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Abstract

In a platoon of connected vehicles, time headway plays an important role in both traffic capacity and road safety. It
is desirable to maintain a lower time headway while satisfying string stability in a platoon, since this leads to a higher
traffic capacity and guarantees the disturbance attenuation ability. In this paper, we study a multiple-predecessor
following strategy to reduce time headway via vehicle-to-vehicle (V2V) communication. We first introduce a new
definition of desired inter-vehicle distances based on the constant time headway (CTH) policy, which is suitable
for general communication topologies. By exploiting lower-triangular structures in a time headway matrix and an
information topology matrix, we derive a set of necessary and sufficient conditions on feedback gains for internal
asymptotic stability. Further, by analyzing the stable region of feedback gains, a necessary and sufficient condition on
time headway is also obtained for the string stability specification. It is proved that a platoon can be asymptotically
stable and string stable when the time headway is lower bounded. Moreover, this bound can be reduced by increasing
the number of predecessors. These results explicitly highlight the benefits of V2V communication on reducing time
headway for platooning of connected vehicles.

Keywords: Connected vehicles, constant time headway, multiple-predecessor following, V2V communication,
string stability

1. Introduction

The increase of car ownership has posed a high demand on road throughput as well as transport safety and
efficiency. To mitigate this issue, one promising approach is the cooperation of multiple connected vehicles using
onboard sensors and vehicle-to-vehicle (V2V) communication. As discussed in (Talebpour & Mahmassani, 2016;
Xu et al., 2018; Lioris et al., 2017), the cooperation of connected vehicles has the potential to greatly improve
throughput and safety for both urban and highway traffic. In the one-dimensional case, this cooperation technique
is referred to as the cooperative adaptive cruise control (CACC) or vehicular platooning (Shladover, 2007; Shladover
et al., 1991). A review of recent advances in platoon control can be found in (Li et al., 2017b).

In a vehicular platoon, multiple connected vehicles are coordinated to move in a one-dimensional formation.
In this formation, the most important properties include the internal stability and string stability. The internal
stability indicates the ability to maintain the formation asymptotically, which requires that all eigenvalues of the
system characteristics polynomial are in the open left half plane. Different from this, the string stability represents
the ability to attenuate the effects of disturbances along the platoon (Seiler et al., 2004). In the literature, there are
different types of definitions for string stability, such as the L2 (Ploeg et al., 2014a; Al-Jhayyish & Schmidt, 2018),
Lp (Ploeg et al., 2014b), L∞ (Stüdli et al., 2017), and head-to-tail string stability (Ge & Orosz, 2014, 2018; Wang,
2018). It is known that the string stability is highly influenced by the range policy, i.e., how the desired inter-
vehicle distances are defined. Commonly used range policies include: 1) the constant spacing (CS) policy, and 2) the
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constant time headway (CTH) policy. In the CS policy, the desired inter-vehicle distance is a constant value, which
has the best potential to reduce the platoon length and thus improve road throughput. In the case of the CS policy,
string stability cannot be achieved using identical linear feedback controllers for the predecessor-following (PF)
topology (Seiler et al., 2004; Darbha & Hedrick, 1999; Naus et al., 2010) and bi-directional (BD) topology (Barooah
& Hespanha, 2005). One solution is to broadcast the leader’s information, yielding the predecessor-leader following
(PLF) topology (Darbha & Hedrick, 1999). This strategy poses a high requirement on communication channels
as the platoon length grows. Another method is to use asymmetric controllers (Khatir & Davison, 2004; Ghasemi
et al., 2013), which may cause the feedback gains to increase with the platoon size. A more recent discussion on
the CS policy can be found in (Konduri et al., 2017). In the CTH policy, the desired inter-vehicle distance has a
linear relationship with the velocity, which agrees with human drivers’ characteristics to some extent. In the case of
the CTH policy, string stability can be achieved without the dependence on the leader’s information (Ploeg et al.,
2014a; Naus et al., 2010). In particular, to guarantee string stability, the requirement on time headway has a strong
connection with the time lag and delay in the vehicle control loop. For example, in (Darbha & Rajagopal, 2001), it
is proved that the time headway must be two times larger than the time lags in the actuation and sensing systems.
This result has been further extended to account for the parasitic time delays (Xiao & Gao, 2011). In some studies,
the leaders’ information is also used for platoons with the CTH policy, e.g., (Milanés et al., 2014a,b; Chehardoli
& Ghasemi, 2018). Introducing time headway may compromise the transport throughput, since the inter-vehicle
distance increases as the velocity grows. It is therefore desirable to reduce time headway while guaranteeing string
stability (Flores & Milanés, 2018).

In addition to the commonly used CS and CTH policies mentioned above, other types of nonlinear range policies
were also studied. For example, a quadratic range policy based on human driving data was proposed in (Zhou &
Peng, 2005) to improve traffic flow stability and string stability; an adaptive range policy for platoons with the
PLF topology was proposed in (Rödönyi, 2018) to address the unknown predecessor range policy; a delay-based
range policy was proposed in (Besselink & Johansson, 2017) to guarantee string stability when disturbances exist.
Besides, different control methods were studied to meet the specification of string stability, such as model predictive
control (Dunbar & Caveney, 2012), H∞ control (Ploeg et al., 2014a), sliding mode control (Xiao & Gao, 2011;
Kwon & Chwa, 2014; Guo et al., 2016), adaptive control (Kwon & Chwa, 2014; Guo et al., 2016; Chehardoli &
Ghasemi, 2018), and fractional-order PD control (Flores & Milanés, 2018). We note that these methods typically
rely on the CTH policy or require certain leader’s information for local feedback when using the CS policy.

Recently, the rapid development of V2V techniques enriches the types of information flow topologies, which
brings benefits as well as challenges to the analysis and design of platoon systems. With the introduction of V2V
communication, a platoon system can be more appropriately viewed as a multi-agent system (Jadbabaie et al.,
2003; Ren & Beard, 2008; Olfati-Saber et al., 2007; Ren & Cao, 2010), for which graph theory can be applied to
systematically address the modeling and synthesis problems (Yadlapalli et al., 2006; Zheng et al., 2016; Petrillo
et al., 2018; Li et al., 2017a). For example, Fax & Murray (2004) introduced a separation principle to reduce
the formation stability into the information flow stability and the individual vehicle stability. Yadlapalli et al.
(2006) showed a tradeoff between communication and scalable controllers, and proved that at least one vehicle
should maintain a large number of communication links in a rigid platoon to guarantee the existence of scalable
controllers. Zheng et al. (2016) proposed a four-component framework to systematically study the influence of
information flow topologies on vehicular platoons in terms of the internal stability, scalability, and robustness; see,
also, Zheng et al. (2018). Similar methods have been used in (Petrillo et al., 2018; Li et al., 2017a) by exploiting
the decomposability of information topology matrices. These studies provide certain insights on the influence of
V2V communication on platoons with the CS policy. However, string stability may still be unsatisfied for platoons
with the CS policy (Konduri et al., 2017). Therefore, it remains to be an important topic to address the effect of
information flow topologies on platoons with the CTH policy.

