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Abstract
We employ chordal decomposition to reformulate a large and sparse semidefinite
program (SDP), either in primal or dual standard form, into an equivalent SDP with
smaller positive semidefinite (PSD) constraints. In contrast to previous approaches,
the decomposed SDP is suitable for the application of first-order operator-splitting
methods, enabling the development of efficient and scalable algorithms. In particular,
we apply the alternating direction method of multipliers (ADMM) to solve decom-
posedprimal- anddual-standard-formSDPs.Each iteration of suchADMMalgorithms
requires a projection onto an affine subspace, and a set of projections onto small PSD
cones that can be computed in parallel. We also formulate the homogeneous self-dual
embedding (HSDE) of a primal-dual pair of decomposed SDPs, and extend a recent
ADMM-based algorithm to exploit the structure of our HSDE. The resulting HSDE
algorithm has the same leading-order computational cost as those for the primal or
dual problems only, with the advantage of being able to identify infeasible problems
and produce an infeasibility certificate. All algorithms are implemented in the open-
source MATLAB solver CDCS. Numerical experiments on a range of large-scale
SDPs demonstrate the computational advantages of the proposed methods compared
to common state-of-the-art solvers.
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1 Introduction

Semidefinite programs (SDPs) are convex optimization problems over the cone
of positive semidefinite (PSD) matrices. Given b ∈ R

m , C ∈ S
n , and matrices

A1, . . . , Am ∈ S
n , the standard primal form of an SDP is

min
X

〈C, X〉
subject to 〈Ai , X〉 = bi , i = 1, . . . ,m,

X ∈ S
n+,

(1)

while the standard dual form is

max
y, Z

〈b, y〉

subject to Z +
m∑

i=1

Ai yi = C,

Z ∈ S
n+.

(2)

In the above and throughout this work, Rm is the usual m-dimensional Euclidean
space, Sn is the space of n × n symmetric matrices, Sn+ is the cone of PSD matrices,
and 〈·, ·〉 denotes the inner product in the appropriate space, i.e., 〈x, y〉 = xT y for
x, y ∈ R

m and 〈X ,Y 〉 = trace(XY ) for X ,Y ∈ S
n . SDPs have found applications

in a wide range of fields, such as control theory, machine learning, combinatorics,
and operations research [8]. Semidefinite programming encompasses other common
types of optimization problems, including linear, quadratic, and second-order cone
programs [10]. Furthermore,manynonlinear convex constraints admit SDP relaxations
that work well in practice [43].

It is well-known that small and medium-sized SDPs can be solved up to any arbi-
trary precision in polynomial time [43] using efficient second-order interior-point
methods (IPMs) [2,24]. However, many problems of practical interest are too large to
be addressed by the current state-of-the-art interior-point algorithms, largely due to
the need to compute, store, and factorize an m × m matrix at each iteration.

A common strategy to address this shortcoming is to abandon IPMs in favour
of simpler first-order methods (FOMs), at the expense of reducing the accuracy of
the solution. For instance, Malick et al. [31] introduced regularization methods to
solve SDPs based on a dual augmented Lagrangian. Wen et al. [44] proposed an
alternating direction augmented Lagrangian method for large-scale SDPs in the dual
standard form.Zhao et al. [49] presented an augmentedLagrangiandual approach com-
bined with the conjugate gradient method to solve large-scale SDPs. More recently,
O’Donoghue et al. [32] developed a first-order operator-splitting method to solve the
homogeneous self-dual embedding (HSDE) of a primal-dual pair of conic programs.
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The algorithm, implemented in theCpackage SCS [33], has the advantage of providing
certificates of primal or dual infeasibility.

A second major approach to resolve the aforementioned scalability issues is based
on the observation that the large-scale SDPs encountered in applications are often
structured and/or sparse [8]. Exploiting sparsity in SDPs is an active and challenging
area of research [3], with onemain difficulty being that the optimal (primal) solution is
typically dense even when the problem data are sparse. Nonetheless, if the aggregate
sparsity pattern of the data is chordal (or has sparse chordal extensions), one can
replace the original, large PSD constraint with a set of PSD constraints on smaller
matrices, coupled by additional equality constraints [1,22,23,25]. Having reduced the
size of the semidefinite variables, the converted SDP can in some cases be solved
more efficiently than the original problem using standard IPMs. These ideas underly
the domain-space and the range-space conversion techniques in [17,27], implemented
in the MATLAB package SparseCoLO [16].

