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Abstract— It is well-known that any sum of squares (SOS)
program can be cast as a semidefinite program (SDP) of a
particular structure and that therein lies the computational
bottleneck for SOS programs, as the SDPs generated by this
procedure are large and costly to solve when the polynomials
involved in the SOS programs have a large number of vari-
ables and degree. In this paper, we review SOS optimization
techniques and present two new methods for improving their
computational efficiency. The first method leverages the sparsity
of the underlying SDP to obtain computational speed-ups.
Further improvements can be obtained if the coefficients of
the polynomials that describe the problem have a particular
sparsity pattern, called chordal sparsity. The second method
bypasses semidefinite programming altogether and relies in-
stead on solving a sequence of more tractable convex programs,
namely linear and second order cone programs. This opens up
the question as to how well one can approximate the cone of
SOS polynomials by second order representable cones. In the
last part of the paper, we present some recent negative results
related to this question.

I. INTRODUCTION AND SUM OF SQUARES REVIEW

Polynomial optimization is the problem of minimizing
a (multivariate) polynomial function on a basic semialge-
braic set; i.e., a subset of the Euclidean space defined
by polynomial equations and inequalities. This is an ex-
tremely broad class of optimization problems, with high-
impact application areas throughout engineering and applied
mathematics, which until not too long ago was believed to
be hopelessly intractable to solve computationally. In recent
years, however, a fundamental and exciting interplay between
convex optimization and algebraic geometry has allowed for
the solution or approximation of a large class of (nonconvex)
polynomial optimization problems.

Amazingly, the success of this area stems from the ability
to work around a single central question which is very simple
to state: how can one test if a polynomial

p(x) := p(x1, . . . , xn)

is nonnegative, i.e., satisfies p(x) ≥ 0 for all x ∈ Rn?
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Unfortunately, answering this question is NP-hard already
when p(x) has degree 4. A powerful and more tractable
sufficient condition for nonnegativity of p(x), however, is
for it to be a sum of squares polynomial. A sum of squares
(SOS) polynomial p(x) is a polynomial that can be written
as

p(x) =

r∑
i=1

f2i (x)

for some other polynomials fi(x), i = 1, . . . , r. The question
as to whether a nonnegative polynomial can always be writ-
ten as a sum of squares has a celebrated history, dating back
to Hilbert’s 17th problem [1] around the year 1900. What has
caused a lot of recent excitement, however, is the discovery
that the task of testing the SOS property and finding a sum
of squares decomposition can be fully automated. This is a
consequence of the following characterization of the set of
SOS polynomials: a polynomial p(x) of degree 2d is SOS if
there exists a positive semidefinite matrix Q (usually called
the Gram matrix of p) such that

p(x) = z(x)TQz(x), (1)

where z(x) = [1, x1, . . . , xn, . . . , x
d
n] is the standard vector

of monomials of degree d [2]. Hence, testing whether a poly-
nomial is a sum of squares amounts to solving a semidefinite
program (SDP), a class of convex optimization problem for
which numerical solution methods are available.

This simple but fundamental discovery forms the basis of a
modern subfield of mathematical programming called “sum
of squares optimization”. An SOS program is an optimization
problem of the following form:

min
p

C(p)

s.t. A(p) = b

p is SOS,

(2)

where the decision variables are the coefficients of the
polynomial p, the objective C(p) is some linear function of
the coefficients of p, and A(p) are affine constraints in the
coefficients of p. As a consequence of the aforementioned
characterization of SOS polynomials, this program can be
recast as the following semidefinite program:

min
p,Q

C(p)

s.t. A(p) = b

p(x) = z(x)TQz(x), ∀x
Q � 0.

(3)
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The most direct consequence of SOS optimization is
for polynomial optimization: Under mild assumptions, the
(global) minimum of a polynomial p(x) on a basic algebraic
set K turns out to be equal to the largest scalar γ such that
p(x) − γ is certified to be nonnegative on K with a sum
of squares proof [2], [3]. The power of this statement stems
from the fact that no convexity assumption is placed on the
polynomial optimization problem and yet the search for the
sum of squares certificates is a convex (in fact semidefinite)
program.

Aside from polynomial optimization, numerous other areas
of computational mathematics have been impacted by sum of
squares techniques. These include approximation algorithms
for NP-hard combinatorial optimization problems [4], [5],
equilibrium analysis of games [6], robust and stochastic
optimization [7], statistics and machine learning [8], [9],
software verification [10], [11], filter design [12], quan-
tum computation [13], automated theorem proving [14],
and fault diagnosis and verification of hypersonic air-
craft [15], [16], [17], among many others.

Despite the enormous impact of sum of squares opti-
mization on polynomial optimization and related areas, the
applicability of this methodology has always been limited by
a single fundamental challenge, which is scalability. Indeed,
when p(x) has n variables and is of degree 2d, the size of Q
in (3) is

(
n+d
d

)
×
(
n+d
d

)
. Poor scaling with problem dimension

is not the only difficulty here: even when their size is not too
large, SDPs are arguably the most expensive class of convex
optimization problems to solve. This has led the optimization
community to sometimes perceive semidefinite programming
as a powerful theoretical tool, but not a practical one.