We note that a few recent studies have offered some progress (Chehardoli & Homaeinezhad, 2017; Darbha et al.,
2017, 2018). In these studies, the definitions of the CTH policy are inconsistent with each other. In principal, time
headway denotes the time that it takes for the host vehicle to cover the distance between its own and its predecessor’s
front bumpers. For a platoon with the PF topology, the desired inter-vehicle distance directly depends on the host
vehicle’s velocity. As for general information flow topologies, such as the multiple-predecessor following (MPF) and
the multiple-predecessor-leader following (MPLF) topologies, the definition of desired inter-vehicle distances may
have different choices. For example, in (Chehardoli & Homaeinezhad, 2017), the leading vehicle’s velocity is used
to define desired inter-vehicle distances for platoons with the MPLF topology, while in (Darbha et al., 2017, 2018),
the host vehicle’s velocity is used for platoons with the MPF topology. These definitions either rely on the leading
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vehicle’s information or may cause inconsistency in desired inter-vehicle distances (see Section 3 for details).
In this paper, we study the effects of V2V communication on platoons with the CTH policy. Specifically, we

aim to exploit the MPF strategy to reduce time headway and improve road throughput. First, we introduce a new
definition of inter-vehicle distances using CTH, which avoids inconsistency in desired inter-vehicle distances. Then,
we investigate how to reduce the time headway for platoons with the MPF topology via V2V communication. Based
on the results on the internal stability and string stability, we show that increasing the number of predecessors can
reduce the bound of allowable time headway. Precisely, our main contributions are:

1. A new definition of desired inter-vehicle distances using CTH is introduced for general information flow
topologies under V2V communication. This definition is a straightforward extension of that in the PF topology,
and can avoid inconsistency in desired inter-vehicle distances.

2. A set of necessary and sufficient conditions on feedback gains is derived for internal asymptotic stability, which
depicts a stability region for feedback gains and gives a lower bound of allowable time headway for internal
asymptotic stability. Our result extends that in (Zheng et al., 2016, 2019) from platoons with the CS policy
to platoons with the CTH policy.

3. Further, another set of necessary and sufficient conditions on feedback gains is derived for the string stability
specification. This condition gives another lower bound of allowable time headway for string stability. We
show that increasing the number of predecessors allows one to reduce the bound of allowable time headway.
This phenomenon is consistent with the results in (Darbha et al., 2017, 2018), where a different spacing policy
was used. Compared with the previous works, one highlight of our results is that the analytical feasible region
of feedback gains is derived in terms of both internal asymptotic stability and string stability, which explicitly
shows the effects of V2V communication on platoon systems. Some preliminary results was summarized
in (Bian et al., 2018).

The rest of this paper is organized as follows. Section 2 presents the system modeling, and Section 3 gives the
definition of the desired inter-vehicle distances using CTH. We present the results on internal stability and string
stability in Section 4 and 5, respectively. Numerical experiments are given in Section 6, and we conclude the paper
in Section 7.

Notations: The fields of integers, real numbers, and m × n real matrices are denoted by Z, R, and Rm×n,
respectively. A matrix M ∈ Rm×n is represented by its entries mij , i ∈ {1, 2, . . . ,m}, j ∈ {1, 2, . . . , n}, i.e.,
M = [mij ], and its transpose and conjugate transpose are denoted by M> and MH, respectively. A diagonal
matrix M ∈ Rn×n with diagonal entries m1,m2, . . . ,mn is denoted by diag{m1,m2, . . . ,mn}. The n × n identity
matrix is denoted by In. For any positive integer N , the set of {1, 2, . . . , N} is denoted by N . The intersection and
union of two sets A and B are denoted by A ∩ B and A ∪ B, respectively. The AND-operation and OR-operation
of two propositions A and B are denoted by A ∧ B and A ∨ B, respectively. Finally, the symbol ”=⇒” means ”if
· · · , then · · · ”, and ”⇐⇒” denotes ”if and only if · · · ”.

2. System modeling

We consider a platoon of connected vehicles that consists of 1 leader andN followers, indexed by 0 and 1, 2, . . . , N ,
respectively. The road is assumed to be straight and flat so the lateral vehicle motion is neglected for convenience.
The control objective is to coordinate the longitudinal motion of connected vehicles so that they keep the desired
inter-vehicle distance while maintaining the desired velocity. As suggested in (Zheng et al., 2016), we model a
platoon system from four aspects: (1) vehicle dynamics, which describe the longitudinal behavior of each vehicle;
(2) information flow topology, which defines how vehicles exchange information with each other; (3) formation
geometry, which depicts the desired inter-vehicle distances; (4) distributed controller, which implements feedback
control law on each vehicle based on local information.

2.1. Vehicle dynamics

In this paper, we use a linear third-order model to represent the dynamics of the leading and following vehicles:
ṗi = vi,

v̇i = ai,

τiȧi + ai = ui,

i ∈ {0} ∪ N , (1)
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where pi, vi, and ai denote the position, velocity and acceleration, respectively; τi > 0 is the inertial time lag in
the powertrain. In model (1), it is assumed that each vehicle is equipped with a low-level acceleration controller
that regulates ai according to ui. The powertrain system is approximated as a first-order inertial system with a
heterogeneous time constant τi. This model is simple yet accurate enough for platoon level synthesis, which is
widely used in the literature, e.g., (Zhou & Peng, 2005; Zheng et al., 2016; Darbha et al., 2017). We note that
nonlinear vehicle dynamics are also used in (Dunbar & Caveney, 2012; Kwon & Chwa, 2014; Zheng et al., 2018).
However, in that case, explicit results are rather difficult to derive. A comparison of different models was discussed
in (Li et al., 2015).

2.2. Information flow topology

In this study, we assume that there is no communication delay or packet loss. Typical studies on platoons
subject to communication delays and packet losses can be found in (di Bernardo et al., 2015; Zhang & Orosz,
2016; Petrillo et al., 2018; Harfouch et al., 2018). The information flow topology among the following vehicles is
modeled with a directed graph G(V, E ,A), where V = {v1, v2, . . . , vN} is a set of nodes representing all the following
vehicles, E ⊆ V × V is a set of edges representing the connections between each pair of following vehicles, and
A = [aij ] ∈ RN×N is an adjacency matrix, defined as

aij =

{
1, if {vj , vi} ∈ E ,
0, otherwise,

i, j ∈ N , (2)

where {vj , vi} ∈ E means that vehicle i can acquire the information of vehicle j. Besides, it is assumed that there
is no self-loop, i.e., aii = 0,∀i ∈ N . The property of G is further characterized with the following two matrices.

1. The degree matrix associated with G is defined as D = diag{d11, d22, . . . , dNN} ∈ RN×N with

dii =

N∑
k=1

aik, i ∈ N . (3)

Essentially, dii describes the number of following vehicles of which the information is available for vehicle i.

2. The Laplacian matrix associated with G is defined as L = [lij ] ∈ RN×N with

lij =

{
−aij i 6= j,∑N
k=1 aik i = j,

i, j ∈ N .

According to (2) and (3), it is not difficult to see that L = D −A.

To model the connections between the leading vehicle and the following vehicles, we define a pinning matrix:

P = diag{p11, p22, . . . , pNN} ∈ RN×N ,

where pii = 1 if vehicle i can acquire the information of the leader, and pii = 0 otherwise.
In this study, we consider the MPF topology, i.e., each vehicle can obtain the information of multiple immediate

predecessors via V2V communication. Figure 1 gives several examples of the MPF topology. We note that the MPF
topology is a direct generalization of the PF and two-predecessor following (TPF) topologies, which are studied in
(Ploeg et al., 2014a,b). Here we make the following assumption.