The problem with such decomposition techniques, however, is that the addition
of equality constraints to an SDP often offsets the benefit of working with smaller
semidefinite cones. One possible solution is to exploit the properties of chordal spar-
sity patterns directly in the IPMs: Fukuda et al. used a positive definite completion
theorem [23] to develop a primal-dual path-following method [17]; Burer proposed
a nonsymmetric primal-dual IPM using Cholesky factors of the dual variable Z and
maximum determinant completion of the primal variable X [11]; and Andersen et
al. [4] developed fast recursive algorithms to evaluate the function values and deriva-
tives of the barrier functions for SDPs with chordal sparsity. Another attractive option
is to solve the sparse SDP using FOMs: Sun et al. [38] proposed a first-order splitting
algorithm for partially decomposable conic programs, including SDPs with chordal
sparsity; Kalbat and Lavaei [26] applied a first-order operator-splitting method to
solve a special class of SDPs with fully decomposable constraints; Madani et al. [30]
developed a highly-parallelizable first-order algorithm for sparse SDPswith inequality
constraints, with applications to optimal power flow problems; Dall’Anese et al. [12]
exploited chordal sparsity to solve SDPs with separable constraints using a distributed
FOM; finally, Sun and Vandenberghe [39] introduced several proximal splitting and
decomposition algorithms for sparse matrix nearness problems involving no explicit
equality constraints.

In this work, we embrace the spirit of [12,26,30,32,38,39] and exploit sparsity in
SDPs using a first-order operator-splitting method known as the alternating direc-
tion method of multipliers (ADMM). Introduced in the mid-1970s [18,20], ADMM is
related to other FOMs such as dual decomposition and the method of multipliers, and
it has recently found applications in many areas, including covariance selection, sig-
nal processing, resource allocation, and classification; see [9] for a review. In contrast
to the approach in [38], which requires the solution of a quadratic SDP at each itera-
tion, our approach relies entirely on first-order methods. Moreover, our ADMM-based
algorithm works for generic SDPs with chordal sparsity and has the ability to detect
infeasibility, which are key advantages compared to the algorithms in [12,26,30,39].
More precisely, our contributions are:
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1. We apply two chordal decomposition theorems [1,23] to formulate domain-space
and range-space conversion frameworks for the application of FOMs to standard-
form SDPs with chordal sparsity. These are analogous to the conversion methods
developed in [17,27] for IPMs, but we introduce two sets of slack variables that
allow for the separation of the conic and the affine constraints when using operator-
splitting algorithms. To the best of our knowledge, this extension has never been
presented before, and its significant potential is demonstrated in this work.

2. We apply ADMM to solve the domain- and range-space converted SDPs, and
show that the resulting iterates of the ADMM algorithms are the same up to
scaling. The iterations are computationally inexpensive: the positive semidefinite
(PSD) constraint is enforced via parallel projections onto small PSD cones—
a much more economical strategy than that in [38]—while imposing the affine
constraints requires solving a linear system with constant coefficient matrix, the
factorization/inverse of which can be cached before iterating the algorithm. Note
that the idea of enforcing a large sparse PSD constraint by projection onto multiple
smaller ones has also been exploited in [12,30] in the special context of optimal
power flow problems and in [39] for matrix nearness problems.

3. We formulate theHSDEof a converted primal-dual pair of sparse SDPs. In contrast
to [12,26,30,38], this allows us to compute either primal and dual optimal points,
or a certificate of infeasibility. We then extend the algorithm proposed in [32],
showing that the structure of our HSDE can be exploited to solve a large linear
systemof equations extremely efficiently through a sequenceof block eliminations.
As a result, we obtain an algorithm that is more efficient than the method of [32],
irrespectively of whether this is used on the original primal-dual pair of SDPs
(before decomposition) or on the converted problems. In the former case, the
advantage comes from the application of chordal decomposition to replace a large
PSD cone with a set of smaller ones. In the latter case, efficiency is gained by the
proposed sequence of block eliminations.

4. We present the MATLAB solver CDCS (Cone Decomposition Conic Solver),
which implements our ADMM algorithms. CDCS is the first open-source first-
order solver that exploits chordal decomposition and can detect infeasible
problems. We test our implementation on large-scale sparse problems in SDPLIB
[7], selected sparse SDPs with nonchordal sparsity pattern [4], and randomly gen-
erated SDPs with block-arrow sparsity patterns [38]. The results demonstrate the
efficiency of our algorithms compared to the interior-point solvers SeDuMi [37]
and the first-order solver SCS [33].

