalent to

(s∗)max <
L

n− 1
, (8)

This sets up a maximum equilibrium traffic speed v∗ according to F (s∗, 0, v∗) = 0 (see Supplementary Figure S1 for

a typical relationship between s∗ and v∗), which is higher than the equilibrium traffic speed with only human-driven

vehicles. A physical interpretation is that the autonomous vehicle can follow its preceding vehicle at a shorter distance

and leave more space for its following human-driven vehicles, which in turn triggers the human-driven vehicles to travel

at a higher speed in the equilibrium; see Supplementary Figure S2 for illustration.

Designing an optimal control strategy. We have shown that a mixed traffic system with a single autonomous

vehicle is stabilizable. Following standard control theory [31], we can design an optimal control strategy to reject

perturbations in the mixed traffic system. This scenario is modeled by assuming that there exists a disturbance signal
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wi(t) in each vehicle’s acceleration signal. In other words, the linearized dynamics of human-driven vehicle (1) become

ẋi(t) = A1xi(t)+A2xi−1(t)+H1wi(t) with H1 =
[
0, 1
]T

. Then, we design an optimal control input u(t) = −Kx(t) to

minimize the influence of disturbances on the traffic system. Mathematically, we aim to solve an optimization problem

minK ‖Gwz‖, where Gwz denotes the transfer function from disturbance signal w(t) =
[
w1(t), . . . , wn(t)

]T
to the traffic

performance state z(t) =
[
γss̃1(t), γv ṽ1(t), . . . , γss̃n(t), γv ṽn(t), γuu(t)

]T
with positive weights γs > 0, γv > 0, γu > 0,

and ‖ ·‖ denotes the H2 norm of a transfer function that captures the influence of disturbances. The weights γs, γv, γu

represent the penalties of position deviations, velocity deviations, and control energy, respectively. It is known that

this optimization problem is tractable [31], and can be solved via existing solvers (see Supplementary Note 4).

Numerical experiments of smoothing traffic flow via a single autonomous vehicle. Figure 1 and Figure 4 have

demonstrated the ability of a single autonomous vehicle to smooth the traffic flow where there exist weak perturbations.

Here, we consider a scenario with the presence of infrastructure bottlenecks or lane changing [19], where one vehicle

has a rapid deceleration representing a strong perturbation. In the beginning, the traffic flow is at the equilibrium

state with the velocity 15m/s. And then at t = 20s, the i-th vehicle decelerates to 5m/s in two seconds. As

shown in Figure 5, we observe that if all the vehicles are human-driven, the perturbation may grow stronger during

the propagation process, while the autonomous vehicle with an optimal control strategy can respond actively to

attenuate the perturbation and stabilize the traffic flow. In Supplementary Note 5, we present the numerical results

for the scenarios with different positions of the perturbation, i.e., the perturbation appears at vehicle 2, 3, . . . , n,

respectively. We also compare the optimal control strategy and two other heuristic strategies (FollowerStopper and

PI with Saturation [19]). Numerical experiments confirm that the optimal control method has the best performance

in terms of control energy and settling time (see Supplementary Note 5).

(a) (b)

Figure 5: Numerical results for the scenario with a rapid and strong perturbation in the 6-th vehicle. (a) The

traffic system consists of human-driven vehicles only. (b) The mixed traffic system has an autonomous vehicle that adopts the

optimal control strategy. In panel (a) or (b), the right figure shows the vehicles’ trajectories, where the red zone represents

the traffic wave; the left figure shows the vehicles’ velocities, where the red line denotes the perturbation and the black line is

the average velocity of all vehicles.

Traffic systems with multiple autonomous vehicles. The mixed traffic system with a single autonomous vehicle is

stabilizable, which is independent of the number of vehicles n. Also, an optimal control strategy u(t) can be obtained

by solving an optimization problem. However, it might be not practical to control a mixed traffic system consisting of

many human-driven vehicles and a single autonomous vehicle. Under this circumstance, the energy and time required
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for attenuating disturbances may be large, even when the autonomous vehicle adopts the optimal control strategy.

Figure 6 shows the control energy
∫∞
0
uTudt of the autonomous vehicle and time required for attenuating an impulse

disturbance, both of which grow almost linearly as the number of human-driven vehicles increases. This limitation

motivates an investigation on the potential of multiple autonomous vehicles to smooth traffic flow.

Indeed, our previous analysis can be extended to a mixed traffic system with multiple autonomous vehicles. Specif-

ically, we assume that there are n vehicles in the traffic flow with k autonomous vehicles (k < n). As explained in the

Supplementary Note 6, similarly to system (1), there exists an uncontrollable mode in the mixed traffic system with

k autonomous vehicles. As expected, the mixed traffic system with k autonomous vehicles is stabilizable. In addition,

we can show that the reachable final traffic state is

[
s∗1,c, v

∗, s∗, v∗, . . . , s∗k,c, v
∗, . . . , s∗, v∗

]T
∈ R2n.

with Σkj=1s
∗
j,c = L − (N − k)s∗, where s∗j,c, j = 1, . . . , k denotes the desired spacing of the j-th autonomous vehicle.

In this case, the maximum spacing for each human-driven vehicle in the equilibrium can be increased to

(s∗)max <
L

n− k
,

and this corresponds to a higher equilibrium traffic velocity v∗. We conduct numerical experiments for the scenario

where the traffic system has two autonomous vehicles, and the results are shown in Figure 6. It is clear that both

the settling time and the control energy of each autonomous vehicle decrease by a factor of two approximately, when

there are two autonomous vehicles in the traffic system uniformly. Based on the results, we may estimate the market

penetration rate of autonomous vehicles to control traffic flow effectively when adopting the optimal control strategy.

In the scenario of Figure 6, if one wants to reject the influence of the perturbation on traffic flow within 30 seconds,

a single autonomous vehicle can control the traffic flow consisting of around 20 human-driven vehicles. This number

agrees with the results from real-world experiments [19].

(a) (b)

Figure 6: Simulation results at different system scales. We ran 2000 random simulations for each value of n. The

parameters are as follows: γs = 0.03, γv = 0.15, γu = 1. (a) The control energy
∫∞
0
uTudt needed to stabilize the traffic flow

for each autonomous vehicle. (b) The time required to stabilize the traffic system.
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Discussion

As demonstrated in the pioneering experiments in [19], unlike the traditional control methods that regulate traffic

flow externally at fixed positions, autonomous vehicles can be used as moving actuators to control traffic flow internally.

In this paper, we have introduced a comprehensive theoretical analysis to address the potential of autonomous vehicles

on smoothing mixed traffic flow. Specifically, we have derived the criterion of stability for traffic systems with human-

driven vehicles only, and analyzed the controllability, stabilizability, and reachability of mixed traffic systems. Also,

an optimal control strategy has been introduced to actively smooth mixed traffic flow.

From our analysis, we pointed out that the mixed traffic system is stabilizable, and is not completely controllable.

Through controlling the autonomous vehicle properly, the entire traffic system can be guided to a desired traffic state.

In particular, the desired equilibrium state (s∗, v∗) can be designed to vary within a certain range. The setting is

similar to the design of vehicle platoons, where all autonomous vehicles can be controlled to reach a desired spacing

and a desired velocity [10–12]. In a mixed traffic system, the desired state (s∗, v∗) for human-driven vehicles should

satisfy the car-following models (see Supplementary Figure 1), while the desired state (s∗c , v
∗) for the autonomous

vehicle can be designed separately. This leads to the reachability result, where we have shown a single autonomous

vehicle can not only smooth traffic flow but also increase traffic speed. In our framework, we have proposed that the

autonomous vehicle can respond to external perturbations actively to smooth traffic flow efficiently. For this objective,

we computed an optimal control strategy by solving an optimization problem that considers the entire traffic state.