Outline. In this paper, we review two new techniques that
aim to make SOS programs more scalable. In Section II,
we present two efficient first-order methods based on the
alternating direction method of multipliers (ADMM) to solve
SDPs arising from sum of squares programming. Both meth-
ods exploit sparsity to increase the computational efficiency
of SOS programs: the first method exploits the inherent
sparsity of the SDPs obtained from SOS programs and can
be used for any SOS program; the second one requires
additional problem structure, namely that the polynomials
at hand be chordally sparse. In Section III, we present
techniques that do away with semidefinite programming
altogether. Instead, the semidefinite program that we wish
to solve is replaced by a sequence of linear or second order
cone programs, which are much more tractable than SDPs.
Generating these sequences amounts to constructing a series
of linear and second-order cone programming-representable
cones which inner approximate the set of SOS polynomials.
This leads to the following conceptual question: how well
can second order cone programming based techniques per-
form for inner approximating the set of SOS polynomials?
Could we maybe even exactly represent the SOS cone using
second order-representable cones? In Section IV, we review
recent negative results by Fawzi which show that an exact
representation is not possible, in a case as basic as the case
of univariate quartics.

Notation. Unless otherwise specified, we will be con-
sidering throughout polynomials p of degree 2d and in n
variables. We write:

p(x) =
∑
α∈Nn

2d

pαx
α, pα ∈ R, (4)

where xα = xα1
1 . . . xαn

n is a monomial of degree |α| =∑
i αi and Nn2d = {α ∈ Nn | |α| ≤ 2d}. We denote by

PSDn,2d (resp. SOSn,2d) the set of nonnegative (resp. sum
of squares polynomials) in n variables and of degree 2d. We
further denote by Sk the cone of k× k symmetric matrices,
and by Sk+ the cone of k× k positive semidefinite matrices.

II. EXPLOITING SPARSITY IN SOS PROGRAMS

In this section, we introduce two strategies that exploit
sparsity to increase the computational efficiency of SOS pro-
grams. The first strategy exploits sparsity in the coefficient
matching conditions arising from SOS programs for general
polynomials, and the second one takes advantage of chordal
sparsity for sparse polynomials. Both of them use a first-
order operator splitting algorithm, known as the alternating
direction method of multipliers (ADMM) [18], to efficiently
compute a solution of the SDP from SOS programs at the
cost of reduced accuracy.

A. Sparsity in the coefficient matching conditions

Consider a real polynomial p(x) of degree 2d in (4). As
mentioned in (1), if p(x) is SOS, then we have

p(x) =

r∑
i=1

f2i (x) =

r∑
i=1

(
qTi z(x)

)2
= zT (x)Qz(x), (5)

where Q � 0, and z(x) is a monomial basis. Generally, z(x)
is the vector of all monomials of degree no greater than d:

z(x) = [1, x1, x2, . . . , xn, x
2
1, x1x2, . . . , x

d
n]
T . (6)

Let Aα be the indicator matrix for the monomials xα in
the rank-one matrix z(x)z(x)T . The SOS constraint (5) can
then be reformulated as

p(x) = 〈z(x)z(x)T , Q〉 =
∑
α∈Nn

2d

〈Aα, Q〉xα.

Matching the coefficients of the left- and right-hand sides
gives the equality constraints

〈Aα, Q〉 = pα ∀ α ∈ Nn2d. (7)

These equalities (7) are referred to as coefficient matching
conditions [19]. Then, the existence of an SOS decompo-
sition for p(x) can be checked by solving the feasibility
SDP [20]

find Q

subject to 〈Aα, Q〉 = pα, α ∈ Nn2d,
Q � 0.

(8)

As mentioned in Section I, the dimension of the positive
semidefinite variable Q in (8) is

(
n+d
d

)
×
(
n+d
d

)
, which grows

quickly as n or d increases. Note that this number may



be reduced by taking advantage of the structural properties
of p(x) to eliminate redundant monomials in z(x); well-
known techniques include Newton polytope [21], diagonal
inconsistency [22], and symmetry property [23]. Also, the
size of the underlying SDP was investigated for some classes
of matrix polynomials with sparsity in [24].

One important feature of (8) is that the coefficient match-
ing conditions are sparse, in the sense that each equality
constraint in (8) only involves a small subset of entries of
Q [19], since only a small subset of entries of the product
z(x)z(x)T are equal to a given monomial xα. In particular,
we re-index the constraint matching conditions (7) using
integer indices i = 1, . . . ,m, where m =

(
n+2d
2d

)
. Let

vec : SN → RN2

be the operator mapping a matrix to the
stack of its columns, and define

A =
[
vec(A1), · · · , vec(Am)

]T
.

Then, the equality constraints in (8) can be rewritten as

A · vec(Q) = b, (9)

where b ∈ Rm is a vector collecting the coefficients pi of p.
We have the following result.

Theorem 1 (Sparsity of constraints [19]): Let A be the
coefficient matrix of the equality constraints for (8). The
density of nonzero elements in A is O( 1

n2d ).
Note that this result holds for dense polynomials. Also, the

density decreases quickly as n or d increases, which means
the SDP (8) becomes very sparse for large-scale (dense or
not) polynomials. In Table I, we list the density of nonzero
elements in typical cases. Therefore, it is desirable to exploit
this sparsity to improve the computational efficiency of (8).
Let us represent A = [a1, a2, . . . , am]T , so that each vector
ai is a row of A, and let Hi, i = 1, . . . ,m be “entry-selector”
matrices of 1’s and 0’s that select the nonzero elements of
ai. We have the following equivalence.