The rest of the paper is organized as follows. Section 2 reviews chordal decomposi-
tion and the basic ADMM algorithm. Section 3 introduces our conversion framework
for sparse SDPs based on chordal decomposition. We show how to apply the ADMM
to exploit domain-space and range-space sparsity in primal and dual SDPs in Sect. 4.
Section 5 discusses theADMMalgorithm for theHSDEof SDPswith chordal sparsity.
The computational complexity of our algorithms in terms of floating-point operations
is discussed in Sect. 6. CDCS and our numerical experiments are presented in Sect. 7.
Section 8 concludes the paper.
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Fig. 1 a Nonchordal graph: the cycle (1–2–3–4) is of length four but has no chords. b Chordal graph: all
cycles of length no less than four have a chord; the maximal cliques are C1 = {1, 2, 4} and C2 = {2, 3, 4}

2 Preliminaries

2.1 A review of graph theoretic notions

We start by briefly reviewing some key graph theoretic concepts (see [6,21] for more
details). A graph G(V, E) is defined by a set of vertices V = {1, 2, . . . , n} and a set of
edges E ⊆ V×V . A graphG(V, E) is called complete if any two vertices are connected
by an edge. A subset of vertices C ⊆ V such that (i, j) ∈ E for any distinct vertices
i, j ∈ C, i.e., such that the subgraph induced by C is complete, is called a clique. The
number of vertices in C is denoted by |C|. If C is not a subset of any other clique, then
it is referred to as amaximal clique. A cycle of length k in a graph G is a set of pairwise
distinct vertices {v1, v2, . . . , vk} ⊂ V such that (vk, v1) ∈ E and (vi , vi+1) ∈ E for
i = 1, . . . , k − 1. A chord is an edge joining two non-adjacent vertices in a cycle. A
graph G is undirected if (vi , v j ) ∈ E ⇔ (v j , vi ) ∈ E .

An undirected graph G is called chordal (or triangulated, or a rigid circuit [42])
if every cycle of length greater than or equal to four has at least one chord. Chordal
graphs include several other classes of graphs, such as acyclic undirected graphs
(including trees) and complete graphs. Algorithms such as the maximum cardinality
search [40] can test chordality and identify the maximal cliques of a chordal graph
efficiently, i.e., in linear time in terms of the number of nodes and edges. Non-chordal
graphs can always be chordal extended, i.e., extended to a chordal graph, by adding
additional edges to the original graph. Computing the chordal extension with the
minimum number of additional edges is an NP-complete problem [46], but several
heuristics exist to find good chordal extensions efficiently [42].

Figure 1 illustrates these concepts. The graph in Fig. 1a is not chordal, but can be
chordal extended to the graph in Fig. 1b by adding the edge (2, 4). The chordal graph
in Fig. 1b has two maximal cliques, C1 = {1, 2, 4} and C2 = {2, 3, 4}. Other examples
of chordal graphs are given in Fig. 3.

2.2 Sparsematrix cones and chordal decomposition

The sparsity pattern of a symmetricmatrix X ∈ S
n can be represented by an undirected

graph G(V, E), and vice-versa. For example, the sparsity patterns illustrated in Fig. 2
correspond to the graphs in Fig. 3. With a slight abuse of terminology, we refer to
the graph G as the sparsity pattern of X . Given a clique Ck of G, we define a matrix
ECk ∈ R

|Ck |×n as
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(a) (b) (c)

Fig. 2 Sparsity patterns of 8 × 8 matrices: a banded sparsity pattern; b “block-arrow” sparsity pattern; c a
generic sparsity pattern

(a) (b) (c)
Fig. 3 Graph representation of the matrix sparsity patterns illustrated in Fig. 2a–c, respectively

(ECk )i j =
{
1, if Ck(i) = j

0, otherwise

where Ck(i) is the i th vertex in Ck , sorted in the natural ordering. Given X ∈ S
n , the

matrix ECk can be used to select the principal submatrix defined by the clique Ck , i.e.,
ECk X ET

Ck ∈ S
|Ck |. In addition, the operation ET

Ck Y ECk creates an n × n symmetric
matrix from a |Ck | × |Ck | matrix. For example, the chordal graph in Fig. 1b has a
maximal clique C1 = {1, 2, 4}, and for X ∈ S

4 and Y ∈ S
3 we have

EC1 =
⎡

⎣
1 0 0 0
0 1 0 0
0 0 0 1

⎤

⎦ , EC1XET
C1 =

⎡

⎣
X11 X12 X14
X21 X22 X24
X41 X42 X44

⎤

⎦ ,

ET
C1Y EC1 =

⎡

⎢⎢⎣

Y11 Y12 0 Y13
Y21 Y22 0 Y23
0 0 0 0
Y31 Y32 0 Y33

⎤

⎥⎥⎦ .