The resulting controller can smooth the traffic flow more quickly than traditional passive control strategies [18, 19]

(See Figure 1). Note that in the design of optimal control strategies, we can choose three parameters, corresponding

to the spacing deviation γs, velocity deviation γv and the control energy penalty γu. These three parameters can

be adjusted depending on different preferences. In addition, we have shown that controlling multiple autonomous

vehicles has better performance for large-scale mixed traffic systems. Autonomous vehicles can cooperate with each

other to reduce the time and energy for attenuating perturbations and smoothing traffic flow. In our framework, it

is possible to identify an appropriate market penetration rate of autonomous vehicles from the perspective of settling

time. Based on our simulations, autonomous vehicles have practical ability to smooth traffic flow at a low penetration

rate (one autonomous vehicles per around 20 human-driven vehicles) when adopting the optimal control strategy.

The ability of autonomous vehicles at a low penetration rate has been experimentally confirmed in [19].

A few other topics are worth further investigation. In our current analysis, we have assumed autonomous vehicles

have access to the global the traffic state, i.e., the information of all other human-driven vehicles. Due to the

limit of communication ranges, autonomous vehicles may be only able to obtain the information of its neighboring

vehicles. It is interesting to design a localized optimal controller, and this leads to the notion of structured controller

synthesis [32, 33]. For the tractable issue in theory, we have assumed homogeneous dynamics for human-driven

vehicles, and potential time delays are ignored. One interesting direction is to consider heterogeneity and time delay

in controlling mixed traffic systems. We note that some recent work has considered the effect of heterogeneity and

time delays at the level of platoon control [34–36], which may offer some insights for the controller design in mixed

traffic systems as well. Finally, our current analysis focused on the single-lane ring road setting, and it would be

interesting to extend our analysis to the scenarios with multiple lanes and lane-changing behavior.
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Methods

Deriving the mathematical model of mixed traffic system. Using the first-order Taylor expansion, the general

car-following model of human-driven vehicles, i.e., v̇i(t) = F (si(t), ṡi(t), vi(t)), i = 2, . . . , n, can be linearized into
˙̃si = ṽi−1(t)− ṽi(t),

˙̃vi = α1s̃i(t)− α2ṽi(t) + α3ṽi−1(t),
(9)

where s̃i(t) = si(t)− s∗, ṽ i(t) = vi(t)− v∗ and (s∗, v∗) denote the equilibrium traffic state. The kinetic model of the

autonomous vehicle is given by 
˙̃s1 = ṽn(t)− ṽ1(t),

˙̃v1 = u(t).
(10)

Combining (9) with (10) leads to the global linear dynamics (1). In Supplementary Note 1, we provide a detailed

derivation of (1) as well as the linearization process for two typical car-following models (i.e., OVM and IDM).

Deriving the Stability criterion. To analyze the stability of matrix Â, it is necessary and sufficient to study its

eigenvalues’ distribution. Since Â is a block circulant matrix, it can be diagonalized to simplify the eigenvalue

calculation. Define ω = e
2πj
n , where j =

√
−1 denotes the imaginary unit, and the Fourier matrix Fn is defined

as [28, 29]

F ∗n =
1√
n



1 1 1 . . . 1

1 ω ω2 . . . ωn−1

1 ω2 ω4 . . . ω2(n−1)

...
...

...
...

1 ωn−1 ω2(n−1) . . . ω(n−1)(n−1)


,

where F ∗n denotes the conjugate transpose matrix of Fn. By the definition of Fourier matrix, we know that Fn and

F ∗n are symmetric, i.e., F ∗n = (F ∗n)T, Fn = FT
n , and that Fn is a unitary matrix, i.e., FnF

∗
n = In, where In denotes

the n× n identity matrix. Then, Â can be diagonalized into

Â = (F ∗n ⊗ I2) · diag(D1, D2, . . . , Dn) · (Fn ⊗ I2),
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where ⊗ denotes the Kronecker product, Di = A1 + A2ω
(n−1)(i−1), i = 1, 2, . . . , n, and diag(D1, D2, . . . , Dn) denotes

a block-diagonal matrix with D1, D2, . . . , Dn on its diagonal blocks. Then the eigenvalue λ satisfies

det(λI −A) = det(λI − diag(D1, D2, . . . , Dn)) =

n∏
i=1

det(λI −Di)

=

n∏
i=1

(
λ2 +

(
α2 − α3ω

(n−1)(i−1)
)
λ+ α1

(
1− ω(n−1)(i−1)

))
= 0.

(11)

Substituting the expression of ω into (11) leads to

e
i−1
n ·2πj =

α1 + α3λ

α1 + α2λ+ λ2
= H(λ), i = 1, 2, . . . , n, (12)

where e
i−1
n ·2πj , i = 1, . . . , n are the complex roots of zn = 1. It means for all 2n values of λ, the values of H(λ)

constitute n unit roots. When n or i changes, H(λ) corresponds to different unit roots. Then, the condition that

the roots of |H(λ)| = 1 have negative real parts is sufficient to guarantee that the zeros of (11) lie in the left half

plane, i.e., the system matrix Â is stable. Following the strategy in [18], we arrive at the stability condition (5). The

interested reader is referred to Supplementary Note 2 for details.

Controllability analysis via block circulant matrix diagonalization. For notational simplicity, we use a pair of

matrices (A,B) to represent a linear system in the canonical form (1). First, we convert (A,B) into (Â, B) by using

a virtual control input û(t), defined as û(t) = u(t)− (α1s̃1(t)− α2ṽ1(t) + α3ṽn(t)). This virtual control input can be

viewed as the difference between the actual control value and the acceleration value when the vehicle is human-driven.

Note that the controllability of a linear systems remains unchanged under feedback and linear transformations (see

Supplementary Note 3), thus the controllability of (A,B) is the same as that of (Â, B).

Next, we utilize F ∗n ⊗ I2 to transform (Â, B) into (Ã, B̃), where Ã = (F ∗n ⊗ I2)−1Â(F ∗n ⊗ I2) and B̃ = (F ∗n ⊗ I2)−1B.

In the state-space formulation, the new system (Ã, B̃) is of the following form

˙̃x = Ãx̃(t) + B̃û(t) =


D1

D2

. . .

Dn

 x̃(t) +
1√
n


B1

B1

...

B1

 û(t),

where B1 =
[
0, 1
]T

. Upon denoting new state variable x̃(t) as
[
x̃11, x̃12, x̃21, x̃22, . . . , x̃n1, x̃n2

]T
, this system can be

decoupled into n independent sub-systems (i = 1, 2, . . . , n)

d

dt

x̃i1
x̃i2

 = Di

x̃i1
x̃i2

+

 0

1√
n

 û(t) =

 0 −1 + ω(n−1)(i−1)

α1 −α2 + α3ω
(n−1)(i−1)

x̃i1
x̃i2

+

 0

1√
n

 û(t).

We denote the controllability matrix of each sub-system as Qc,i. It is easy to see that rank(Qc,1) = 1, indicating that

the first sub-system has an uncontrollable component. Therefore, system (Ã, B̃) is not completely controllable and
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has at least an uncontrollable component. In particular, the first sub-system is

d

dt

x̃11
x̃12

 =

 0 0

α1 −α2 + α3

x̃11
x̃12

+

 0

1√
n

 û(t).

It is clear that x̃11 is uncontrollable and remains constant. Moreover, according to the linear transformation x̃ =

(F ∗n ⊗ I2)−1x, we know that

x̃11 =
1√
n

(
(s1(t)− s∗c) +

n∑
i=2

(si(t)− s∗)

)
(13)

is constant during the dynamic evolution. In conclusion, the mixed traffic system (A,B) is not completely controllable,

and has at least an uncontrollable mode (13) corresponding to a zero eigenvalue. In particular, this mode (13)

corresponds to the sum of each vehicle’s spacing
∑n
i=1 si(t). As explained in the Supplementary Note 3, using the

PBH test [31], we can prove that

rank(
[
B̃, ÃB̃, . . . , Ã2n−1B̃

]
) =

2n− 1, if α1 − α2α3 + α2
3 6= 0,

n, if α1 − α2α3 + α2
3 = 0.