Assumption 1. The connected vehicles in the platoon are interconnected with an MPF topology, and the number
of predecessors that vehicle i follows is ri ∈ Z, 1 ≤ ri ≤ i, ∀i ∈ N .

Under Assumption 1, we know aij = 0, ∀j > i. Then the adjacency matrix A becomes a lower-triangular matrix.
In addition, we define the following information topology matrix:

LP := L+ P = D −A+ P.

Also, it is easy to see that LP is a lower-triangular matrix, since both D and P are diagonal matrices. Moreover,
the diagonal elements of LP are dii + pii = ri.
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(a) ri = 1, i ≥ 1

0 1 2 4 65

(b) r1 = 1, ri = 2, i ≥ 2

(c) r1 = 1, r2 = 2, ri = 3, i ≥ 3

0 1 2 4 65

0 1 2 4 65

3

3

3

Figure 1: Examples of the MPF topology (ri is the number of predecessors of vehicle i)

2.3. Formation geometry

The desired formation geometry of the platoon is defined with desired inter-vehicle distances. In detail, the
desired distance between vehicle i and the leader 0 is di,0(t), of which the precise definition will be given in (8).
Then, the control objective is formulated as

lim
t→+∞

∥∥pi(t)− p0(t) + di,0(t)
∥∥ = 0,

lim
t→+∞

∥∥vi(t)− v0(t)
∥∥ = 0,

lim
t→+∞

∥∥ai(t)− a0(t)
∥∥ = 0,

∀i ∈ N . (4)

This objective takes the leader’s information as a reference trajectory, which is a global coordination. However, the
leader may not be connected to all the followers in practice. Indeed, this objective should be achieved using local
information in a distributed way; see the next subsection.

2.4. Distributed controller

We consider the following linear feedback controller:

ui = −
N∑
j=1

aij
(
kip(p̃i − p̃j) + kiv(ṽi − ṽj) + kia(ãi − ãj)

)
− pii(kipp̃i + kiv ṽi + kiaãi), (5)

where kip, kiv, and kia are the feedback gains; p̃i, ṽi, and ãi are the position, velocity, and acceleration tracking
errors with respect to the leading vehicle, respectively, and their precise definitions are given in (9). Note that in
this controller, only local information, i.e., the neighbors’ information, is used for feedback, since p̃i − p̃j denotes
the relative position error between vehicle i and vehicle j; see (9). In essence, we aim to use local information to
design feedback input (5) for each follower, such that the global coordination (4) is achieved in a platoon level.
Note that pii can be either 1 or 0 depending on whether follower i can communicate with the leader (not all the
vehicles can obtain the leader’s information).

3. Desired inter-vehicle distances using CTH

In this section, we introduce the desired inter-vehicle distances using CTH. For the CTH policy in the PF
topology, the desired inter-vehicle distance between vehicle i and i− 1 is naturally defined as

di,i−1 = hivi +D, (6)

where hi is the time headway, and D is the standstill gap. When it comes to general information flow topologies,
the definitions of desired inter-vehicle distances are not consistent in the literature. For example, in (Chehardoli
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& Homaeinezhad, 2017), the desired distance between vehicle i and i − l is defined as di,i−l =
∑i−1
k=i−l hkv0 + lD,

where v0 is the leading vehicle’s velocity, and hk is the time headway of vehicle k − 1 with respect to vehicle
k. This definition is based on the leading vehicle’s velocity, implying that each vehicle must obtain the leader’s
information. In (Darbha et al., 2017, 2018), the desired inter-vehicle distance between vehicle i and i− l is defined
as di,i−l = lhvi + lD, where h is the time headway of vehicle i with respect to vehicle i− l. This definition is based
on the velocity of the host vehicle only. However, this leads to inconsistency in desired inter-vehicle distances in
the transient process, i.e., di,k(t) 6= di,j(t) + dj,k(t) if vi(t) 6= vj(t). Similar issues are also considered in (Rödönyi,
2018) when the predecessor’s range policy is unknown.

In this study, we directly extend the definition of the CTH policy of the PF topology to general topologies, by
adding the desired inter-vehicle distances, given in (6), i.e.,

di,i−l =

i−l+1∑
k=i

(hkvk + dk), (7)

where hk ≥ 0 and dk > 0 are the time headway and desired standstill gap of vehicle k with respect to vehicle k− 1,
respectively. This definition is more intuitive and can avoid inconsistency in desired inter-vehicle distances. It is
not difficult to check that:

di,k(t) = di,j(t) + dj,k(t),∀t ≥ t0.

Note that the new definition (7) relies on the velocities of l−1 immediate predecessors, which makes system analysis
and controller synthesis nontrivial.

Based on (7), the desired inter-vehicle distance between vehicle i and vehicle 0 becomes:

di,0 =

i∑
k=1

(hkvk + dk). (8)

Then the tracking error is defined as:
p̃i = pi +

i∑
k=1

(hkvk + dk)− p0,

ṽi = vi − v0,
ãi = ai − a0,

i ∈ N . (9)

Note that p̃i, ṽi, and ãi in (9) are defined with the information of the leading vehicle for notional simplicity only.
Indeed, the calculation of p̃i − p̃j , ṽi − ṽj , and ãi − ãj in the local controller (5) only requires the local information
of its predecessors. For example, assume i > j, then we have

p̃i − p̃j = pi − pj +

i∑
k=j+1

(hkvk + dk),

where vehicle i only uses the information of vehicles j, j + 1, . . ., i.

4. Internal stability analysis

In this section, we first formulate the closed-loop dynamics and then present the internal stability criterion for
the closed-loop system. In principle, it is desired that the vehicular platoon runs at a constant velocity. Typically,
the variation of the leading vehicle’s velocity is viewed as a disturbance on the platoon, which results in a certain
transient process. The property of this transient process is studied by using the notion of string stability; see
the next section. Here, we make the standard assumption for internal stability analysis (Dunbar & Caveney, 2012;
Zheng et al., 2016, 2018) by assuming that the leading vehicle travels in uniform motion. We refer interested readers
to the methods in (Cao & Ren, 2012; Baldi & Frasca, 2018), which have the potential to deal with the case of a
dynamic leader. Note that these methods generally rely on nonlinear control design, which will pose challenges to
string stability analysis.

Assumption 2. The leading vehicle is running at a constant velocity, i.e., u0(t) = 0 and a0(t) = 0.
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4.1. Closed-loop dynamics formulation

According to (9) and Assumption 2, we have
˙̃pi = ṽi +

i∑
k=1

hkak = ṽi +
i∑

k=1

hkãk,

˙̃vi = ãi,
˙̃ai = − 1

τi
ãi + 1

τi
ui.

Upon denoting the lumped states as p̃ = [p̃1, p̃2, . . . , p̃N ]>, ṽ = [ṽ1, ṽ2, . . . , ṽN ]>, and ã = [ã1, ã2, . . . , ãN ]>, (5)
can be rewritten into a compact form as

u = [u1, u2, . . . , uN ]> = −KpLP p̃−KvLP ṽ −KaLP ã, (10)

where K] = diag{k1], k2], . . . , kN]}, ] ∈ {p, v, a}. Then we have
˙̃p = ṽ +Hã,
˙̃v = ã,
˙̃a = −∆KpLP p̃−∆KvLP ṽ − (∆ + ∆KaLP)ã,

where H is called the time headway matrix:

H :=


h1 0 0 0
h1 h2 0 0
...