Given an undirected graph G(V, E), let E∗ = E ∪ {(i, i), i ∈ V} be a set of edges
that includes all self-loops. We define the space of sparse symmetric matrices with
sparsity pattern G as

S
n(E, 0) := {X ∈ S

n : Xi j = X ji = 0 if (i, j) /∈ E∗},
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and the cone of sparse PSD matrices as

S
n+(E, 0) := {X ∈ S

n(E, 0) : X 
 0},

where the notation X 
 0 indicates that X is PSD. Moreover, we consider the cone

S
n+(E, ?) := PSn(E,0)(S

n+)

given by the projection of the PSD cone onto the space of sparse matrices Sn(E, 0)
with respect to the usual Frobenius matrix norm (this is the norm induced by the usual
trace inner product on the space of symmetric matrices). It is not difficult to see that
X ∈ S

n+(E, ?) if and only if it has a positive semidefinite completion, i.e., if there
exists a PSD matrix M such that Mi j = Xi j when (i, j) ∈ E∗.

For any undirected graph G(V, E), the cones Sn+(E, ?) and S
n+(E, 0) are dual to

each other with respect to the trace inner product in the space of sparse matrices
S
n(E, 0) [42]. In other words,

S
n+(E, ?) ≡ {X ∈ S

n(E, 0) : 〈X , Z〉 ≥ 0, ∀Z ∈ S
n+(E, 0)},

S
n+(E, 0) ≡ {Z ∈ S

n(E, 0) : 〈Z , X〉 ≥ 0, ∀X ∈ S
n+(E, ?)}.

If G is chordal, then Sn+(E, ?) and Sn+(E, 0) can be equivalently decomposed into a
set of smaller but coupled convex cones according to the following theorems.

Theorem 1 ([23, theorem 7]) Let G(V, E) be a chordal graph and let {C1, C2, . . . , Cp}
be the set of its maximal cliques. Then, X ∈ S

n+(E, ?) if and only if

ECk X ET
Ck ∈ S

|Ck |+ , k = 1, . . . , p.

Theorem 2 ([1, theorem 2.3], [22, theorem 4], [25, theorem 1]) Let G(V, E) be a
chordal graph and let {C1, C2, . . . , Cp} be the set of its maximal cliques. Then, Z ∈
S
n+(E, 0) if and only if there exist matrices Zk ∈ S

|Ck |+ for k = 1, . . . , p such that

Z =
p∑

k=1

ET
Ck Zk ECk .

Note that these results can be proven individually, but can also be derived from each
other using the duality of the cones Sn+(E, ?) and S

n+(E, 0) [27]. In this paper, the
terminology chordal (or clique) decomposition of a sparse matrix cone will refer to
the application of Theorem 1 or Theorem 2 to replace a large sparse PSD cone with a
set of smaller but coupled PSD cones. Chordal decomposition of sparse matrix cones
underpins much of the recent research on sparse SDPs [4,17,27,30,38,42], most of
which relies on the conversion framework for IPMs proposed in [17,27].
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To illustrate the concept, consider the chordal graph in Fig. 1b. By Theorem 1,

⎡

⎢⎢⎣

X11 X12 0 X14

X12 X22 X23 X24

0 X23 X33 X34

X14 X24 X34 X44

⎤

⎥⎥⎦ ∈ S
n+(E, ?) ⇔

⎡

⎣
X11 X12 X14

X12 X22 X24

X14 X24 X44

⎤

⎦ 
 0,

⎡

⎣
X22 X23 X24

X23 X33 X34

X24 X34 X44

⎤

⎦ 
 0.

Similarly, Theorem 2 guarantees that (after eliminating some of the variables)

⎡

⎢⎢⎣

Z11 Z12 0 Z14

Z12 Z22 Z23 Z24

0 Z23 Z33 Z34

Z14 Z24 Z34 Z44

⎤

⎥⎥⎦ ∈ S
n+(E, 0) ⇔

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎡

⎢⎣
Z11 Z12 Z14

Z12 a1 a3
Z14 a3 a2

⎤

⎥⎦ 
 0,

⎡

⎢⎣
b1 Z23 b3
Z23 Z33 Z34

b3 Z34 b2

⎤

⎥⎦ 
 0,

ai + bi = Zi+1,i+1, i ∈ {1, 2},
a3 + b3 = Z24

for some constants a1, a2, a3 and b1, b2, b3. Note that the PSD contraints obtained
after the chordal decomposition of X (resp. Z ) are coupled via the elements X22, X44,

and X24 = X42 (resp. Z22, Z44, and Z24 = Z42).