Therefore, we have (6) since the controllability rank is invariant under feedback and linear transformation. Note that

the condition α1 − α2α3 + α2
3 6= 0 has a probability of one when considering α1, α2, α3 randomly.

Predicting the final state of mixed traffic systems. For a stable system, the state will approach to its equilibrium

point. In our mixed traffic system, we analyze the dynamics of each vehicle (9) and (10) separately, leading to

s̃1(tf) = se, ṽi(tf) = ve, s̃i(tf) =
α2 − α3

α1
ve, i = 2, 3, . . . , n,

where se, ve are constant values, and tf is the time when the system reaches its equilibrium point. Considering the

desired state in the controller xdes =
[
s∗c , v

∗, s∗, v∗, . . . , s∗, v∗
]T

, the final state of the system (1) is in the form of

xf =

[
s∗c + se, v

∗ + ve, s
∗ +

α2 − α3

α1
· ve, s∗ + ve, . . . , s

∗ +
α2 − α3

α1
· ve, v∗ + ve

]T
.

We next derive that (se, ve) should satisfy (7), from which we can calculate the exact value of se and ve. In the final

state, all the vehicles have zero acceleration, indicating that the control input u(t) must be zero, i.e., u(t) = −Kx(t) =

0, leading to (7a). Besides, according to the controllability analysis, we know that (s1(t) − s∗c) +
∑n
i=2 (si(t)− s∗)

remains constant; see (13). Together with the system initial state and final state, we can obtain (7b).

Numerical experiments. Details of our numerical experiments and additional comparison with two heuristic control

methods can be found in Supplementary Note 5. In our experiments, the standard OVM model was used to represent

the human-driven car-following dynamics. All experiments were carried out in MATLAB, and the optimal control

strategy was computed using the conic solver Moesk [37].
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S1. Mathematical models

In this section, we give a detailed derivation of the linearized system model shown in (1) in the main document.

Two typical car-following models of human-driven vehicles, i.e., the Optimal Velocity Model (OVM) [4, 30] and the

Intelligent Driver Model (IDM) [3, 38], are discussed as well.

The general formulation of car-following models [3] is

v̇i(t) = F (si(t), ṡi(t), vi(t)), (S1)

meaning that the acceleration of a human-driven vehicle is a function of its spacing si(t), the relative velocity between

its own and its preceding vehicle ṡi(t), and its velocity vi(t). Upon denoting an equilibrium state (s∗, v∗) of (S1) that

satisfies

F (s∗, 0, v∗) = 0, (S2)

we define the error state of the i-th human-driven vehicle ass̃i(t) = si(t)− s∗,

ṽi(t) = vi(t)− v∗.

Then, we know that the derivative of s̃i(t) becomes

˙̃si(t) = ṡi(t) = vi−1(t)− vi(t) = ṽi−1(t)− ṽi(t). (S3)

Applying the first-order Taylor expansion to v̇i(t) = F (si(t), ṡi(t), vi(t)) around its equilibrium point (s∗, v∗) yields

˙̃vi(t) = v̇i(t) = F (si(t), ṡi(t), vi(t))− 0

= F (si(t), ṡi(t), vi(t))− F (s∗, 0, v∗)

=
∂F

∂s
(si − s∗) +

∂F

∂ṡ
(ṡi − 0) +

∂F

∂v
(vi − v∗)

=
∂F

∂s
s̃i +

∂F

∂ṡ
(ṽi−1 − ṽi) +

∂F

∂v
ṽi

= α1s̃i − α2ṽi + α3ṽi−1,

(S4)

with α1 = ∂F
∂s , α2 = ∂F

∂ṡ −
∂F
∂v , α3 = ∂F

∂ṡ evaluated at the equilibrium state (s∗, v∗). These three coefficients reflect the

driver’s sensitivity to the error state. Considering the real driver behavior, the acceleration should increase when the

spacing increases, the velocity of the ego vehicle drops, or the velocity of the preceding vehicle increases. Hence, we

assume that α1 > 0, α2 > 0 and α3 > 0. According to (S3) and (S4), the linearized model of human-driven vehicles

around the equilibrium state is 
˙̃si = ṽi−1(t)− ṽi(t),

˙̃vi = α1s̃i(t)− α2ṽi(t) + α3ṽi−1(t).
(S5)
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Supplementary Figure S1: Nonlinear spacing-dependent desired velocity function V (s) in the OVM model.

vmax = 30m/s, sst = 5m and sgo = 35m. The specific mathematical expression is shown in (S7) and (S8).

In the following, we choose the OVM model and the IDM model to derive the explicit expressions of (S2) and (S5).

• The OVM model [4, 30] is given by

F (si(t), ṡi(t), vi(t)) = α(V (si(t))− vi(t)) + βṡi(t), (S6)

where α > 0 reflects the driver’s sensitivity of the difference between the current velocity and the spacing-

dependent desired velocity V (si(t)), and β > 0 reflects the driver’s sensitivity of the difference between the

velocities of the ego vehicle and the preceding vehicle. V (si(t)) is usually modeled by a continuous piecewise

function

V (s) =


0, s ≤ sst,

fv(s), sst < s < sgo,

vmax, s ≥ sgo,

(S7)

where the desired velocity V (s) is zero for small spacing sst, and reach a maximum value vmax for large spacing

sgo, and fv(s) is a monotonically increasing function and defines the desired velocity when the spacing s is

between sst and sgo. There are many choices of fv(s), either in a linear or nonlinear form. A typical one is the

following nonlinear form,

fv(s) =
vmax

2

(
1− cos(π

s− sst
sgo − sst

)

)
. (S8)

A typical example of V (s) is shown in Figure S1. For the general OVM model (S6), it is easy to obtain the

following specific equilibrium state (s∗, v∗) that satisfies (S2)

v∗ = V (s∗). (S9)

Furthermore, we can calculate the values of the coefficients in linearized model (S5) as follows

α1 = αV̇ (s∗), α2 = α+ β, α3 = β, (S10)
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where V̇ (s∗) denotes the derivative of V (s) with respect to s evaluated at the equilibrium spacing s∗.

• The IDM model [3, 38] is defined as

F (si(t), ṡi(t), vi(t)) = a

1−
(

v

vmax

)4

−

(
sst + Tgapv − ṡv√

4ab

s

)2
 ,

where a and b are the maximum acceleration and the comfortable deceleration respectively, and Tgap is the

desired time headway for the driver. Using (S2), we can obtain the equilibrium state equation for IDM as

s∗ =
sst + Tgapv

∗√
1− ( v∗

vmax
)4
. (S11)

Moreover, the coefficients of the linearized model (S5) in the case of IDM are

α1 = 2a · (sst + Tgapv
∗)

2

(s∗)3
,

α2 =

√
a

b
· v
∗ (sst + Tgapv

∗)

(s∗)2
+ 2a

(
2(v∗)3

v4max

+
Tgap(sst + Tgapv

∗)

(s∗)2

)
,

α3 =

√
a

b
· v
∗(sst + Tgapv

∗)

(s∗)2
.

In the rest of this section, we derive the model for the mixed traffic system with one autonomous vehicle. For the

autonomous vehicle, we use the acceleration signal as the control input, i.e., v̇i(t) = ui(t). Then, the car-following

model of the autonomous vehicle is 
˙̃s1 = ṽn(t)− ṽ1(t),

˙̃v1 = u(t).