A · vec(Q) = b⇔

{
(Hiai)

T zi = bi

zi = Hi · vec(Q)
, i = 1, . . . ,m,

(10)
where zi is a copy of the non-zero elements of vec(Q) in the
i-th equality constraint. Note that only the non-zero elements
are involved in (10). Also, the equalities in (10) are enforced
individually by zi, not simultaneously as in (9).

Together with equivalence (10) that exploits the sparsity
in A, we can apply ADMM to (8), resulting in an efficient
algorithm that is free of any matrix inversion. Each iteration
of the resulting ADMM algorithm consists of one conic
projection and multiple quadratic programs with closed-form
solutions; we refer the interested reader to [19] for details.

B. Chordal sparsity in sparse polynomials

The strategy that exploits the sparsity in the coefficient
matching conditions works for general (dense or not) poly-
nomials. However, the dimension of Q in (8) is unchanged,
which may still require extensive computation for large-scale
instances. If the polynomial p(x) has structured sparsity, the
large cone constraint Q � 0 can be replaced by a set of

smaller cone constraints [25]–[27]. Specifically, we assume
the polynomial p(x) has correlative sparsity, first introduced
by Waki et al. [26], which is a higher level of view of
the sparsity of a polynomial in terms of the interaction of
variables xi. Given a polynomial p(x) in (4), the correlative
sparsity pattern is represented by a matrix R ∈ Sn,

Rij =

{
1, if i = j or αi, αj ≥ 1, pα 6= 0

0, otherwise
.

Further, we can associate an undirected graph G(V, E) with
V = {1, . . . , n} and E = {(i, j) | Rij = 1, i ≤ j}. Then,
Waki et al. proposed that multiple sets of monomial basis
could be used to construct an SOS polynomial [26], i.e.,

p(x) =

q∑
i=1

zTi (x)Qizi(x), (11)

where zi(x) is a monomial basis and Qi � 0. The choice
of zi(x) depends on the maximal clique (see the precise
definition below) of a chordal extension of the graph G(V, E),
and the dimension of Qi becomes small if the size of the
largest maximal clique is small (please refer to [26] for
further information).

As we have seen that an SOS program can always be
transformed into a special SDP (see Section I), we focus
in the following on a general sparse SDP and introduce an
ADMM algorithm that exploits the inherent chordal sparsity.
We consider the following primal standard SDP.

min
X

〈C,X〉

subject to 〈Ai, X〉 = bi, i = 1, . . . ,m,

X � 0.

(12)

For the sake of completeness, we first introduce several
graph-theoretic concepts. Given an undirected graph G(V, E),
a subset of vertices C ⊆ V is called a clique if (i, j) ∈
E ,∀ i, j ∈ C, i 6= j. The clique is called maximal if it is
not a subset of any other clique. An undirected graph G is
called chordal if every cycle of length greater than three has
at least one chord. Note that if G(V, E) is not chordal, it can
be chordal extended, i.e., we can construct a chordal graph
G′(V, E ′) by adding additional edges to E . More details can
be found in [28].

Let G(V, E) be an undirected graph with self-loops. We
say that X is a partial symmetric matrix defined by G
if Xij = Xji are given when (i, j) ∈ E , and arbitrary
otherwise. We define the following sparse cones.

Sn(E , ?) ={X ∈ Sn | Xij = Xji given if (i, j) ∈ E},
Sn+(E , ?) ={X ∈ Sn(E , ?) |

∃M � 0, Mij = Xij ,∀(i, j) ∈ E}.

Given a clique Ck of G, we let ECk ∈ R|Ck|×n be the matrix
with (ECk)ij = 1 if Ck(i) = j and zero otherwise, where
Ck(i) is the i-th vertex in Ck, sorted in the natural ordering.
Then, we have the following result.

Theorem 2 (Grone’s theorem [29]): Let G(V, E) be a
chordal graph with a set of maximal cliques {C1, C2, . . . , Cp}.



TABLE I
DENSITY OF NONZERO ELEMENTS IN THE EQUALITY CONSTRAINTS OF SDP (8)

n 4 6 8 10 12 14 16
2d = 4 1.42× 10−2 4.76× 10−3 2.02× 10−3 9.99× 10−4 5.49× 10−4 3.27× 10−4 2.06× 10−4

2d = 6 4.76× 10−3 1.08× 10−3 3.33× 10−4 1.25× 10−4 5.39× 10−5 2.58× 10−5 1.34× 10−5

2d = 8 2.02× 10−3 3.33× 10−4 7.77× 10−5 2.29× 10−5 7.94× 10−6 3.13× 10−6 1.36× 10−6

Then, X ∈ Sn+(E , ?) if and only if Xk = ECkXE
T
Ck ∈ S|Ck|+

for all k = 1, . . . , p.
Remark 1: This theorem allows us to equivalently replace

Sn+(E , ?) with a set of coupled but smaller convex cones.
A dual result can be found in [30]. These results have
been exploited in interior-point methods for SDPs [25]; also,
see recent applications in stability analysis and controller
synthesis of large-scale linear systems [31]–[33].