...
. . . 0

h1 h2 · · · hN

 ,
and ∆ is the time lag matrix:

∆ :=


1
τ1

0 0

0
. . . 0

0 0 1
τN

 .
Then the closed-loop dynamics can be described as

˙̃x = Ãx̃, (11)

where x̃ = [p̃>, ṽ>, ã>]> and

Ã =

 0 IN H
0 0 IN

−∆KpLP −∆KvLP −∆−∆KaLP

 .
In (11), the heterogenous vehicle dynamics are represented by ∆ and the structure of Ã; the information flow
topology is characterized by LP ; the formation geometry is described by H; and the distributed controller is
represented by matrices Kp, Kv, and Ka. This is consistent with the modeling of the four components in Section 2.

4.2. Internal stability criterion

Now we are ready to present the first theorem on the internal stability region.

Theorem 1. Consider a platoon of connected vehicles with dynamics given in (1), formation geometry given in (8),
and distributed controller given in (5). Suppose that Assumption 1 and Assumption 2 hold and there are no
parameter mismatches and disturbances. Then, the platoon is asymptotically stable if and only if

kip > 0,

kia > − 1
ri
,

kiv > kip(
τi

1+kiari
− hi),

∀i ∈ N . (12)
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Proof. We only need to analyze the stability of the matrix Ã given in (11). Since Ã is stable (or Hurwitz) if and
only if all of its eigenvalues, denoted by λi, have negative real parts. We consider the characteristic equation of Ã.

|λI3N − Ã| =

∣∣∣∣∣∣
λIN −IN −H

0 λIN −IN
∆KpLP ∆KvLP λIN + ∆ + ∆KaLP

∣∣∣∣∣∣
=

∣∣∣∣∣∣
λIN −IN −H

0 λIN −IN
∆KpLP ∆KvLP λIN + ∆ + ∆KaLP

∣∣∣∣∣∣
∣∣∣∣∣∣
IN

1
λIN

1
λ2 IN + 1

λH
0 IN

1
λIN

0 0 IN

∣∣∣∣∣∣
=
∣∣λ3IN + λ2∆(IN +KaLP) + λ∆(KvLP +KpLPH) + ∆KpLP

∣∣
=

N∏
i=1

(
λ3 + λ2

1

τi
(1 + kiari) + λ

1

τi
ri(kiv + kiphi) +

1

τi
rikip

)
.

(13)

The derivation of the last equation in (13) uses the fact that matrices ∆, Kp, Kv, and Ka are diagonal, and matrices
LP and H are lower-triangular. The lower-triangular structures of LP and H imposed by the MPF topology make
it possible to decouple the system (11) into N subsystems to facilitate the system analysis.

Then, we define the following polynomial

pi(λ) := λ3 + λ2
1

τi
(1 + kiari) + λ

1

τi
ri(kiv + kiphi) +

1

τi
rikip. (14)

Then, system (11) is stable if and only if the roots of pi(λ) have negative real parts ∀i ∈ N . Further, according to
the Routh-Hurwitz stability criterion, pi(λ) is stable if and only if

1

τi
(1 + kiari) > 0,

1

τi
ri(kiv + kiphi) > 0,

1

τi
rikip > 0,( 1

τi
(1 + kiari)

)( 1

τi
ri(kiv + kiphi)

)
>

1

τi
rikip.

(15)

Since ri ≥ 1 > 0 and τi > 0, the last inequality implies the second one, then we have the following equivalent
conditions

1

τi
(1 + kiari) > 0⇐⇒ kia > −

1

ri
,

1

τi
rikip > 0⇐⇒ kip > 0,( 1

τi
(1 + kiari)

)( 1

τi
ri(kiv + kiphi)

)
>

1

τi
rikip ⇐⇒ kiv > kip

( τi
1 + kiari

− hi
)
.

To sum up, (15) is equivalent to (12). This completes the proof.

�

Remark 1. The last inequality of (12) can be reduced to

hi > hmin,1 :=
τi

1 + kiari
− kiv
kip

,

which means that hi should be lower bounded by hmin,1. In particular, when kiv = 0, hmin,1 becomes positive,
indicating that without direct velocity error feedback, the minimum employable time headway should be positive,
thus the CS policy (where hi = 0) is no longer employable. In addition, when kiv = kia = 0, hmin,1 equals τi,
meaning that the time headway hi should be greater than the time lag τi if there is no direct velocity error and
acceleration error feedback. When hi = 0, Theorem 1 is reduced to the case of the CS policy; see (Zheng et al.,
2016, 2019) for details.
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5. String stability analysis

In this section, we analyze the string stability for a homogeneous platoon based on the following assumption,
which is used in (Darbha et al., 2017, 2018).

Assumption 3. The platoon is assumed to be homogenous. In particular, the vehicles have identical time lags,
time headways, and control gains, i.e., τi = τ > 0, hi = h ≥ 0, ki] = k], ] ∈ {p, v, a}, ∀i ∈ N . The numbers of
predecessors are identical, i.e., ri = r ≥ 1 if i ≥ r, and ri = i if 1 ≤ i < r.

Under Assumption 3, we denote by K0, K1, and K2 the feasible region of k = [kp, kv, ka]> that ensures internal
asymptotic stability given by Theorem 1, i.e.,

K0 :=
{
ka

∣∣∣ka > −1

r

}
, (16a)

K1 := {(kp, kv)|kp > 0}, (16b)

K2 :=
{

(kp, kv)
∣∣∣kv − ( τ

1 + kar
− h
)
kp > 0

}
. (16c)

Next, we formulate the transfer function of the spacing errors and then present the string stability criterion.

5.1. Transfer function of spacing errors

We consider the amplification of spacing errors since spacing errors directly affect platoon safety. We define the
spacing error as ei = pi − pi−1 + di + hvi. According to (1), we know

ui = τiȧi + ai = τ
...
p i + p̈i.

Then from (5), we have

τ
...
p i + p̈i = −

r∑
l=1

(
kp

(
pi − pi−l +

i∑
k=i−l+1

(hvk + dk)
)

+ kv(vi − vi−l) + ka(ai − ai−l)

)
, (17)

and

τ
...
p i−1 + p̈i−1 = −

r∑
l=1

(
kp

(
pi−1 − pi−1−l +

i−1∑
k=i−l

(hvk + dk)
)

+ kv(vi−1 − vi−l−1) + ka(ai−1 − ai−l−1)

)
. (18)

In addition, the time derivative of (17) is

τ
...
v i + v̈i = −

r∑
l=1

(
kp

(
vi − vi−l +

i∑
k=i−l+1

(hak)
)

+ kv(ai − ai−l) + ka(ȧi − ȧi−l)

)
. (19)

By calculating (17)− (18) + h× (19), we have

τ
...
e i + (rka + 1)ëi + r(kv + kph)ėi + rkpei =

r∑
l=1

(
kaëi−l +

(
kv − kph(r − l)

)
ėi−l + kpei−l

)
. (20)

With zero initial conditions, the Laplace transform of (20) becomes

Ei(s) =

r∑
l=1

Hl(s)Ei−l(s),

where Ei(s) is the Laplace transformation of ei(t), and

Hl(s) =
kas

2 +
(
kv − kph(r − l)

)
s+ kp

τs3 + (rka + 1)s2 + r(kv + kph)s+ rkp
.