Upon combining the error states of all the vehicles as the mixed traffic system state, x(t) =
[
xT1 (t), xT2 (t), . . . , xTn(t)

]T
,

where x1(t) =
[
s1(t)− s∗c , v1(t)− v∗

]T
and xi(t) =

[
si(t)− s∗, vi(t)− v∗

]T
, i = 2, . . . , n, we obtain the linearized

dynamics of the mixed traffic system with one autonomous vehicle as follows

ẋ(t) = Ax(t) +Bu(t) =



C1 0 . . . . . . 0 C2

A2 A1 0 . . . . . . 0

0 A2 A1 0 . . . 0
...

. . .
. . .

. . .
. . .

...

0 . . . 0 A2 A1 0

0 . . . . . . 0 A2 A1


x(t) +



B1

B2

B2

...

B2


u(t), (S12)
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where each block matrix is given by

A1 =

 0 −1

α1 −α2

 , A2 =

0 1

0 α3

 , C1 =

0 −1

0 0

 , C2 =

0 1

0 0

 , B1 =

0

1

 , B2 =

0

0

 . (S13)

S2. Analytical stability results

In equation (11) of the main document, we have defined H(λ) as

H(λ) =
α1 + α3λ

α1 + α2λ+ λ2
,

leading to the following equation

H(λ) = e
i−1
n ·2πj , i = 1, 2, . . . , n. (S14)

The rest of analysis follows [18] to derive the stability result (5) in the main text. In particular, it is easy to see that the

eigenvalues of Â correspond to the solutions of (S14). Note that e
i−1
n ·2πj is the i-th complex root of zn = 1, indicating

that for all the eigenvalues λ of A, the values of H(λ) constitute n unit roots. As n changes, H(λ) corresponds

to different unit roots. Therefore, if all the roots of |H(λ)| = 1 have negative real parts, then the solutions of

equation (S14), i.e., the eigenvalues of matrix Â, have negative real parts. We conclude that the condition that all

the roots of |H(λ)| = 1 have negative real parts is sufficient to guarantee that Â is stable. Note that this condition

becomes sufficient and necessary for the case where the system is stable for any n. This is because that H(λ) can be

any unit root eθj , for θ ∈ [0, 2π).

Since all rational functions are meromorphic, H(λ) is a meromorphic function. Because α1 and α2 are positive real

numbers, the poles of H(λ) are in the left half plane, indicating that H(λ) is holomorphic in the right half plane.

Meanwhile, |H(λ)| → 0 when Re(λ) → ∞. According to Maximum Modulus Principle [39], the extreme value of

|H(λ)| in the right half plane can only be obtained on the imaginary axis. To avoid eigenvalues with positive real

parts, |H(λ)| should not be more than 1 on the imaginary axis. Therefore, that the roots of |H(λ)| = 1 have negative

real part is equivalent to |H(jv)| ≤ 1, ∀v ∈ R. This inequality leads to the stability criterion

α2
2 − α2

3 − 2α1 ≥ 0. (S15)

Substituting (S10) into (S15), the stability criterion for the OVM model is

α+ 2β ≥ V̇ (s∗).

Remark 1 (Marginal Stability). From equation (10) of the main document or (S14), when i = 1, we have λ2 +

(α2 − α3)λ = 0. This indicates we always have λ = 0, which is independent of α1, α2 and α3. It means that there

always exists a zero eigenvalue for Â. Therefore, the system is marginally stable, and indeed, the zero eigenvalue

corresponds to the ring structure of the system. We shall show that this feature of zero eigenvalue is inherent even

when we introduce an autonomous vehicle into the traffic system.
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S3. Controllability analysis

We use a block circulant matrix diagonalization method to analyze the controllability of system (A,B) shown

in (S12), and prove that the rank of the controllability matrix Qc is either 2n−1 or n; see (6) in the main text. Before

continuing our analysis, we present four useful lemmas on the controllability of linear systems [31, 40].

Lemma 1 (Controllability). The linear system (A,B) is controllable if and only if rank
[
B,AB, . . . , A2n−1B

]
= 2n.

Lemma 1 is the well-known Kalman’s controllability rank test [40], which provides a necessary and sufficient

mathematical condition for controllability. However, computing the rank requires all the elements of (A,B) to be

known, and it might be not numerically reliable to calculate the rank for large-scale systems. To facilitate analytical

analysis, it may be desirable to apply a certain linear transformation, thus representing the linear system under a

different basis and simplifying the system dynamics.

In particular, given a nonsingular T , we define a new state x̃ = T−1x, leading to the following dynamics

˙̃x(t) = T−1ATx̃(t) + T−1Bu(t).

Then, we obtain an equivalent linear system (T−1AT, T−1B), which should have the same controllability as that of

(A,B). This conclusion is formally presented in Lemma 2.

Lemma 2 (Invariance under linear transformation). The linear system (A,B) is controllable if and only if

(T−1AT, T−1B) is controllable for every nonsingular T .

If one can diagonalize the system matrix A via T−1AT , then the controllability of (A,B) will be easier to derive

by checking the controllability of (T−1AT, T−1B). Sometimes, this diagonalization may be nontrivial for its original

form (A,B). In this case, it may be desirable to apply certain state feedback to simply the system dynamics before

looking for diagonalization. Specifically, consider a control law v(t) = u(t) +Kx(t), and we arrive at

ẋ(t) = (A−BK)x(t) +Bv(t),

This linear system (A−BK,B) also have the same controllability with (A,B), which is formally summarized in the

following lemma.

Lemma 3 (Invariance under state feedback). The linear system (A,B) is controllable if and only if (A−BK,B) is

controllable for every K with compatible dimension.

In addition, we will rely on the following PBH test for our controllability analysis.

Lemma 4 (PBH controllability criterion). The linear system (A,B) is controllable if and only if rank(λI−A,B) = 2n

for every eigenvalue λ of A. In addition, (A,B) is uncontrollable if and only if there exists ω 6= 0, such that

ωTA = λωT, ωTB = 0,

where ω is a left eigenvector of A corresponding to λ, and ω corresponds to an uncontrollable mode.
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Now, we are ready to show that the mixed traffic system (S12) is not completely controllable. Our main idea is

to exploit the invariance of controllability under linear transformation and state feedback. Using a sequence of state

feedback and linear transformation, we diagonalize the system (A,B), leading to an analytical conclusion on the

controllability of (S12). Our procedure is as follows.

(A,B)
state feedback−−−−−−−−−→ (Â, B)

linear transformation−−−−−−−−−−−−−→ (Ã, B̃)

First, we transform system (A,B) into (Â, B) by introducing a virtual input û(t), defined as û(t) = u(t)−(α1s̃1(t)−

α2ṽ1(t)+α3ṽn(t)), which is the difference between the actual control value and the acceleration value when the vehicle

is controlled by a human driver. Then, the state space model of (Â, B) becomes

ẋ(t) = Âx(t) +Bû(t) =



A1 0 . . . . . . 0 A2

A2 A1 0 . . . . . . 0

0 A2 A1 0 . . . 0
...

. . .
. . .

. . .
. . .

...

0 . . . 0 A2 A1 0

0 . . . . . . 0 A2 A1


x(t) +



B1

B2

B2

...

B2


û(t).

The controllability remains the same between system (Â, B) and the original system (A,B). Now, note that Â is

block circulant, and we can use the block diagonalization method [28, 29] to analyze the controllability of (Â, B).

Precisely, we use the transformation matrix F ∗n ⊗ I2 to transform (Â, B) into (Ã, B̃), and the new system matrix is

Ã = (F ∗n ⊗ I2)−1Â(F ∗n ⊗ I2) = diag(D1, D2, . . . , Dn). (S16)

The new state variable x̃ after transformation becomes

x̃ = (F ∗n ⊗ I2)−1x = (Fn ⊗ I2)x, (S17)

and the new control matrix B̃ is

B̃ = (F ∗n ⊗ I2)−1B = (Fn ⊗ I2)B =
1√
n



I2 I2 I2 · · · I2

I2 ω̄I2 ω̄2I2 · · · ω̄n−1I2

I2 ω̄2I2 ω̄4I2 · · · ω̄2(n−1)I2
...