2.3 The alternating directionmethod of multipliers

The computational “engine” employed in this work is the alternating direction method
of multipliers (ADMM). ADMM is an operator-splitting method developed in the
1970s, and it is known to be equivalent to other operator-splitting methods such as
Douglas-Rachford splitting and Spingarn’s method of partial inverses; see [9] for a
review. The ADMM algorithm solves the optimization problem

min
x,y

f (x) + g(y)

subject to Ax + By = c,
(3)

where f and g are convex functions, x ∈ R
nx , y ∈ R

ny , A ∈ R
nc×nx , B ∈ R

nc×ny

and c ∈ R
nc . Given a penalty parameter ρ > 0 and a dual multiplier z ∈ R

nc , the
ADMM algorithm finds a saddle point of the augmented Lagrangian

Lρ(x, y, z) := f (x) + g(y) + zT (Ax + By − c) + ρ

2
‖Ax + By − c‖2

by minimizing L with respect to the primal variables x and y separately, followed by
a dual variable update:

x (n+1) = argmin
x

Lρ(x, y(n), z(n)), (4a)

y(n+1) = argmin
y

Lρ(x (n+1), y, z(n)), (4b)

z(n+1) = z(n) + ρ (Ax (n+1) + By(n+1) − c). (4c)

The superscript (n) indicates that a variable is fixed to its value at the nth iteration.
Note that since z is fixed in (4a) and (4b), one may equivalently minimize the modified
Lagrangian
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L̂ρ(x, y, z) := f (x) + g(y) + ρ

2

∥∥∥∥Ax + By − c + 1

ρ
z

∥∥∥∥
2

.

Under very mild conditions, the ADMM converges to a solution of (3) with a
rate O( 1n ) [9, Section 3.2]. ADMM is particularly suitable when (4a) and (4b) have
closed-form expressions, or can be solved efficiently. Moreover, splitting the min-
imization over x and y often allows distributed and/or parallel implementations of
steps (4a)–(4c).

3 Chordal decomposition of sparse SDPs

The sparsity pattern of the problem data for the primal-dual pair of standard-form
SDPs (1)–(2) can be described using the so-called aggregate sparsity pattern. We say
that the pair of SDPs (1)–(2) has an aggregate sparsity pattern G(V, E) if

C ∈ S
n(E, 0) and Ai ∈ S

n(E, 0), i = 1, . . . ,m. (5)

In other words, the aggregate sparsity pattern G is the union of the individual sparsity
patterns of the data matrices C , A1, . . . , Am . Throughout the rest of this paper, we
assume that the aggregate sparsity pattern G is chordal (or that a suitable chordal
extension has been found), and that it has p maximal cliques C1, . . . , Cp. In addition,
we assume that the matrices A1, . . ., Am are linearly independent.

It is not difficult to see that the aggregate sparsity pattern defines the sparsity pattern
of any feasible dual variable Z in (2), i.e., any dual feasible Z must have sparsity pattern
G. Similarly, while the primal variable X in (1) is usually dense, the value of the cost
function and the equality constraints depend only on the entries Xi j with (i, j) ∈ E ,
and the remaining entries simply guarantee that X is PSD. Recalling the definition of
the sparsematrix conesSn+(E, ?) andSn+(E, 0), we can therefore recast the primal-form
SDP (1) as

min
X

〈C, X〉
subject to 〈Ai , X〉 = bi , i = 1, . . . , m,

X ∈ S
n+(E, ?),

(6)

and the dual-form SDP (2) as

max
y,Z

〈b, y〉

subject to Z +
m∑

i=1

Ai yi = C,

Z ∈ S
n+(E, 0).

(7)

This formulation was first proposed by Fukuda et al. [17], and was later discussed
in [4,27,38]. Note that (6) and (7) are a primal-dual pair of linear conic problems
because the cones Sn+(E, ?) and S

n+(E, 0) are dual to each other.
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3.1 Domain-space decomposition

As we have seen in Sect. 2, Theorem 1 allows us to decompose the sparse matrix cone
constraint X ∈ S

n+(E, ?) into p standard PSD constraints on the submatrices of X
defined by the cliques C1, . . . , Cp. In other words,

X ∈ S
n+(E, ?) ⇔ ECk X ET

Ck ∈ S
|Ck |+ , k = 1, . . . , p.