Remark 2. The above approach for transfer function formulation was also used in (Darbha et al., 2017, 2018).
Note that the stability of Hl(s) requires that the denominator is Hurwitz. By comparing the denominator with
pi(λ) defined in (14), we know that this is equivalent to the internal stability criterion given in Theorem 1.
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5.2. String stability criterion

In a MPF topology, the spacing error of vehicle i is affected by its multiple predecessors. We therefore consider
the following definition of strictly L2 string stability:

‖ei(t)‖22 ≤
1

r

r∑
l=1

‖ei−l(t)‖22, (21)

where ‖ei(t)‖22 :=
∫ +∞
−∞ |ei(t)|

2dt is the L2 norm of ei(t). According to (21), it is required that the L2 spacing
error is attenuated in the sense that it is less than the average of its predecessors’ L2 spacing errors. Consider the
following string stability specification used in (Darbha et al., 2017):

r∑
l=1

‖Hl(jω)‖∞ ≤ 1. (22)

Then we have the following two lemmas about the string stability specification.

Lemma 1. The string stability specification (22) is a sufficient condition for the strictly L2 string stability (21).

Proof. According to the Parseval’s theorem (Arfken & Weber, 1972), we have:

‖ei(t)‖22 =

∫ +∞

−∞
|ei(t)|2dt

=
1

2π

∫ +∞

−∞
|Ei(jω)|2dω

=
1

2π

∫ +∞

−∞

∣∣∣∣∣
r∑
l=1

(
Hl(jω)Ei−l(jω)

)∣∣∣∣∣
2

dω.

According to the Cauchy-Schwarz inequality (Steele, 2004), we have

‖ei(t)‖22 ≤
1

2π

∫ +∞

−∞

(
r

r∑
l=1

(
EH
i−l(jω)HH

l (jω)Hl(jω)Ei−l(jω)
))

dω

≤ r
r∑
l=1

(
sup
ω
|Hl(jω)|2 · 1

2π

∫ +∞

−∞

(
EH
i−l(jω)Ei−l(jω)

)
dω

)

= r

r∑
l=1

(
‖Hl(jω)‖2∞ · ‖ei−l(t)‖22

)
.

(23)

Since limω→0+ |Hl(jω)| = 1
r , we know that (22) holds if and only if

‖Hl(jω)‖∞ ≤
1

r
,∀1 ≤ l ≤ r. (24)

Then, when (22) holds, substituting (24) into (23) yields (21). This completes the proof.

�

In particular, when r = 1, (22) becomes a necessary and sufficient condition for strictly L2 string stability (Ploeg
et al., 2014a).

Lemma 2. The string stability specification (22) holds if and only if either one of the following conditions holds
for both cases when l = 1 and l = r:

C0 ≥ 0 ∧ C1 ≥ 0, (25a)

C0 ≥ 0 ∧ C1 < 0 ∧ ∆d ≤ 0, (25b)
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where

∆d := C2
1 − 4C2C0, (26a)

C2 := τ2, (26b)

C1 := 2kar + 1− 2rτ(kv + hkp), (26c)

C0 := kpr
(
r
(
1− (l − r)2

)
h2kp + 2r(1 + r − l)hkv − 2

)
. (26d)

Proof. According to (24), we know that (22) holds if and only if

max
1≤l≤r

‖Hl(jω)‖2∞ = max
1≤l≤r

sup
ω>0
|Hl(jω)|2 = max

{
sup
ω>0
|H1(jω)|2, sup

ω>0
|Hr(jω)|2

}
≤ 1

r2
, (27)

where

|Hl(jω)|2 :=
Nl
Dl

=
(kp − kaω2)2 +

(
kv − kph(r − l)

)2
ω2(

r(kv + kph)ω − τω3
)2

+
(
rkp − (rka + 1)ω2

)2 .
The derivation of the last equation in (27) uses the fact that |Hl(jω)|2 is a quadratic function of l. Then we know
that the inequality in (27) holds if and only if

Dl − r2Nl = ω2
(
C2ω

4 + C1ω
2 + C0

)
≥ 0,∀l ∈ {1, r}, (28)

where C2, C1, and C0 are defined as (26b), (26c), and (26d), respectively. Then we only need to consider the
bi-quadratic function C2w

4 +C1w
2 +C0, of which the discriminant is ∆d defined in (26a). Since C2 > 0, we know

that (28) holds if and only if ∀l ∈ {1, r}, (25a) or (25b) holds. This completes the proof.

�

Then, we are ready to present the second theorem about the string stability criterion.

Theorem 2. Consider a platoon of connected vehicles with dynamics given in (1), formation geometry given in (8),
and distributed controller given in (5). Suppose that Assumption 1 and Assumption 3 hold and there are no
parameter mismatches and disturbances. Then, there exists a set of feedback gains k = [kp, kv, ka]> such that the
string stability specification (22) holds if and only if:

h ≥ hmin,2 :=
2τ

2kar + 1
, ka > −

1

2r
. (29)

Proof. The proof is based on the analysis of the region defined in (25). See the Appendix for details. �

According to Theorem 2, increasing ka or r (when ka > 0) can reduce the bound hmin,2, which implies a lower
inter-vehicle distance and higher traffic capacity. The bound hmin,2 remains unchanged when there is no acceleration
feedback (i.e., ka = 0). In this case, Theorem 2 is consistent with the result in (Darbha & Rajagopal, 2001), which
indicates that the employable time headway is lower bounded by 2τ for string stability. For ACC systems that do
not have V2V communication capability, only one predecessor’s information is available (i.e., r = 1), then the only
way to reduce hmin,2 is to increase ka. In this case, Theorem 2 agrees with the result in (Darbha et al., 2017, 2018).
Note that our result extends (Darbha et al., 2017, 2018) by considering a new CTH policy to avoid inconsistency in
desired inter-vehicle distances. Theorem 2 is based on the assumption of a homogeneous platoon. Still, simulations
with a heterogeneous platoon in Section 6.2 suggest that the results are useful and might provide certain guidelines
for heterogeneous platoons.

When actuator delays exist, the third equation in vehicle dynamics (1) becomes τiȧi(t) + ai(t) = ui(t − τa),
where τa > 0 is the actuator delay. Then, as suggested by (Xiao & Gao, 2011), an intuition is that hmin,2 may be

increased to 2(τ+τa)
2kar+1 . However, this intuition needs a theoretical proof, which is out of the scope of this paper.

Remark 3. For Theorem 1, the exact value of τi is not required for the design of hi and ki = [kip, kiv, kia]>, as
long as there exists a known upper bound of τi. For Theorem 2, the design of hi = h needs the upper bound of
τi = τ , while the design of ki = k = [kp, kv, ka]> needs both the upper and lower bounds of τ when calculating
the sets Ki, i ∈ {1, 2, .., 8} defined in (34a)-(34f). This is consistent with the notion of robust string stability in
(Darbha et al., 2018).
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From Theorem 2, we can easily get the following corollary, which is consistent with the results in (Seiler et al.,
2004; Naus et al., 2010; Konduri et al., 2017).