...
...

...

I2 ω̄n−1I2 ω̄2(n−1)I2 · · · ω̄(n−1)(n−1)I2




B1

B2

...

B2

 =
1√
n


B1

B1

...

B1

 ,
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where ω̄ is the conjugate transpose of ω. Therefore, the dynamics of x̃ are

˙̃x = Ãx̃(t) + B̃û(t) =


D1

D2

. . .

Dn

 x̃(t) +
1√
n


B1

B1

...

B1

 û(t). (S18)

Upon denoting x̃(t) =
[
x̃11, x̃12, x̃21, x̃22, . . . , x̃n1, x̃n2

]T
, (Ã, B̃) is decoupled into n independent subsystems

d

dt

x̃i1
x̃i2

 = Di

x̃i1
x̃i2

+

 0

1√
n

 û(t) =

 0 −1 + ω(n−1)(i−1)

α1 −α2 + α3ω
(n−1)(i−1)

x̃i1
x̃i2

+

 0

1√
n

 û(t).

The rank of the controllability matrix Qc,i of each sub-system is

rank(Qc,i) = rank

 0
(
−1 + ω(n−1)(i−1)) 1√

n

1√
n

(
−α2 + α3ω

(n−1)(i−1)) 1√
n

 .

It is not difficult to see rank(Qc,1) = 1, meaning that the first sub-system has an uncontrollable component. Therefore,

the system pair (Ã, B̃) is not completely controllable and has at least an uncontrollable component. In particular,

the uncontrollable sub-system is

d

dt

x̃11
x̃12

 =

 0 0

α1 −α2 + α3

x̃11
x̃12

+

 0

1√
n

 û(t),

meaning that x̃11 is an uncontrollable component, and x̃11 remains constant during the dynamic evolution. According

to x̃ = (F ∗n ⊗ I2)−1x, we know that

x̃11 =
1√
n

(
(s1(t)− s∗c) +

n∑
i=2

(si(t)− s∗)

)
(S19)

is uncontrollable and remains constant. This exactly corresponds to the ring structure. Note that system (Ã, B̃)

is equivalent to system (Â, B) due to the linear transformation. Also, system (Â, B) has the same controllability

characteristic as the original system (A,B). Therefore, we conclude that the original system pair (A,B) is not

completely controllable and has at least one uncontrollable component which remains constant, as shown in (S19).

After revealing the uncontrollable component (S19), we next use Lemma 4 to prove

rank(Qc) = rank
([
B̃, ÃB̃, . . . , Ã2n−1B̃

])
=

2n− 1, if α1 − α2α3 + α2
3 6= 0,

n, if α1 − α2α3 + α2
3 = 0.
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• Case 1: α1 − α2α3 + α2
3 6= 0. For convenience, we restate the eigenvalue calculation (11) as

det(λI − Ã) =

n∏
i=1

det(λI −Di)

=

n∏
i=1

(
λ2 +

(
α2 − α3ω

(n−1)(i−1)
)
λ+ α1

(
1− ω(n−1)(i−1)

))
= 0.

where each block Di is

Di =

 0 −1 + ω(n−1)(i−1)

α1 −α2 + α3ω
(n−1)(i−1)

 , i = 1, 2, . . . , n. (S20)

Step 1: We first prove that Di and Dj (i 6= j) share no common eigenvalues. Assume there exists a λ satisfying

det(λI −Di) = 0 and det(λI −Dj) = 0, i 6= j, which means

λ
2 + α2λ+ α1 = (α3λ+ α1)ω(n−1)(i−1),

λ2 + α2λ+ α1 = (α3λ+ α1)ω(n−1)(j−1).

Since ω(n−1)(i−1) 6= ω(n−1)(j−1), we obtain α3λ+ α1 = 0 and λ2 + α2λ+ α1 = 0, leading to

α1 − α2α3 + α2
3 = 0, λ = α3 − α2,

which contradicts the condition that α1−α2α3 +α2
3 6= 0. Therefore, Di and Dj , j 6= i have different eigenvalues.

Step 2: We then prove that all the system modes corresponding to non-zero eigenvalues are controllable. Denote

λk 6= 0 as the eigenvalue of Dk and ρ as its corresponding left eigenvector. According to Lemma 4, we need to

show ρTB̃ 6= 0.

Upon denoting ρ as ρ =
[
ρT1 , ρ

T
2 , . . . , ρ

T
n

]T
where ρi =

[
ρi1, ρi2

]T
∈ R2×1, i = 1, 2, . . . , n, the condition ρTÃ =

λkρ
T leads to

ρTi Di = λkρ
T
i , i = 1, 2, . . . , n. (S21)

Because λk is not an eigenvalue of Di, i 6= k, we obtain ρi = 0, i 6= k. Hence, ρTB̃ = ρTkB1 = ρk2. Assume

ρk2 = 0, and then substituting (S20) into (S21) yields

[
ρk1 0

] 0 −1 + ω(n−1)(k−1)

α1 −α2 + α3ω
(n−1)(k−1)

 = λk

[
ρk1 0

]
. (S22)

The only solution to (S22) is ρk1 = 0, indicating that the left eigenvector ρ = 0, which is false. Accordingly,

the assumption that ρk2 = 0 does not hold. Therefore, we have ρTB̃ = ρk2 6= 0, meaning that the mode

corresponding to λk is controllable. In other words, the system modes corresponding to nonzero eigenvalues



24

are all controllable. Because the only zero eigenvalue λ = 0 appears in det(λI − D1) = 0, and we have

shown in equation (S19) that the corresponding mode is uncontrollable. Consequently, we conclude that if

α1−α2α3 +α2
3 6= 0, there are 2n− 1 controllable modes in the system (Ã, B̃), meaning that rank(Qc) = 2n− 1.

• Case 2: α1 − α2α3 + α2
3 = 0. Substituting this condition into det(λI −Di) = 0 yields

det(λI −Di) = λ2 +
(
α2 − α3ω

(n−1)(i−1)
)
λ+ α1

(
1− ω(n−1)(i−1)

)
= (λ+ α2 − α3)

(
λ+ α3 − α3ω

(n−1)(i−1)
)

= 0, i = 1, 2, . . . , n,

which gives the eigenvalues of Di, i = 1, 2, . . . , n as follows

λi1 = α3 − α2, , λi2 = α3

(
ω(n−1)(i−1) − 1

)
.

Step 1: we prove that there are n − 1 uncontrollable modes corresponding to α3 − α2. It is easy to see that

α3 − α2 is the common eigenvalue for each block Di, i = 1, 2, . . . , n, i.e., the algebraic multiplicity of α3 − α2

is n. We consider its left eigenvector ρ =
[
ρT1 , ρ

T
2 , . . . , ρ

T
n

]T
. Similar to (S21), we obtain

ρTi Di = (α3 − α2)ρTi , i = 1, 2, . . . , n.

Expanding this equation leads to

[
ρi1 ρi2

] 0 −1 + ω(n−1)(i−1)

α1 −α2 + α3ω
(n−1)(i−1)

 = (α3 − α2)
[
ρi1 ρi2

]
, i = 1, 2, . . . , n,

from which we have ρi1 = −α3ρi2, i = 1, 2, . . . , n. Therefore, we can choose n linearly independent left eigen-

vectors corresponding to α3 − α2 as

ρ(1) =
[
−α3, 1, 0, 0, 0, 0, . . . , 0, 0

]
,

ρ(2) =
[
−α3, 1, α3,−1, 0, 0, . . . , 0, 0

]
,

ρ(3) =
[
−α3, 1, 0, 0, α3,−1, . . . , 0, 0

]
,

...