We assume that (12) is sparse with an aggregate sparsity
pattern described by G(V, E), meaning that (i, j) ∈ E if
and only if the entry ij of at least one of the matrices
C, A1, . . . , Am is nonzero. Also, it is assumed that G is
chordal with a set of maximal cliques C1, . . . , Cp. In (12),
only the entries of X corresponding to the edges E appear
in the cost and constraint functions. Therefore, the constraint
X ∈ Sn+ can be replaced by X ∈ Sn+(E , ?). Using Theorem 2,
we can reformulate (12) as

min
X,X1,...,Xp

〈C,X〉

subject to 〈Ai, X〉 = bi, i = 1, . . . ,m

Xk − EkXETk = 0, k = 1, . . . , p,

Xk ∈ S|Ck|+ , k = 1, . . . , p.

(13)

In other words, the original large semidefinite cone is decom-
posed into multiple smaller cones at the cost of introducing a
set of consensus constraints between the variables. Together
with this reformulation that exploits the aggregate sparsity
pattern to reduce the cone dimension, we can apply ADMM
to (13), which results in an efficient algorithm that works
with smaller positive semidefinite cones; see [27] for details.
Similar decompositions are available for the dual standard
SDP and the homogeneous self-dual embedding of sparse
SDPs [34], [35].

C. Numerical results

The two strategies have been implemented in the MAT-
LAB packages SOSADMM and CDCS [36], respectively.
These two packages are available from https://github.

com/oxfordcontrol/SOSADMM and https://github.

com/oxfordcontrol/CDCS. This section presents numeri-
cal tests of SOSADMM and CDCS on the random uncon-
strained polynomial optimization problems (more numerical
results can refer to [19], [34]). In the experiments, we set the
termination tolerance to 10−4, and the maximum number of
iterations to 2×103 for SOSADMM and CDCS. The primal
method in CDCS was used, and SeDuMi [37] was used as
a benchmark solver. Consider the polynomial minimization
problem minx∈Rn p(x), where p(x) is a given polynomial.

TABLE II
CPU TIME (S) TO SOLVE THE SDP RELAXATIONS (14). N IS THE SIZE OF

THE PSD CONE, m IS THE NUMBER OF CONSTRAINTS.

Dimensions CPU time (s)

n N m SeDuMi CDCS
(primal)

SOS-
ADMM

2 6 14 0.108 0.163 0.041
6 28 209 0.295 0.212 0.093
10 66 1000 4.197 0.340 0.294
14 120 3059 53.68 0.575 0.490
18 190 7314 621.2 1.696 1.339
20 231 10625 1806.6 4.694 2.362

As described in Section I, we can obtain an SDP relaxation
as

max γ

subject to p(x)− γ is SOS.
(14)

We generated p(x) according to p(x) = p0(x) +
∑n
i=1 x

2d
i ,

where p0(x) is a random polynomial with normally dis-
tributed coefficients of degree strictly less than 2d. We
used GloptiPoly [38] to generate the examples. Table II
compares the CPU time (in seconds) required to solve the
SOS relaxation as the number of variables was increased
n with d = 2. Both SOSADMM and CDCS-primal were
faster than SeDuMi on these examples. Also, the optimal
value returned by SOSADMM was within 0.05% of the high-
accuracy value returned by SeDuMi. Note that SOSADMM
was faster than CDCS-primal in the experiments and this
is expected since the random polynomials were dense;
major computational improvements have been achieved by
SOSADMM. For brevity, the interested reader is referred
to [34] for more numerical results of CDCS on sparse SDPs.

III. LINEAR AND SECOND-ORDER PROGRAMMING-BASED
ALTERNATIVES TO SOS PROGRAMS

In this section, we focus on another class of methods
that enables us to increase the computational efficiency of
SOS programs. These consist in replacing the semidefinite
program that underlies any SOS program (see Section I) by
more tractable convex programs such as linear or second-
order cone programs.

A. DSOS and SDSOS programs

Recall from Section I that a polynomial p(x) of degree 2d
and in n variables is SOS if and only if there exists a positive
semidefinite matrix Q such that p(x) = z(x)TQz(x), where
z(x) = [1, x1, x2, . . . , x

d
n] is the vector of monomials of

degree d. As a consequence, solving any SOS program
amounts to solving a semidefinite program where the variable

https://github.com/oxfordcontrol/SOSADMM
https://github.com/oxfordcontrol/SOSADMM
https://github.com/oxfordcontrol/CDCS
https://github.com/oxfordcontrol/CDCS


Q is of size
(
n+d
d

)
. As the number of variables and degree

of the polynomial p(x) at hand increase, the cost of solving
such a semidefinite program can quickly become prohibitive.
The idea proposed in [39] is to replace the condition that the
Gram matrix Q be positive semidefinite with stronger but
cheaper conditions in the hope of obtaining more efficient
inner approximations to the cone SOSn,2d. Two such con-
ditions come from the concepts of diagonally dominant and
scaled diagonally dominant matrices in linear algebra. We
recall these definitions below.

Definition 1: A symmetric matrix A is diagonally dom-
inant (dd) if aii ≥

∑
j 6=i |aij | for all i. We say that A is

scaled diagonally dominant (sdd) if there exists a diagonal
matrix D, with positive diagonal entries, which makes DAD
diagonally dominant.

We refer to the set of n×n dd (resp. sdd) matrices as DDn

(resp. SDDn). The following inclusions are a consequence
of Gershgorin’s circle theorem [40]:

DDn ⊆ SDDn ⊆ Sn+.