Corollary 1. Consider a platoon of connected vehicles with dynamics given in (1), formation geometry given
in (8), and distributed controller given in (5). Suppose that Assumption 1 and Assumption 3 hold and there are no
parameter mismatches and disturbances. Then, if the formation geometry uses the CS policy, i.e., h = 0, the string
stability specification (22) will not hold. Consequently, the platoon can never be string stable for any feedback gains
when r = 1.

6. Numerical experiments

This section presents numerical simulations to validate the proposed theorems. According to (21), we use the
following performance index to evaluate the attenuation of spacing errors

Qi :=
r‖ei(t)‖22∑r
l=1 ‖ei−l(t)‖22

, i ∈ {r + 1, r + 2, . . . , N}.

Then we know Qi ≤ 1,∀i ∈ {r + 1, r + 2, . . . , N} when the platoon is string stable. On the contrary, if ∃i ∈
{r + 1, r + 2, . . . , N} such that Qi > 1, the platoon is string unstable. In addition, both the nominal linear vehicle
model (1) and a realistic nonlinear vehicle model, given in (30), are used for validation. Throughout this section,
we plotted spacing error profiles of all vehicles in the figures, but only the legends of odd numbered vehicles were
given due to space limit.

6.1. Simulations of linear platoons

First, we validate the proposed theorems by simulations with the nominal linear vehicle model (1). We consider
platoon control in three cases, i.e., 1) h ≤ hmin,1, 2) hmin,1 < h ≤ hmin,2, and 3) h > hmin,2, and the number
of predecessors is r = 1 or r = 3. The initial errors are assumed to be zero, and a sinusoidal input disturbance
ud = Ad sin

(
ωd(t− 5)

)
is imposed on the leading vehicle during the time period 5 ≤ t ≤ 5 + 2π

ωd
(s). The simulation

parameters are listed in Table 1 and simulation results are shown in Figure 2, Figure 3, and Table 2.
As shown in Figure 2(d) and Figure 3(d), when h ≤ hmin,1, there are peaks in the magnitude-frequency diagrams,

which correspond to the poles of Hl(jω). In this case, the platoons are not stable, which confirms Theorem 1. As
shown in Figure 2(e) and Figure 3(e), when hmin,1 < h ≤ hmin,2, the magnitude of Hl(jω) surpasses 1

r , which
means (22) does not hold. Besides, the spacing errors converge to zero when the disturbances are removed. As
shown in Table 2, when r = 1, we have Qi > 1, ∀i ∈ {2, 3, . . . , 7}, so the platoon is asymptotically stable but not
string stable. This agrees with Theorem 2. Besides, it is observed that Qi < 1, ∀i ∈ {4, 5, 6, 7} when r = 3 and
hmin,1 < h ≤ hmin,2. This is because that Ei−1(s), Ei−2(s) and Ei−3(s) have different phases, so their effects on
Ei(s) cancel out each other.

As shown in Figure 2(f) and Figure 3(f), when h > hmin,2, the magnitude of Hl(jω) does not surpass 1
r , which

means (22) holds. Besides, the spacing errors converge to zero when the disturbances are removed. As shown in
Table 2, we have Qi < 1, ∀i ∈ {r + 1, r + 2, . . . , 7}. This demonstrates that the platoons are both asymptotically
stable and string stable, which confirms Theorem 2.

In Figure 3(b) and Figure 3(c), it is observed that the phase of e1(t) is opposite to those of the other vehicles,
which is different from the case in Figure 2(b) and Figure 2(c). This phenomenon arises from the MPF topology
and the CTH policy. At t = 5 (s) when vehicle 0 starts to accelerate, since vehicle 1, 2, and 3 are all connected to
vehicle 0, the term pii(kipp̃i + kiv ṽi + kiaãi) dominates their feedback inputs in (5), so they all start to accelerate,
and v1, v2, and v3 start to increase. However, the increase of p0−p1 is greater than that of p1−p2, p2−p3, and hv1,
so e1 = −(p0 − p1) + d1 + hv1 becomes negative, while e2 = −(p1 − p2) + d2 + hv2 and e3 = −(p2 − p3) + d3 + hv3
become positive, which causes the opposite phases. When it comes to vehicle 4, since it is not connected to vehicle
0, the increase of v4 is lower than that of v1, v2, and v3. In addition, p3 − p4 and hv4 are almost at the same scale,
so e4 = −(p3 − p4) + d4 + hv4 is very close to 0. This also explains why Q4 is very close to zero. The behaviors of
vehicles 5, 6, and 7 are similar to those of vehicles 2 and 3.
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Table 1: Simulation parameters of linear platoons

Model parameters

Parameter Unit Value

N - 7
Ad [m/s2] 1
di [m] 10
v0 [m/s] 20
τ [s] 0.50

Control parameters

Figure r kp kv ka ωd [rad/s] hmin,1 [s] hmin,2 [s] h [s]

4(a) 1 0.1 0.01 0.01 1.0 0.395 0.980 0.316
4(b) 1 0.1 2.51 0.51 1.0 -24.7 0.495 0.396
4(c) 1 0.1 1.65 0.51 1.0 -16.2 0.495 0.594
5(a) 3 0.1 0.01 0.68 1.6 0.065 0.198 0.052
5(b) 3 0.1 2.52 0.84 1.6 -25.0 0.165 0.132
5(c) 3 0.1 1.67 0.84 1.6 -16.6 0.165 0.198
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Figure 2: Simulation results of linear platoons (r = 1)

Table 2: Performance index of linear platoons

Figure r Q2 Q3 Q4 Q5 Q6 Q7

2(b) 1 1.031 1.032 1.033 1.033 1.033 1.034
2(c) 1 0.890 0.900 0.908 0.915 0.921 0.926
3(b) 3 - - 0.007 0.635 0.601 0.621
3(c) 3 - - 0.000 0.636 0.601 0.608
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(b) hmin,1 < h ≤ hmin,2
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Figure 3: Simulation results of linear platoons (r = 3)

6.2. Simulations of nonlinear platoons

Next, we evaluate the effectiveness of the proposed theorems for realistic nonlinear platoons. We consider the
following nonlinear vehicle model, which is also used in (Dunbar & Caveney, 2012; Kwon & Chwa, 2014):

ṗi = vi,

miv̇i = ηi
ri
Ti − CA,iv

2
i −migfi,

τiṪi + Ti = Tdes,i,

i ∈ {0} ∪ N , (30)

where Tdes,i, Ti, and ηi are the desired driving torque (control input), the actual driving torque, and the mechanical
efficiency of the driveline, respectively; mi and ri are the mass and tire radius, respectively; CA,i, fi, and g are the
coefficients of the aerodynamic drag, rolling resistance, and gravitational acceleration, respectively.

For nonlinear model (30), we use the following feedback linearization law, which is also used in (Xiao & Gao,
2011; Ghasemi et al., 2013):

Tdes,i =
r̂i
η̂i

(m̂iur,i + f̂im̂ig + 2ĈA,iτ̂iviai + ĈA,iv
2
i ),

where m̂i, η̂i, r̂i, ĈA,i, f̂i, and τ̂i are the estimations of mi, ηi, ri, CA,i, fi, and τi, respectively; ur,i is the robust
control input, which is obtained by adding a non-smooth term to the nominal control input ui given in (5) to
compensate the parameter mismatch:

ur,i = ui − ks,isign(si), (31)

where ks,i is the feedback gain, sign(·) is the sign function, and si is the integral sliding mode variable, of which the
derivative is:

ṡi = τ̂iȧi + ai − ui,

and the integral initial value is zero. This robust controller is designed based on the integral sliding mode control
theory (Utkin et al., 2009) and is also used in (Zheng et al., 2019).