ρ(n) =
[
−α3, 1, 0, 0, 0, 0 . . . , α3,−1

]
.

(S23)

From these left eigenvectors, it is easy to verify that
(
ρ(1)

)T
B̃ 6= 0 and

(
ρ(i)
)T
B̃ = 0, i = 2, 3, . . . , n, meaning

that for α3 − α2, there are n− 1 uncontrollable modes.

Step 2: we consider the rest of eigenvalues, i.e. λi2 = α3

(
ω(n−1)(i−1) − 1

)
, i = 1, 2, . . . , n. The zero eigenvalue

λ12 = 0 still corresponds to an uncontrollable mode, as shown in (S19). We prove that the modes associated with

λi2 = α3

(
ω(n−1)(i−1) − 1

)
, i = 2, 3, . . . , n are controllable. The proof is similar to the scenario where we have
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α1−α2α3+α2
3 6= 0. For λk2 = α3

(
ω(n−1)(k−1) − 1

)
, (k 6= 1), denote its left eigenvector as ρ =

[
ρT1 , ρ

T
2 , . . . , ρ

T
n

]T
,

where ρi =
[
ρi1, ρi2

]T
∈ R2×1, i = 1, 2, . . . , n. Then we have ρi = 0, i 6= k, since λk2 is not an eigenvalue of

other blocks Di, i 6= k. For ρk =
[
ρk1, ρk2

]T
, we have ρk2 6= 0, which is similar to the argument in (S22).

Therefore, ρTB̃ 6= 0, meaning the mode corresponding to λk2, k 6= 1 is controllable.

In summary, the eigenvalue λ = α3 − α2 is associated with n − 1 uncontrollable modes and 1 controllable

mode. Since α3 − α2 < 0, the uncontrollable modes are all stable. In addition, the n − 1 modes associated

with λi2 = α3

(
ω(n−1)(i−1) − 1

)
, i = 2, 3, . . . , n are controllable, and the zero eigenvalue corresponds to an

uncontrollable mode. In total, there are n controllable modes in the system (Ã, B̃), meaning that rank(Qc) = n.

Remark 2 (Stabilizability of mixed traffic systems). In the mixed traffic system with one autonomous vehicle, i.e.,

the system pair (A,B), the uncontrollable mode corresponds to a zero eigenvalue, and the rest of modes are either

controllable or stable. Therefore, system (A,B) is stabilizable. In particular, by choosing an appropriate control input,

the autonomous vehicle can not only stabilize the global traffic flow, but also steer the system to a higher equilibrium

traffic speed; see Figure 4 in the main text for illustration.

S4. Solution method for the optimal control strategy

We have shown that a mixed traffic system with a single autonomous vehicle is stabilizable. Following the standard

control theory [31], we design an optimal control strategy to reject perturbations in the mixed traffic system. In

our framework, we model this scenario by assuming that there exists a disturbance signal wi(t) in each vehicle’s

acceleration signal, i.e., ˙̃vi = α1s̃i(t)−α2ṽi(t) +α3ṽi−1(t) +wi(t). In other words, the linearized dynamics of human-

driven vehicle (S5) become

ẋi(t) = A1xi(t) +A2xi−1(t) +H1wi(t),

whereH1 =
[
0, 1
]T

. Then, we design an optimal control input u(t) = −Kx(t) to minimize the influence of disturbances

wi(t) on the traffic system, where K ∈ R1×2n denotes the feedback gain. Mathematically, this can be formulated into

the following optimization problem

min
K

‖Gwz‖

subject to u = −Kx,
(S24)

where Gwz denotes the transfer function from disturbance signal w(t) =
[
w1(t), . . . , wn(t)

]
to the traffic performance

state z(t) =
[
γss̃1(t), γv ṽ1(t), . . . , γss̃n(t), γv ṽn(t), γuu(t)

]T
, with positive weights γs > 0, γv > 0, γu > 0, and ‖ · ‖

denotes the H2 norm of a transfer function that captures the influence of disturbances. Note that the performance

state can also be written into

z(t) =

Q 1
2

0

x(t) +

 0

R
1
2

u(t),
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where Q
1
2 = diag(γs, γv, . . . , γs, γv) and R

1
2 = γu denote the square roots of state and control performance weights,

respectively.

Solution via convex optimization. The optimization problem (S24) is in the standard form of the H2 optimal

controller synthesis in control theory [31]. Here, we briefly present the steps to obtain a convex formulation for

problem (S24). It is known that the H2 norm of a stable linear system can be calculated as follows.

Lemma 5 ([31]). Given a stable linear system ẋ(t) = Ax(t) + Hw(t), z(t) = Cx(t), the H2 norm of the transfer

function from disturbance w(t) to performance signal z(t) can be computed by

‖Gwz‖2 = inf
X�0
{Trace

(
CXCT

)
| AX +XAT +HHT � 0}.

where Trace(·) denotes the trace of a symmetric matrix.

When applying state-feedback u = −Kx, the closed-loop traffic system becomes

ẋ(t) = (A−BK)x(t) +Hw(t),

z(t) =

 Q
1
2

−R 1
2K

x(t).

Using Lemma 5 and a standard change of variables Z = KX, the optimal control problem (S24) can be equivalently

reformulated as

min
X,Z

Trace(QX) + Trace
(
RZX−1ZT

)
subject to (AX −BZ) + (AX −BZ)T +HHT � 0,

X � 0.

By introducing Y � ZX−1ZT and using the Schur complement, a convex reformulation to (S24) is derived as

follows.

min
X,Y,Z

Trace(QX) + Trace(RY )

subject to (AX −BZ) + (AX −BZ)T +HHT � 0, Y Z

ZT X

 � 0, X � 0.

(S25)

Problem (S25) is convex and ready to be solved using general solvers, e.g., Mosek [37], and the optimal controller is

recovered as K = ZX−1.

Implementation of the optimal control strategy. Upon choosing the weight coefficients γs, γv, and γu, we can

solve (S25) to obtain an optimal control strategy u(t) = −Kx(t) to reject the influence of disturbances. Considering
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the definition of state x(t) and denoting K =
[
k1,1, k1,2, k2,1, k2,2,, . . . , kn,1, kn,2

]
∈ R1×2n, the optimal control strategy

is implemented as

u(t) = −

(
k1,1 (s1(t)− s∗c) + k1,2 (v1(t)− v∗) +

n∑
i=2

(ki,1(si(t)− s∗) + ki,2(vi(t)− v∗))

)
, (S26)

where (s∗, v∗) is the traffic equilibrium state of human-driven vehicles satisfying (S2), and s∗c > 0 is the desired spacing

for the autonomous vehicle that is free to choose. For the OVM model, (s∗, v∗) should satisfy (S9), while for the IDM

model, (s∗, v∗) should meet (S11).

As discussed in the section of reachability and system final state in the main document, by choosing the equilibrium

state (s∗, v∗) and s∗c properly in (S26), we can not only stabilize the global traffic flow but also steer the traffic flow

to a higher traffic velocity v∗; see Figure 4 in the main document for numerical illustration. Note that the maximum

reachable traffic velocity v∗ is determined by its corresponding maximum reachable spacing s∗, as shown in equation 8.

Figure S2 illustrates the scenario where the autonomous vehicle increase the equilibrium traffic speed.
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(b)

Supplementary Figure S2: Illustration of the scenario where the autonomous vehicle increases the traffic

speed, AV: autonomous vehicle; HDV: human-driven vehicle. (a) When all vehicles are human-driven, the spacing between

two vehicles is equal for homogeneous car-following dynamics. (b) In the case of mixed traffic systems, the autonomous vehicle

be controlled to follow its preceding vehicle in a shorter distance, and the other human-driven vehicles have a larger spacing

at the equilibrium state. According to F (s∗, 0, v∗) = 0, the equilibrium velocity v∗ increases as s∗ grows up. Hence, the entire

traffic flow speed can be increased via controlling the autonomous vehicle; see Figure 4(b) for a numerical demonstration.