Definition 2 ( [39]): A polynomial p(x) of degree 2d is
said to be diagonally-dominant-sum-of-squares (DSOS) if it
admits a representation as p(x) = zT (x)Qz(x), where Q is
a dd matrix and z(x) is the standard vector of monomials
of degree d. A polynomial p(x) of degree 2d is said to
be scaled-diagonally-dominant-sum-of-squares (SDSOS) if it
admits a representation as p(x) = zT (x)Qz(x), where Q is
an sdd matrix and z(x) is the standard vector of monomials
of degree d.

Let us denote the cone of polynomials in n variables
and degree 2d that are DSOS and SDSOS by DSOSn,2d,
SDSOSn,2d. The following inclusion relations are straight-
forward:

DSOSn,2d ⊆ SDSOSn,d ⊆ SOSn,2d ⊆ PSDn,2d.

An illustration of how sections of these different cones com-
pare on an example is given in Figure 1, taken from [39]. We
consider a parametric family of polynomials parameterized
by a and b,

pa,b(x1, x2) = 2x41 + 2x42 + ax31x2 + (1− a)x21x22 + bx1x
3
2,

and plot in the figure the values of (a, b) for which the
polynomial is DSOS (innermost set), SDSOS (set containing
the DSOS set), and SOS (or equivalentally nonnegative in
this case) (outermost set).

These definitions give rise to the notion of DSOS and
SDOS programs. With similar notation to (2), we say that a
DSOS (resp. SDSOS) program is an optimization problem
of the following form:

min
p∈Rn,2d[x]

C(p)

s.t. A(p) = b

p is DSOS (resp. SDSOS)

(15)

Note that (15) provides upperbounds on the optimization
problem given in (2) as the set of DSOS and SDSOS
polynomials is a subset of the set of SOS polynomials. This

Fig. 1. A comparison of the DSOS/SDSOS/SOS cones on an example

loss in solution accuracy is compensated by gains in terms
of scalability and solving-time. This is a consequence of the
following theorem.

Theorem 3 ( [39]): For any fixed d, solving a DSOS
(resp. SDSOS) program can be done with linear program-
ming (resp. second order cone programming) of size poly-
nomial in n.

The “LP part” of this theorem is not hard to see. The
equality p(x) = z(x)TQz(x) gives rise to linear equality
constraints between the coefficients of p and the entries of
the matrix Q. The requirement of diagonal dominance on
the matrix Q can also be described by linear inequality
constraints on Q. The “SOCP part” of the statement is not
as straightforward and its proof can be found in [39].

We illustrate the gains that one can make using these
methods in Table III taken from [39]. We have reported
the time and bounds obtained when mininimizing a random
polynomial of degree d = 4 and with a varying number of
variables n over the unit sphere, using a DSOS, SDSOS and
SOS program (see [39] for the precise formulations). Note
that when n is small, the SOS program returns a better bound
in slightly longer times than the DSOS/SDSOS programs.
However, when n gets large, the SOS program cannot be
solved due to memory issues whereas both the DSOS and
SDSOS programs run in the order of seconds. These results
were obtained on a 3.4 GHz Windows computer with 16 GB
of memory.

B. Improving on DSOS and SDSOS programming

As mentioned previously, the advantages of substituting
an SOS program with a DSOS or SDSOS program are
scalability and computational efficiency of the program
obtained. This comes at the cost of solution accuracy. In
this section, we present two methods for mitigating the
loss in accuracy that we observe. These methods involve
constructing a sequence of iterative linear or second-order
cone programs where the first iteration consists in solving the
DSOS/SDSOS program given in (15). Our goal throughout
will be to solve the optimization problem given in (2).

1) Column generation method [41]: For simplicity, we
present here the linear programming-based version of the
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TABLE III
LOWER BOUNDS OBTAINED USING S/D/SOS PROGRAMS TO COMPUTE THE MINIMUM OF A QUARTIC FORM ON THE SPHERE FOR VARYING n, ALONG

WITH RUN TIMES (IN SECS).

n = 15 n = 20 n = 25 n = 30 n = 40
bd t(s) bd t(s) bd t(s) bd t(s) bd t(s)

DSOS -10.96 0.38 -18.012 0.74 -26.45 15.51 -36.85 7.88 -62.30 10.68
SDSOS -10.43 0.53 -17.33 1.06 -25.79 8.72 -36.04 5.65 -61.25 18.66

SOS -3.26 5.60 -3.58 82.22 -3.71 1068.66 NA NA NA NA

algorithm. An analogous method based on second-order
cone programming can be found in [41]. To understand
this method, the following characterization of diagonally
dominant matrices is needed [44]: A symmetric matrix M
is diagonally dominant if and only if it can be written as

M =

n2∑
i=1

αiviv
T
i , αi ≥ 0,

where {vi} is the set of all nonzero vectors in Rn with at
most 2 nonzero components, each equal to ±1. The first
iteration of our algorithm (i.e., solving (15)) then amounts
to solving:

min
p∈Rn,2d[x],α

C(p)

s.t. A(p) = b

p(x) = z(x)TQz(x),∀x,

Q =
∑
i

αiviv
T
i , αi ≥ 0,

(16)

where {vi} are fixed. At each iteration, one adds a new
“column” v to the set {vi} and the problem is then solved
again. This leads to Algorithm 1.