In this simulation, we consider platoon control in the case of h > hmin,2, and the number of predecessors is r = 1
or r = 3. The simulation parameters are listed in Table 3. As shown in Table 3, model parameters take random
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values, which are determined by the uniformly distributed random variable θ ∼ U(0, 1); therefore, the nonlinear
platoons are actually heterogeneous. Moreover, the parameter mismatch from the inaccurate parameter estimation
also imposes equivalent disturbances on each vehicle. The simulation results are shown in Figure 4 and Table 4.

As shown in Figure 4, the spacing errors converge to zero when the disturbances are removed. From Table 4, it
is observed that Qi < 1, ∀i ∈ {r + 1, r + 2, . . . , 7}. This means that the nonlinear platoons are still asymptotically
stable and string stable even if heterogeneity and parameter mismatch exist.

Table 3: Simulation parameters of nonlinear platoons

Model parameters [θ ∼ U(0, 1)]

Parameter Unit True value Estimated value

N - 7 -
Ad [m/s2] 1 -
di [m] 10 -
v0 [m/s] 20 -
τi [s] 0.40 + 0.20×θ 0.50
mi [kg] 1500 + 400×θ 1700
ηi - 0.80 + 0.08×θ 0.84
ri - 0.250 + 0.060×θ 0.28
CA,i [kg/m] 0.40 + 0.10×θ 0.45
fi [m] 0.015 + 0.006×θ 0.018

Control parameters

Figure r kp kv ka ks,i ωd [rad/s] hmin,1 [s] hmin,2 [s] h [s]

4(a) 1 0.1 1.65 0.51 1 1.0 -16.2 0.495 0.594
4(b) 3 0.1 1.67 0.84 1 1.6 -16.6 0.165 0.198
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(b) r = 3

Figure 4: Simulation results of nonlinear platoons

Table 4: Performance index of nonlinear platoons

Figure r Q2 Q3 Q4 Q5 Q6 Q7

4(a) 1 0.7040 0.8869 0.9015 0.8903 0.9073 0.9256
4(b) 3 - - 0.0002 0.6325 0.5999 0.6024

6.3. Simulations of nonlinear platoons subject to communication time delays

Then, we evaluate the impact of communication time delays on nonlinear platoons. On the basis of the simu-
lations given in Subsection 6.2, we impose identical communication time delays td on V2V communications, which
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can be measured using communication timestamps. In this case, at time t, vehicle i can only obtain the delayed
neighbor states pj(t − td), vj(t − td), and aj(t − td). By assuming that the neighbors have constant accelera-
tion motions, the estimated neighbor states at time t become p̂j(t) = pj(t − td) + vj(t − td)td + 1

2aj(t − td)t2d,
v̂j(t) = vj(t− td)+aj(t− td)td, and âj(t) = aj(t− td). Then, by replacing [pj(t), vj(t), aj(t)] with [p̂j(t), v̂j(t), âj(t)]
in ui given in (5), vehicle i continues to use controller ur,i given in (31) for feedback control. In this simulation, we
consider platoon control in the case of h > hmin,2 and r = 1 or 3, and the communication time delay is td = 100
ms, 200 ms, 300 ms, or 400 ms. The simulation parameters are the same as Table 3, and simulation results are
shown in Figure 5 and Table 5.

As shown in Figure 5, vehicles’ position tracking errors increase as the communication time delay increases.
As shown in Table 5, when r = 1, the nonlinear platoons are string stable if td ≤ 200 ms, but string instable if
td ≥ 300 ms. When r = 3, these two thresholds are increased to td ≤ 300 ms and td ≥ 400 ms. These results show
that the platoon string stability can still be guaranteed if the communication time delays are upper bounded. The
determination of these bounds in theory deserves further investigations, which is beyond the scope of this work.
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(a) r = 1, td = 100 ms
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(b) r = 1, td = 200 ms
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(c) r = 1, td = 300 ms
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(d) r = 1, td = 400 ms

0 20 40 60
−0.6

−0.4

−0.2

0

0.2

0.4

t[s]

e i [m
]

 

 

Veh 1
Veh 3
Veh 5
Veh 7
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Figure 5: Simulation results of nonlinear platoons

Table 5: Performance index of nonlinear platoons subject to communication time delays

Figure r td [ms] Q2 Q3 Q4 Q5 Q6 Q7

5(a) 1 100 0.8027 0.9139 0.9242 0.9363 0.9311 0.9250
5(b) 1 200 0.8665 0.9786 0.9617 0.9789 0.9718 0.9722
5(c) 1 300 0.9333 1.0487 1.0316 1.0334 1.0314 1.0305
5(d) 1 400 1.0440 1.1131 1.1162 1.1273 1.1135 1.1280
5(e) 3 100 - - 0.0073 0.6315 0.6061 0.6284
5(f) 3 200 - - 0.0393 0.6466 0.6093 0.7147
5(g) 3 300 - - 0.1109 0.6394 0.6332 0.8858
5(h) 3 400 - - 0.2244 0.6578 0.7182 1.1174

6.4. Simulations of large-scale nonlinear platoons

Finally, we evaluate the performance of the proposed methods for large-scale nonlinear platoons. On the basis of
the simulations given in Subsection 6.2, we extend the scale of nonlinear platoons to 50 vehicles. The speed profile
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of the leading vehicle is given as follows:

v0 =



20, 0 s ≤ t < 10 s,

20− (t− 10), 10 s ≤ t < 20 s,

10, 20 s ≤ t < 40 s,

10 + (t− 40), 40 s ≤ t < 50 s,

20, 50 s ≤ t,

[m/s]

and no input disturbances are considered. In this simulation, we consider platoon control in the case of h ≥ hmin,2

and the number of predecessors is r = 10, 20, or 30. The model parameters are the same as Table 3, and the control
parameters are listed in Table 6. As shown in Table 6, the lower bound of time headway hmin,2 is reduced to less
than or equal to 0.050 s when r ≥ 10, which indicates a negligible change of inter-vehicle distances as the traffic
flow speed varies.

As shown in Figure 6, the time-space trajectories of the large-scale nonlinear platoons are smooth, and no stop-
and-go phenomenon occurs, which indicates a high traffic throughput. Moreover, in these simulations, it holds that
Qi < 1, ∀i ∈ {r + 1, r + 2, . . . , 50}, which demonstrates the string stability for large-scale platoons.