S5. Additional numerical experiments: numerical comparison

In this section, we compare our proposed method in the mixed traffic system with only one AV, with two existing

controllers, FollowerStopper and PI with Saturation [19]. We conducted two types of simulations representing different

traffic situations, and we used the nonlinear OVM model (S6)—(S8) for human-driven vehicles. Throughout our

numerical experiments, the parameters for the OVM model were α = 0.6, β = 0.9, vmax = 30m/s, sst = 5m, and

sgo = 35m.
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Two heuristic methods: FollowerStopper and PI with Saturation. The following description of FollowerStopper

and PI with Saturation resembles the motivation in [19]. Specifically, the control law of FollowerStopper is

vcmd =



0, if ∆x ≤ ∆x1,

v
∆x−∆x1
∆x2 −∆x1

, if ∆x1 < ∆x ≤ ∆x2,

v + (U − v)
∆x−∆x2
∆x3 −∆x2

, if ∆x2 < ∆x ≤ ∆x3,

U, if ∆x3 < ∆x,

where vcmd is the command velocity of the autonomous vehicle; ∆x is the spacing; U is the preset desired velocity.

In the simulations we set ∆x1 = 12.5m, ∆x2 = 14.75m, ∆x3 = 20m, and v is defined as

v = min
(
max

(
vlead, 0

)
, U
)
,

where vlead is the velocity of the leading vehicle. As for the control strategy in the PI with Saturation, the autonomous

vehicle estimates the average equilibrium velocity U based on its own history data using the previous m time steps.

U =
1

m

m∑
j=1

v(j).

The target velocity vtarget is defined as

vtarget = U + vcatch ×min

(
max

(
∆x− gl
gu − gl

, 0

)
, 1

)
,

where vcatch is the allowed velocity for the vehicle to catch up to its preceding vehicle. In the simulations, we used

vcatch = 1m/s ; gl = 7m is the lower gap limit; gu = 30m is the upper gap limit. Then, the command velocity for

step j + 1 is obtained as

vcmd(j + 1) = βj
(
αjv

target(j) + (1− αj)vleadj

)
+ (1− βj)vcmd(j).

Then, the following dynamics are used to transform the signal vcmd from FollowerStopper and PI with Saturation

into an acceleration signal,

v̇(t) = α(vcmd − v(t)),

where we used α = 0.6 in the simulations.

In addition, we assume that all the vehicles are equipped with a Safe Distance system, in order to avoid crashes.

The specific expression of Safe Distance system is

v̇(t) = amin, if
v2i − v2i−1

2si
≥ |amin|,
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Supplementary Figure S3: Experiment A, time required to smooth the disturbances in the mixed traffic flow.

Our optimal control strategy requires the least amount of time to stabilize the mixed traffic flow, and the strategy of PI with

Saturation fails to stabilize the mix traffic within 300 seconds when the number of vehicles is larger than 65.

where amin is the minimum acceleration and amin = −5m/s2. We assume that there are n vehicles on the ring road,

and the spacing of each vehicle at the equilibrium state is fixed to s∗ = 20m. Then, the circumference is L = ns∗

(the length of each vehicle is neglected).

Numerical experiments. In Experiment A, each vehicle has a weak perturbation around its equilibrium state at

initial time, in the sense that the position and the velocity of the i-th vehicle are iL/n + δs, and vini + δv, where

vini is the equilibrium velocity corresponding to the equilibrium spacing L/n, δs ∼ U [−4, 4] and δv ∼ U [−2, 2] with

U [a, b] denoting a uniform distribution between a and b. In this experiment, we compare the performance of the three

methods in different system size n, i.e., the number of vehicles in the mixed traffic flow. As shown in Figure S3, our

optimal strategy leads to the best performance in terms of the time required for smoothing the disturbances. The

settling time for our method is only around half of that by FollowerStopper, and the strategy of PI with saturation

fails to stabilize the traffic flow within 300 seconds when n ≥ 65.

In Experiment B, we assume that one vehicle has a rapid and strong perturbation. In the beginning, the traffic

flow is at the equilibrium state with the velocity 15m/s. At t = 20s, the i-th vehicle decelerates to 5m/s in 2 seconds.

This situation often happens in the presence of infrastructure bottlenecks or lane changing. Scenarios with different

positions of the perturbation are tested, i.e., the perturbed vehicle i can be 2, 3, . . . , n. Note that no.1 vehicle is

the autonomous vehicle. Simulation results corresponding to the optimal control strategy, FollowerStopper and PI

with Saturation, are shown in Figures S4, S5 and S6, respectively. In all the tested scenarios, the perturbation was

successfully dampened using the three methods, among which our optimal strategy took the shortest time and the

lowest control energy. As shown in Figure S7, this finding holds irrespectively of the position of the perturbation.

Furthermore, as shown in Figure S4, we observe that our optimal control strategy is able to reject the perturbation

before it propagates around the ring road in one circle . For the other two methods, however, the traffic wave exists

for about two propagation periods (see Figures S5 and S6).

Remark 3 (Parameter selection of controllers). There are many parameters in the strategies of FollowerStopper

and PI with Saturation that need to be pre-determined. Different choices of parameter values may lead to different

performance, which are not completely predictable. Instead, only three parameters need to be designed in the optimal

control strategy, i.e., the weight coefficients in the cost function, γs, γv, and γu. Moreover, we can adjust their values



to achieve different and predictable results. For example, setting a larger value to γs and γv typically allows to stabilize

the traffic in a shorter time, and setting a larger value to γu normally helps to keep a lower control energy for the

autonomous vehicle.

(a) (b)

(c) (d)

(e) (f)

Supplementary Figure S4: Trajectory and velocity profiles of Experiment B where the autonomous vehicle

adopts the optimal control strategy. In each subfigure, the left one is the trajectory of each vehicle (human-driven

vehicles are grey and the autonomous vehicle is blue). The right one is the velocity of each vehicle. The deeper the color red,

the slower the velocity, so the red zone can represent the traffic wave. The red line means the perturbation and the black line

is the average velocity of all the vehicles. The index of the autonomous vehicle is 1. (a)-(f) corresponds to the case where the

2nd, 5th, 8th, 11th, 14th, and 17th vehicle is subject to the rapid and strong perturbation, respectively.



(a) (b)

(c) (d)

(e) (f)

Supplementary Figure S5: Trajectory and velocity profiles of Experiment B where the autonomous vehicle

adopts the FollowerStopper strategy. In each subfigure, the left one is the trajectory of each vehicle (human-driven

vehicles are grey and the autonomous vehicle is blue). The right one is the velocity of each vehicle. The deeper the color red,

the slower the velocity, so the red zone can represent the traffic wave. The red line means the perturbation and the black line

is the average velocity of all the vehicles. The index of the autonomous vehicle is 1. (a)-(f) corresponds to the case where the

2nd, 5th, 8th, 11th, 14th, and 17th vehicle is subject to the rapid and strong perturbation, respectively.
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(a) (b)

(c) (d)

(e) (f)

Supplementary Figure S6: Trajectory and velocity profiles of Experiment B where the autonomous vehicle

adopts the PI with Saturation strategy. In each subfigure, the left one is the trajectory of each vehicle (human-driven

vehicles are grey and the autonomous vehicle is blue). The right one is the velocity of each vehicle. The deeper the color red,

the slower the velocity, so the red zone can represent the traffic wave. The red line means the perturbation and the black line

is the average velocity of all the vehicles. The index of the autonomous vehicle is 1. (a)-(f) corresponds to the case where the

2nd, 5th, 8th, 11th, 14th, and 17th vehicle is subject to the rapid and strong perturbation, respectively.
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Supplementary Figure S7: Comparison of results in Experiment B (one vehicle is subject to a rapid and

severe perturbation). (a) The time required for the traffic flow to become steady. The perturbation happens at t = 20s

and the time length of simulations is 100 seconds, within which PI with Saturation failed to stabilize the traffic, therefore the

results for PI with Saturation are presented as 80 seconds. (b) Control energy
∫∞
0
u(t)Tu(t)dt of the autonomous vehicle.