These p constraints are implicitly coupled since ECl X ET
Cl and ECq X ET

Cq have over-
lapping elements if Cl ∩Cq �= ∅. Upon introducing slack variables Xk , k = 1, . . . , p,
we can rewrite this as

X ∈ S
n+(E, ?) ⇔

{
Xk = ECk X ET

Ck , k = 1, . . . , p,

Xk ∈ S
|Ck |+ , k = 1, . . . , p.

(8)

The primal optimization problem (6) is then equivalent to the SDP

min
X ,X1,...,X p

〈C, X〉
subject to 〈Ai , X〉 = bi , i = 1, . . . ,m,

Xk = ECk X ET
Ck , k = 1, . . . , p,

Xk ∈ S
|Ck |+ , k = 1, . . . , p.

(9)

Adopting the same terminology used in [17], we refer to (9) as the domain-space
decomposition of the primal-standard-form SDP (1).

Remark 1 Themain difference between the conversionmethod proposed in this section
and that in [17,27] is that the large matrix X is not eliminated. Instead, in the domain-
space decomposition of [17,27], X is eliminated by replacing the constraints

Xk = ECk X ET
Ck , k = 1, . . . , p,

with the requirement that the entries of any two different sub-matrices X j , Xk must
match if theymap to the same entry in X . Mathematically, this condition can bewritten
as

EC j∩Ck
(
ET
Ck Xk ECk − ET

C j
X j EC j

)
ET
C j∩Ck = 0, ∀ j, k such that C j ∩ Ck �= ∅.

(10)
Redundant constraints in (10) can be eliminated using the running intersection prop-
erty of the cliques [6,17], and the decomposed SDP can be solved efficiently by IPMs
in certain cases [17,27]. However, applying FOMs to (9) effectively after the elimi-
nation of X is not straightforward because the PSD matrix variables X1, . . . , X p are
coupled via (10). In [38], for example, an SDP with a quadratic objective had to be
solved at each iteration to impose the PSD constraints, requiring an additional itera-
tive solver. Even when this problem is resolved, e.g., by using the algorithm of [32],
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the size of the KKT system enforcing the affine constraints is increased dramatically
by the consensus conditions (10), sometimes so much that memory requirements are
prohibitive on desktop computing platforms [17]. In contrast, we show in Sect. 4 that
if a set of slack variables Xk are introduced in (8) and X is not eliminated from (9),
then the PSD constraint can be imposed via projections onto small PSD cones. At
the same time, the affine constraints require the solution of an m × m linear system
of equations, as if no consensus constraints were introduced. This makes our conver-
sion framework more suitable for FOMs than that of [17,27], as all steps in many
common operator-splitting algorithms have an efficiently computable explicit solu-
tion. Of course, the equalities Xk = ECk X ET

Ck , k = 1, . . . , p are satisfied only within
moderate tolerances when FOMs are utilized, and the accumulation of small errors
might make it more difficult to solve the original SDP to a given degree of accuracy
compared to the methods in [17,27,38,44]. Therefore, the trade-off between the gains
in computational complexity and the reduction in accuracy should be carefully con-
sidered when choosing the most suitable approach to solve a given large-scale SDP.
Nonetheless, our numerical experiments of Sect. 7 demonstrate that working with (9)
is often a competitive strategy.

3.2 Range-space decomposition

A range-space decomposition of the dual-standard-form SDP (2) can be formulated
by applying Theorem 2 to the sparse matrix cone constraint Z ∈ S

n+(E, 0) in (7):

Z ∈ S
n+(E, 0) ⇔ Z =

p∑

k=1

ET
Ck Zk ECk for some Zk ∈ S

|Ck |+ , k = 1, . . . , p.

We then introduce slack variables Vk , k = 1, . . . , p and conclude that Z ∈ S
n+(E, 0)

if and only if there exists matrices Zk, Vk ∈ S
|Ck |, k = 1, . . . , p, such that

Z =
p∑

k=1

ET
Ck Vk ECk , Zk = Vk, k = 1, . . . , p, Zk ∈ S

|Ck |+ , k = 1, . . . , p.

The range-space decomposition of (2) is then given by

max
y,Z1,...,Z p,V1,...,Vp

〈b, y〉

subject to
m∑

i=1

Ai yi +
p∑

k=1

ET
Ck Vk ECk = C,

Zk − Vk = 0, k = 1, . . . , p,

Zk ∈ S
|Ck |+ , k = 1, . . . , p.