Algorithm 1 Column generation algorithm
1: initialize: Solve (16). Obtain α and p.
2: repeat
3: Find a vector v using the dual as described below
4: Solve

minα,p C(p)
s.t. A(p) = b

p(x) = z(x)TQz(x),∀x,
Q =

∑
i αiviv

T
i + αvvT

αi ≥ 0 ∀i, α ≥ 0

5: until Termination Condition is met
6: return C(p) and p

Note that at each iteration, this algorithm can only im-
prove: indeed, by taking α = 0, one recovers the solution
to the previous iteration. To obtain strict improvement, one
needs to carefully pick the vector v that we add to our set of
columns. One way of doing this is via the dual of the problem
given in (16). The constraint Q =

∑
i αiviv

T
i in the primal

gives rise to a constraint of the type vTi Xvi ≥ 0, ∀i in the
dual, where X is a dual variable. A good choice of a vector
v is then given by any vector v such that vTXv < 0, see
[41] for more information regarding the choice of v.

One can choose to terminate the algorithm under differ-
ent conditions, e.g., lack of improvement of the optimal
value/solution, or expiration of the time/computational bud-
get associated to the task of solving the SDP.

An illustration of the performance of this technique is
given in Table IV taken from [41]. The setting is analogous
to the one used to obtain Table III: we report the time
and bounds obtained when minimizing a random degree
d = 4 homogeneous polynomial over the unit sphere. The
experiments were run on a 2.33 GHz Linux machine with
32 GB of memory. In each iteration, we add an appropriate
new vector v to the sequence {vi} that has at most three
nonzero elements, each equaling 1 or −1. We stop the
algorithm when either of the two following conditions are
met: lack of improvement in the optimal value or time budget
of 600s exceeded. Note that one can significantly improve
on the initial approximations provided in Table III within a
reasonable 10 min time lapse.

2) Sum of squares basis pursuit [42]: The idea behind
this algorithm is the following. Let us assume that one
could solve the problem given in (2) and obtain the Gram
matrix Q∗ associated to the optimal polynomial p∗. If we
changed the monomial basis z(x) in (3) to the monomial
basis L∗z(x), where L∗ is the Cholesky decomposition (or
square root) of Q∗, then we could use linear programming to
recover the optimal solution of (2). Indeed, in this case, the
optimal Gram matrix would be given by the identity matrix,
which is diagonal, and searching for a diagonal Gram matrix
can be done via linear programming. In our case, we do not
have access to L∗, but the idea is to work towards such a
basis. This procedure is detailed in Algorithm 2.

The algorithm will terminate under similar conditions to
the ones given in Section III-B.1. Note that this algorithm is
guaranteed to converge: at each iteration, the optimal value
of the problem decreases (indeed, setting Q = I enables
us to recover the solution at the previous iteration), and is
lowerbounded by the optimal solution to the SDP in (2).

We finally point the reader to very recent work [43], which
goes beyond DSOS and SDSOS optimization and produces a
converging hierarchy for the polynomial optimization prob-



TABLE IV
LOWER BOUNDS OBTAINED USING COLUMN GENERATION TO COMPUTE THE MINIMUM OF A QUARTIC FORM ON THE SPHERE FOR VARYING n, ALONG

WITH RUN TIMES (IN SECS).

n = 15 n = 20 n = 25 n = 30 n = 40

bd t(s) bd t(s) bd t(s) bd t(s) bd t(s)
Col Gen −5.57 31.19 −9.02 471.39 −20.08 600 −32.28 600 −35.144 600

Algorithm 2 Sum of squares basis pursuit algorithm
1: initialize: Solve (15). Obtain the Gram matrix Q asso-

ciated to the optimal p. Compute L = chol(Q).
2: repeat
3: Solve

minα,p C(p)
s.t. A(p) = b

p(x) = z(x)TLTQLz(x),∀x,
Q is d.d./s.d.d.

4: Obtain the Gram matrix Q associated to the optimal p.
Set L← chol(Q)L.

5: until Termination Condition is met
6: return C(p) and p

lem that does not even require the use of linear or second
order cone programming. This hierarchy only involves mul-
tiplying certain polynomials together and checking whether
the coefficients of the product are nonnegative.

IV. LIMITATIONS ON REPRESENTING SOS CONES WITH
BOUNDED SIZE PSD BLOCKS

In Section III-A we discussed methods to certify non-
negativity of polynomials by showing that they are SDSOS.
Checking that a polynomial is SDSOS involves solving
a second-order cone program. It is well-known that any
second-order cone program can be written as a semidefinite
program in which all blocks have size 2×2 and hence testing
whether a polynomial is SDSOS simply amounts to solving
an SDP involving only 2×2 blocks. Restricting to SDPs with
only small blocks is attractive because such problems can be
solved more efficiently than general SDPs of the same size.

On the one hand, in Section III-A we saw that approx-
imating SOS cones with SDSOS cones (and variations on
this idea) are empirically very powerful. On the other hand,
in general the SOS cone strictly contains the SDSOS cone.
Beyond the SDSOS cone, there are potentially many other
ways to certify non-negativity of a family of polynomials
using SDPs with only 2×2 blocks. In this section we consider
recent results illustrating the limitations of modeling with
linear matrix inequalities (LMIs) having blocks of bounded
size (particularly 2× 2 blocks). Concretely, we consider the
following question:

Q1 Is it possible to exactly represent SOS cones using
LMIs that only involve 2 × 2 blocks, (or, more
generally, blocks of bounded size)?