S6. Mixed traffic systems with multiple autonomous vehicles

In this section, we analyze the mixed traffic system with k autonomous vehicles. The indices of the autonomous

vehicles are i1, i2, . . . , ik, for which we define a set SAV = {i1, i2, . . . , ik}. The state-space dynamics are given by

ẋ(t) = Akx(t) +Bku(t) =



A11 0 . . . . . . 0 A12

A22 A21 0 . . . . . . 0

0 A32 A31 0 . . . 0
...

. . .
. . .

. . .
. . .

...

0 . . . 0 A(n−1)2 A(n−1)1 0

0 . . . . . . 0 An2 An1


x(t) +

[
P1, P2, . . . , Pk

]
u(t). (S27)

In the system matrix Ak, we have Ar2 = C2, Ar1 = C1, if r ∈ SAV,

Ar2 = A2, Ar1 = A1, if r /∈ SAV,

and the other blocks are zero, where A1, A2, C1 and C2 are the same as that in (S13). In Bk, each column Pr is

a 2n × 1 vector, in which only the (2ir)-th entry is 1 and the others are zero. In (S27), the input signal consists of

u(t) =
[
ui1(t), ui2(t), . . . , uik(t)

]T
, where uir (t) is the control input of the r-th autonomous vehicle, ir ∈ SAV.

Similar to Supplementary Note 3, to analyze the system controllability, we first define a virtual control input as
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û(t) = u(t)−
[
α1s̃i1(t)− α2ṽi1(t) + α3ṽi1−1(t), . . . , α1s̃ik(t)− α2ṽik(t) + α3ṽik−1(t)

]T
. Then (S27) becomes

ẋ(t) =



A1 0 . . . . . . 0 A2

A2 A1 0 . . . . . . 0

0 A2 A1 0 . . . 0
...

. . .
. . .

. . .
. . .

...

0 . . . 0 A2 A1 0

0 . . . . . . 0 A2 A1


x(t) +Bkûk(t) = Âx(t) +Bkûk(t).

Using F ∗n⊗I2 as the transformation matrix, (Â, Bk) can be transformed into (Ã, B̃k) with Ã being the same as (S16)

and B̃k defined as

B̃k = (F ∗n ⊗ I2)−1Bk = (Fn ⊗ I2)Bk

=
1√
n



I2 I2 I2 · · · I2

I2 ω̄I2 ω̄2I2 · · · ω̄n−1I2

I2 ω̄2I2 ω̄4I2 · · · ω̄2(n−1)I2
...

...
...

...

I2 ω̄n−1I2 ω̄2(n−1)I2 · · · ω̄(n−1)(n−1)I2


Bk =

1√
n

[
P̃1, P̃2, . . . , P̃k

]
,

where P̃r =
[
0, 1, 0, ω̄ir−1, . . . , 0, ω̄(n−1)(ir−1)

]T
, r = 1, . . . , k. After the transformation, the new state variable x̃ is

the same as (S17). Hence, we have

˙̃x = Ãx̃(t) + B̃kû(t)

=


D1

D2

. . .

Dn

 x̃(t) +
1√
n



0 0 . . . 0

1 1 . . . 1

0 0 . . . 0

ω̄i1−1 ω̄i2−1 . . . ω̄ik−1

...
... . . .

...

0 0 . . . 0

ω̄(n−1)(i1−1) ω̄(n−1)(i2−1) . . . ω̄(n−1)(ik−1)


û(t).

(S28)

Note that the dynamics (S28) would be reduced to the case with a single autonomous vehicle (S18) when k = 1

and i1 = 1. Upon denoting x̃(t) =
[
x̃11, x̃12, x̃21, x̃22, . . . , x̃n1, x̃n2

]T
, (Ã, B̃k) can be decoupled into n independent
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subsystems (q = 1, 2, . . . , n)

d

dt

x̃q1
x̃q2

 = Di

x̃q1
x̃q2

+
1√
n

 0 0 · · · 0

ω̄(q−1)(i1−1) ω̄(q−1)(i2−1) · · · ω̄(q−1)(ik−1)

 û(t)

=

 0 −1 + ω(n−1)(q−1)

α1 −α2 + α3ω
(n−1)(q−1)

x̃i1
x̃i2

+
1√
n

 0 0 · · · 0

ω̄(q−1)(i1−1) ω̄(q−1)(i2−1) · · · ω̄(q−1)(ik−1)

 û(t).

After some algebraic simplification, the controllability of each sub-system is tested as

rank(Qc,q)

= rank

 0 · · · 0
(
−1 + ω(n−1)(q−1)) ω̄(q−1)(i1−1) · · ·

(
−1 + ω(n−1)(q−1)) ω̄(q−1)(ik−1)

ω̄(q−1)(i1−1) · · · ω̄(q−1)(ik−1)
(
−α2 + α3ω

(n−1)(q−1)) ω̄(q−1)(i1−1) · · ·
(
−α2 + α3ω

(n−1)(q−1)) ω̄(q−1)(ik−1)


= rank

0 −1 + ω(n−1)(q−1)

1 −α2 + α3ω
(n−1)(q−1)

 , q = 1, 2, . . . , n.

It is not difficult to see that rank(Qc,1) = 1. In summary, the uncontrollable mode x̃11 still exists, and we have that

x11 =
1√
n

 ∑
i∈SAV

(
si(t)− s∗i,c

)
+

∑
i∈{1,2,...,n}\SAV

(si(t)− s∗)

 (S29)

remains constant, where s∗i,c is the desired spacing of the autonomous vehicle i, i ∈ SAV. Similar to Supplementary

Note 3, there exists an uncontrollable mode corresponding to a zero eigenvalue in the mixed traffic system with

multiple autonomous vehicles. Thus, the mixed traffic system (S27) is not completely controllable. One physical

interpretation is that the sum of each vehicle’s spacing should remain constant due to the ring road structure. Also,

the mixed traffic system (S27) is stabilizable since (S12) is stabilizable.

Similar to the reachability analysis, the final state of stable system (S27) can be obtained via


ṽi(tf) = ve, i ∈ {1, 2, . . . , n},

s̃i(tf) =
α2 − α3

α1
ve, i ∈ {1, 2, . . . , n}\SAV,

s̃i(tf) = se,i, i ∈ SAV.

where ve and se,i, i ∈ SAV should satisfy

α2 − α3

α1

∑
i∈{1,2,...,n}\SAV

ki,1 +
∑

i∈{1,2,...,n}

ki,2

 ve +
∑
i∈SAV

ki,1se,i = 0,

(n− k)

(
α2 − α3

α1
ve + s∗

)
+
∑
i∈SAV

(s∗i,c + se,i) = L.

To reach the desired equilibrium state (s∗, v∗), we should have ve = 0 and se,i = 0, i ∈ SAV. Together with the
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uncontrollable mode (S29), a reachable final state is in the form of
[
sdes,1, v

∗, sdes,2, v
∗, . . . , sdes,n, v

∗
]
∈ R2n, where

sdes,i = s∗, i ∈ {1, 2, . . . , n}\SAV,

sdes,i = s∗i,c, i ∈ SAV.

For s∗i,c, i ∈ SAV, they must satisfy
∑
i∈SAV

s∗i,c = L − (n − k)s∗. This completes our analysis in the scenario with

multiple autonomous vehicles.
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