(11)

Similar comments as in Remark 1 hold: the slack variables V1, . . . , Vp are essen-
tial to formulate a decomposition framework suitable for the application of FOMs,
although their introduction might complicate solving (2) to a desired accuracy.
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Primal SDP (1) Dual SDP (2)

Decomposed Primal SDP (9) Decomposed Dual SDP (11)

Algorithm 1 Algorithm 2

Theorem 1 Theorem 2

Duality

Duality

ADMM ADMM
Scaling

Fig. 4 Duality between the original primal and dual SDPs, and the decomposed primal and dual SDPs

Remark 2 Although the domain- and range-space decompositions (9) and (11) have
been derived individually, they are in fact a primal-dual pair of SDPs. The duality
between the original SDPs (1) and (2) is inherited by the decomposedSDPs (9) and (11)
by virtue of the duality between Theorems 1 and 2. This elegant picture is illustrated
in Fig. 4.

4 ADMM for domain- and range-space decompositions of sparse SDPs

In this section, we demonstrate how ADMM can be applied to solve the domain-space
decomposition (9) and the range-space decomposition (11) efficiently. Furthermore,
we show that the resulting domain- and range-space algorithms are equivalent, in the
sense that one is just a scaled version of the other (cf. Fig. 4). Throughout this section,
δK(x) will denote the indicator function of a set K, i.e.,

δK(x) =
{
0, if x ∈ K,

+∞, otherwise.

For notational neatness, however, we write δ0 when K ≡ {0}s .
To ease the exposition further, we consider the usual vectorized forms of (9)

and (11). Specifically, we let vec : S
n → R

n2 be the usual operator mapping a
matrix to the stack of its columns and define the vectorized data

c := vec(C), A := [
vec(A0) . . . vec(Am)

]T
.

Note that the assumption that A1, . . ., Am are linearly independent matrices means that
A has full row rank. For all k = 1, . . . , p, we also introduce the vectorized variables

x := vec(X), xk := vec(Xk), zk := vec(Zk), vk := vec(Vk),

and define “entry-selector” matrices Hk := ECk ⊗ ECk for k = 1, . . . , p that project
x onto the subvectors x1, . . . , xp, i.e., such that

xk = vec(Xk) = vec(ECk X ET
Ck ) = Hkx .
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Note that for each k = 1, . . . , p, the rows of Hk are orthonormal, and that the matrix
HT
k Hk is diagonal. Upon defining

Sk :=
{
x ∈ R

|Ck |2 : vec−1(x) ∈ S
|Ck |+
}

,

such that xk ∈ Sk if and only if Xk ∈ S
|Ck |+ , we can rewrite (9) as

min
x,x1,...,xp

〈c, x〉
subject to Ax = b,

xk = Hkx, k = 1, . . . , p,

xk ∈ Sk, k = 1, . . . , p,

(12)

while (11) becomes

max
y,z1,...,z p,v1,...,vp

〈b, y〉

subject to AT y +
p∑

k=1

HT
k vk = c,

zk − vk = 0, k = 1, . . . , p,

zk ∈ Sk, k = 1, . . . , p.

(13)

4.1 ADMM for the domain-space decomposition

We start by moving the constraints Ax = b and xk ∈ Sk in (12) to the objective using
the indicator functions δ0(·) and δSk (·), respectively, i.e., we write

min
x,x1,...,xp

〈c, x〉 + δ0 (Ax − b) +
p∑

k=1

δSk (xk)

subject to xk = Hkx, k = 1, . . . , p.

(14)

This problem is in the standard form for the application of ADMM. Given a penalty
parameter ρ > 0 and a Lagrange multiplier λk for each constraint xk = Hkx , k =
1, . . . , p, we consider the (modified) augmented Lagrangian

L(x, x1, . . . , xk, λ1, . . . , λk) := 〈c, x〉 + δ0 (Ax − b)

+
p∑

k=1

[
δSk (xk) + ρ

2

∥∥∥∥xk − Hkx + 1

ρ
λk

∥∥∥∥
2
]

, (15)

and group the variables as X := {x}, Y := {x1, . . . , xp}, and Z := {λ1, . . . , λp}.
According to (4), each iteration of the ADMM requires the minimization of the
Lagrangian in (15) with respect to the X - and Y-blocks separately, followed by an
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update of the multipliers Z . At each step, the variables not being optimized over are
fixed to their most current value. Note that splitting the primal variables x, x1, . . . , xp
in the two blocks X and Y defined above is essential to solving the X and Y min-
imization sub-problems (4a) and (4b); more details will be given in Remark 3 after
describing the Y-minimization step in Sect. 4.1.2.