Closely related, and more refined, is the following approxi-
mation version of the question:

Q2 Given a positive integer p, how well can we ap-
proximate SOS cones with convex cones that can
be described using LMIs that involve at most p,
2× 2 blocks?

The focus of this section is to discuss recent results of
Fawzi [45] showing that the answer to Q1 is already negative
for non-negative univariate quartics. Addressing Q2 remains
a research challenge. In presenting Fawzi’s result, we briefly
describe recently developed ideas and tools for reasoning
about all possible LMI descriptions of a convex set (with
fixed block sizes). These are based on the idea of cone ranks
(introduced by Gouveia, Parrilo, and Thomas [46]) of certain
non-negative matrices associated with the convex set.

A. General PSD lifts with fixed block size

As mentioned previously, we use the notation Sk+ for the
cone of k×k positive semidefinite matrices, and the notation
(Sk+)p for the Cartesian product of p copies of Sk+.

With this notation, we can now formalize the idea of a
representation of a convex set with LMIs involving only
2× 2 blocks. The following definition is a special case of a
definition due to Gouveia, Parrilo, and Thomas [46].

Definition 3: A convex cone C ⊆ Rn has a proper (S2+)p-
lift1 if there is a subspace L of (S2)p and a linear map π :
(S2)p → Rp such that

C = π
[
(S2+)p ∩ L

]
and L meets the interior of (S2+)p.
More concretely, C has a (S2+)p-lift if and only if it can be
expressed in the form

C =

x ∈ Rn : ∃y ∈ Rm s.t.
n∑
i=1

Aixi +

m∑
j=1

Bjyj � 0


where the Ai and the Bj are 2p × 2p symmetric matrices
that are all block diagonal (with the same block structure)
consisting of p blocks, each of size 2× 2.

Question Q1 can now be expressed more concisely as:
Q1’ For which (n, d) does there exist a finite p such

that SOSn,d has a (S2+)p-lift?
Answering questions like this in the negative, i.e., showing
that lifts do not exist, has proven very challenging. The work
of Gouveia, Parrilo, and Thomas [46] (building on ideas of

1Clearly there is an analogous definition for a proper (Sk+)p-lift for any
fixed k. All the definitions and results in Section IV-A extend to that case.



Yannakakis [47] in the case of linear programming), made
a connection between the existence of lifts and a certain
generalization of the non-negative rank of an entry-wise non-
negative matrix.

Definition 4: If S is an a × b matrix with non-negative
entries, the S2+-rank of S is the smallest p such that

Sij =

p∑
k=1

〈Aik, Bjk〉

where Aik, Bjk ∈ S2+ for all 1 ≤ i ≤ a, 1 ≤ j ≤ b and
1 ≤ k ≤ p.
There is a connection between (S2+)p lifts of a convex set C
and the S2+-rank of various non-negative matrices associated
with C (so-called slack matrices of C, see [46]).

The following result is a special case of [46, Theorem 1]
expressed in the conic setting.

Theorem 4: Let v1, . . . , vb ∈ C and `1, . . . , `a ∈ C∗ =
{` ∈ Rn : 〈`, v〉 ≥ 0 for all v ∈ C}. If C has a proper
(S2+)p lift, then the non-negative matrix with entries Sij =
〈`i, vj〉 has S2+-rank at most p.
One implication of this result, is that a lower bounds on the
S2+-rank of any S constructed as in Theorem 4 gives a lower
bound on the smallest p for which C has an (S2+)p-lift. To
show that C has no (S2+)p-lift for any p, it is enough to find a
sequence of points v1, v2, . . . ∈ C and `1, `2, . . . ∈ C∗, such
that the corresponding sequence of non-negative matrices S
(of growing dimensions) also has growing S2+-rank.

B. Limitations of (S2+)p-lifts

We now state the main results of [45], establishing fun-
damental limitations on the convex sets that can be exactly
expressed using LMIs with only 2× 2 blocks.

Theorem 5: There is no finite p such that PSD1,4, the
cone of non-negative univariate quartic polynomials, has an
(S2+)p-lift.
Since PSD1,4 = SOS1,4 is the image of S3+ under a linear
map (this follows from (1) as Q is of size 3×3), the following
is a direct consequence of Theorem 5.

Corollary 1 ( [45, Theorem 1]): There is no finite p such
that S3+, the cone of 3×3 positive semidefinite matrices, has
an (S2+)p-lift.
Providing the proof of these results is well beyond the
scope of this article. We will, however, sketch some of the
ingredients.