Table 6: Control parameters of large-scale nonlinear platoons

Figure r kp kv ka ks,i hmin,1 [s] hmin,2 [s] h [s]

6(a) 10 0.1 1.68 0.96 1 -16.765 0.050 0.059
6(b) 20 0.1 1.68 0.99 1 -16.799 0.025 0.030
6(c) 30 0.1 1.68 0.99 1 -16.810 0.017 0.020
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Figure 6: Simulation results of large-scale nonlinear platoons

7. Conclusion

This paper has studied the multiple-predecessor following strategy to reduce time headway for asymptotically
stable and string stable platoons via V2V communication. We have proposed a new definition of desired inter-
vehicle distances using CTH that avoids inconsistency in desired inter-vehicle distances. With the proposed range
policy, we have designed a linear feedback controller and then derived necessary and sufficient conditions for the
internal asymptotic stability and the string stability specification. It is proved that there exists a set of feedback
gains to ensure the internal asymptotic stability and the string stability specification if and only if the time headway
is lower bounded. This finding further indicates that increasing the number of predecessors can reduce the time
headway, which, in turn, helps improve transport capacity for highway traffic. As the numerical experiments
demonstrated, the string stability of linear and nonlinear platoons can be guaranteed with the proposed methods
if the communication time delay is upper bounded. One future work is to directly consider the effect of the
heterogeneity on the string stability of vehicular platoons. The effect of communication delays and packet losses is
another interesting direction for future studies.
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Appendix: Proof of Theorem 2

According to Remark 2, it is required that the platoon should be asymptotically stable, i.e., ka ∈ K0, (kp, kv) ∈ K1∩K2.
By combining (26a)-(26d) with (16a)-(16c), we have the following four cases:

C0 ≥ 0⇐⇒ kv ≥

{
−h

2
kp + 1

rh
, l = r,

(r−2)h
2

kp + 1
r2h

, l = 1,
(32a)

C1 ≥ 0⇐⇒ kv ≤ −hkp +
2kar + 1

2rτ
, (32b)

C1 < 0⇐⇒ kv > −hkp +
2kar + 1

2rτ
, (32c)

∆d ≤ 0⇐⇒


τr
(
kv −

2kar + 1

2rτ

)2
≤
(
(2kar + 1)h− 2τ

)
kp, l = r,

τr
(
kv −

2kar + 1

2rτ

)2
− F1

(
kv −

2kar + 1

2rτ

)
+ F0 ≤ 0, l = 1,

(32d)

where
F1 := 2r(r − 1)τhkp,

F0 := kp

(
r(r − 1)τh

(
(r − 1)hkp −

2kar + 1

rτ

)
+
(
2τ − (2kar + 1)h

))
.

To sum up, following the sequence of equivalences, we have

(22) holds ⇐⇒ ∀l ∈ {1, r}, (32a) ∧ (32b) holds, or (32a) ∧ (32c) ∧ (32d) holds. (33)
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Figure 7: The feasible region of (kp, kv) given by (K1 ∩K2) ∩ S1

For convenience, denote the feasible region of (kp, kv) given in (32a)-(32d) by the following sets:

K3 :=
{

(kp, kv)
∣∣∣kv ≥ −h

2
kp +

1

rh

}
, (34a)

K4 :=
{

(kp, kv)
∣∣∣kv ≥ (r − 2)h

2
kp +

1

r2h

}
, (34b)

K5 :=
{

(kp, kv)
∣∣∣kv ≤ −hkp +

2kar + 1

2rτ

}
, (34c)

K6 :=
{

(kp, kv)
∣∣∣kv > −hkp +

2kar + 1

2rτ

}
, (34d)

K7 :=
{

(kp, kv)
∣∣∣rτ(kv − 2kar + 1

2rτ

)2
≤
(
(2kar + 1)h− 2τ

)
kp
}
, (34e)

K8 :=
{

(kp, kv)
∣∣∣rτ(kv − 2kar + 1

2rτ

)2
− F1

(
kv −

2kar + 1

2rτ

)
+ F0 ≤ 0

}
. (34f)

Necessity. Assume that there exists a set of feedback gains k = [kp, kv, ka]> such that (22) holds. According to (33), either
(32a) ∧ (32b) or (32a) ∧ (32c) ∧ (32d) holds when l = r. On the one hand, if (32a) ∧ (32b) holds, combining (32a), (32b),
and l = r yields

−h
2
kp +

1

rh
≤ kv ≤ −hkp +

2kar + 1

2rτ
,

which implies (29). On the other hand, if (32a) ∧ (32c) ∧ (32d) holds, since (kp, kv) ∈ K1 ∩K2 =⇒ kp > 0, combining (32d)
and l = r yields

(2kar + 1)h− 2τ ≥ 0,

which also implies (29).

Sufficiency. Assume that (29) holds.
When h > 2τ

2kar+1
, ka > − 1

2r
, we consider the following two sets:

S1 := K3 ∩K4 ∩K5,

S2 := K3 ∩K4 ∩K6 ∩K7 ∩K8.

Given a set of parameters h, ka, r, and τ , the feasible regions of (kp, kv) given by (K1 ∩K2) ∩ S1 and (K1 ∩K2) ∩ S2 are
shown in Figure 7 and Figure 8, respectively. Here, we use the fact that the outlines of K7 and K8 are both quadratic
parabola curves. In these figures, dash lines indicate open sets while solid lines indicate closed sets. In addition, forward
slashes indicate the feasible regions. It is easy to check that (K1 ∩K2) ∩ S1 and (K1 ∩K2) ∩ S2 are not empty. Moreover,
(kp, kv) ∈ S1 implies that (32a) ∧ (32b) holds, and (kp, kv) ∈ S2 implies that (32a) ∧ (32c) ∧ (32d) holds. Then, according
to (33), we know that ∀(kp, kv) ∈ (K1 ∩K2) ∩ (S1 ∪ S2), (22) holds.
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Figure 8: The feasible region of (kp, kv) given by (K1 ∩K2) ∩ S2

When h = 2τ
2kar+1

, ka > − 1
2r

, we define the following feasible region of (kp, kv):

K9 :=
{

(kp, kv)
∣∣∣kp(r − 2) ≤ r − 1

r

(2kar + 1)2

2rτ2
, kv =

2kar + 1

2rτ

}
,

K10 :=
{

(kp, kv)
∣∣∣kp(r − 1) ≤ (2kar + 1)2

2rτ2
, kv =

2kar + 1

2rτ

}
,

and we consider the following set
S3 = K9 ∩K10.

It is not difficult to check that (K1 ∩K2) ∩ S3 is not empty. Then ∀(kp, kv) ∈ (K1 ∩K2) ∩ S3, we have:

kv +
h

2
kp −

1

rh
=
h

2
kp > 0, (35a)

kv −
(r − 2)h

2
kp −

1

r2h
=

2kar + 1

2rτ

r − 1

r
− (r − 2)h

2
kp ≥ 0, (35b)

kv + hkp −
2ka + 1

2rτ
=

2τ

2kar + 1
kp > 0, (35c)

rτ
(
kv −

2kar + 1

2rτ

)2
−
(
(2kar + 1)h− 2τ

)
kp = 0, (35d)

rτ
(
kv −

2kar + 1

2rτ

)2
− F1

(
kv −

2kar + 1

2rτ

)
+ F0 = r(r − l)τhkp

(
hkp(r − l)− 2kv

)
≤ 0. (35e)

Since (35a) ∧ (35b) =⇒ (kp, kv) ∈ K3 ∩ K4, (35c) =⇒ (kp, kv) ∈ K6, (35d) ∧ (35e) =⇒ (kp, kv) ∈ K7 ∩ K8, we have
(kp, kv) ∈ K3 ∩ K4 ∩ K6 ∩ K7 ∩ K8 = S2, which implies that (32a) ∧ (32c) ∧ (32d) holds. Then according to (33),
∀(kp, kv) ∈ (K1 ∩K2) ∩ S3, (22) holds.

To sum up, there exists a set of feedback gains k = [kp, kv, ka]> such that (22) holds.

�
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