First, we note that PSD∗1,4 = cone{(1, t, t2, t3, t4) : t ∈
R}. This essentially follows directly from the definition of a
non-negative polynomial and the definition of the dual cone.
Define a sequence of points `j := (1, j, j2, j3, j4) ∈ PSD∗1,4
for j = 1, 2, . . . and a collection of non-negative quartic
polynomials

v{i1,i2}(t) = [(i1 − i2)(i1 − t)(i2 − t)]2 ,

indexed by pairs of positive integers {i1, i2}. Then define a
sequence of S(1), S(2), . . . , S(k), . . . of

(
k
2

)
×k non-negative

matrices of the form

S
(k)
{i1,i2},j = v{i1,i2}(j) = [(i1 − i2)(i1 − j)(i2 − j)]2

where 1 ≤ i1 < i2 ≤ k and 1 ≤ j ≤ k. The aim is to show
that the S2+-rank of the S(k) grows with k. It then follows
from the discussion following the statement of Theorem 4
that PSD1,4 = SOS1,4 does not have a (S2+)p-lift for any
positive integer p.

Fawzi’s argument makes crucial use of the sparsity pattern
of these matrices, and in particular certain relationships
between the sparsity patterns of S(k) and S(k′) for different
values of k and k′. In particular, he shows that a certain
combinatorial lower bound on the S2+-rank of S(k) must grow
with k, and so the S2+-rank itself must grow with k.

C. Challenges

We conclude this section with a discussion of some
challenges related to understanding the limitations of approx-
imating SOS cones with convex cones having (S2+)p-lifts.

1) Lower bounds on approximation quality: Fawzi’s re-
sult suggests that if we want to model SOS cones, in general,
using cones that have (S2+)p-lifts, approximation is neces-
sary. One approximation strategy uses SDSOS cones, but it
is conceivable that a significantly better approach exists. For
a given notion of approximation and approximation level ε,
it would be very interesting to produce lower bounds on
p, such that a given SOS cone can be ε-approximated by
a convex cone having a (S2+)p-lift. Is there any reasonable
notion of approximation under which SDSOS is an optimal
approximation in this sense?

2) Strategies to construct approximate lifts: On the posi-
tive side, how should we go about systematically approximat-
ing SOS cones with convex cones having (S2+)p-lifts, with p
growing mildly with approximation quality? Are there ideas
from classical constructive approximation theory that can be
applied in this setting? A concrete question in this direction
is the following:

For a given approximation quality ε, how large
must p be so that we can ε-approximate the cone
of univariate non-negative polynomials of degree
d ≥ 4 with a convex cone having a (S2+)p-lift?

As an example of positive results in this broad direction,
recent work [48] develops an approach for constructing high-
quality approximations, with small (S2+)p-lifts, of relative
entropy cones.

3) Techniques to lower bound S2+-rank: For a non-
negative matrix S there are numerous notions of cone rank.
One example is S2+-rank, defined in Section IV-A above;
another is the non-negative rank (equivalent to S1+-rank
in our notation); another is PSD rank (see, e.g., [49], for
a definition and survey related to its properties). These
have interpretations in terms of modeling convex bodies in
terms of second-order cone programs, linear programs, and
(general) semidefinite programs, respectively. Recently, there
has been considerable interest, in a number of fields, in
finding lower bounds on various notions of cone rank such
as these. Techniques for bounding the non-negative rank are
most developed, with lower bounds based on combinatorial
tools [50], ideas from information theory [51], and systematic
computational methods [52], being available. On the other



end of the spectrum, lower bounds on the PSD rank of
non-negative matrices seem much more challenging (see
the survey [49] for a discussion), although there has been
recent progress for some very specific matrices related to
combinatorial optimization problem [53].

The S2+-rank in some ways behaves like the non-negative
rank (because of the inherent product structure), and in
some ways like the PSD rank. It would be very interesting
to see which of the combinatorial tools applicable to non-
negative rank can be modified to this setting. On the other
hand, developing methods for bounding the S2+-rank that
are distinct from the approaches used for non-negative rank,
may provide a path towards understanding the PSD rank in
general.

V. CONCLUSION

In this paper, we have reviewed two new classes of tech-
niques that aim to improve the scalability of SOS programs.
First, two efficient first-order methods based on ADMM were
proposed to solve the SDPs arising from SOS programs
efficiently. Both of these techniques exploit the underlying
sparsity to increase the computational efficiency. Second, we
introduce techniques that replace the semidefinite program
underlying any SOS program by more tractable convex
programs such as linear or second-order cone programs. For
this strategy, we first inner approximate the set of positive
semidefinite matrices by the set of diagonally dominant
matrices (resp. scaled diagonally dominant matrices) which
is LP-representable (resp. SOCP representable). We then
iteratively improve on these initial approximations while
staying in the realm of LP and SOCP-representable sets.
Finally, we reviewed recent results relating to how well
one can represent the cone of SOS polynomials by SDPs
involving only small blocks. We focused on second order
representable cones, i.e., cones that involve SDPs with blocks
of size bounded by 2. We presented a recent result that
states that one cannot even represent the set of nonnegative
univariate quartics using these kinds of cones. This leaves
open the question of how well one can approximate SOS
polynomials with SDPs involving only small blocks.

REFERENCES

[1] B. Reznick, “Some concrete aspects of Hilbert’s 17th problem,” in
Contemporary Mathematics. American Mathematical Society, 2000,
vol. 253, pp. 251–272.

[2] P. A. Parrilo, “Semidefinite programming relaxations for semialgebraic
problems,” Mathematical Programming, vol. 96, no. 2, Ser. B, pp.
293–320, 2003.

[3] J. B. Lasserre, “Global optimization with polynomials and the problem
of moments,” SIAM Journal on Optimization, vol. 11, no. 3, pp. 796–
817, 2001.
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