4.1.1 Minimization overX

Minimizing the augmented Lagrangian (15) over X is equivalent to the equality-
constrained quadratic program

min
x

〈c, x〉 + ρ

2

p∑

k=1

∥∥∥∥x
(n)
k − Hkx + 1

ρ
λ

(n)
k

∥∥∥∥
2

subject to Ax = b.

(16)

Letting ρy be the multiplier for the equality constraint (we scale the multiplier by ρ

for convenience), and defining

D :=
p∑

k=1

HT
k Hk, (17)

the optimality conditions for (16) can be written as the KKT system

[
D AT

A 0

] [
x
y

]
=
[∑p

k=1 H
T
k

(
x (n)
k + ρ−1λ

(n)
k

)
− ρ−1c

b

]
. (18)

Recalling that the product HT
k Hk is a diagonal matrix for all k = 1, . . . , p we

conclude that so is D, and since A has full row rank by assumption (18) can be solved
efficiently, for instance by block elimination. In particular, eliminating x shows that
the only matrix to be inverted/factorized is

AD−1AT ∈ S
m . (19)

Incidentally, we note that the first-order algorithms of [32,44] require the factorization
of a similar matrix with the same dimension. Since this matrix is the same at every
iteration, its Cholesky factorization (or any other factorization of choice) can be com-
puted and cached before starting the ADMM iterations. For some families of SDPs,
such as the SDP relaxation of MaxCut problems and sum-of-squares (SOS) feasibility
problems [50], the matrix AD−1AT is diagonal, so solving (18) is inexpensive even
when the SDPs are very large. If factorizing AD−1AT is too expensive, the linear
system (18) can alternatively be solved by an iterative method, such as the conjugate
gradient method [36].
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4.1.2 Minimization overY

Minimizing the augmented Lagrangian (15) over Y is equivalent to solving p inde-
pendent conic problems of the form

min
xk

∥∥∥xk − Hkx
(n+1) + ρ−1λ

(n)
k

∥∥∥
2

subject to xk ∈ Sk .

(20)

In terms of the original matrix variables X1, . . . , X p, each of these p sub-problems
amounts to a projection on a PSD cone. More precisely, if P

S
|Ck |
+

denotes the projection

onto the PSD cone S|Ck |+ and mat(·) = vec−1(·), we have

x (n+1)
k = vec

{
P
S

|Ck |
+

[
mat

(
Hkx

(n+1) − ρ−1λ
(n)
k

)]}
. (21)

Since the size of each cone S|Ck |+ is small for typical sparse SDPs and the projection
onto it can be computed with an eigenvalue decomposition, the variables x1, . . . , xp
can be updated efficiently. Moreover, the computation can be carried out in parallel. In
contrast, the algorithms for generic SDPs developed in [31,32,44] require projections
onto the (much larger) original PSD cone Sn+.

Remark 3 As anticipated in Remark 1, retaining the global variable x in the domain-
space decomposed SDP to enforce the consensus constraints between the entries of
the subvectors x1, . . . , xp (i.e., xk = Hkx) is fundamental. In fact, it allowed us
to separate the conic constraints from the affine constraints in (12) when applying
the splitting strategy of ADMM, making the minimization over Y easy to compute
and parallelizable. In contrast, when x is eliminated as in the conversion method
of [17,27], the conic constraints and the affine constraints cannot be easily decoupled
when applying the first-order splitting method: in [38] a quadratic SDP had to be
solved at each iteration, which limits its scalability.

4.1.3 Updating the multipliersZ

The final step in the nth ADMM iteration is to update the multipliers λ1, . . . , λp with
the usual gradient ascent rule: for each k = 1, . . . , p,

λ
(n+1)
k = λ

(n)
k + ρ

(
x (n+1)
k − Hkx

(n+1)
)

. (22)

This computation is inexpensive and easily parallelized.
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Algorithm 1 ADMM for the domain-space decomposition of sparse primal-form
SDPs
1: Set ρ > 0, εtol > 0, a maximum number of iterations nmax, and initial guesses x(0), x(0)

1 , . . . , x(0)
p ,

λ
(0)
1 , . . . , λ

(0)
p .

2: Data preprocessing: chordal extension, chordal decomposition, and factorization of the KKT system
(18).

3: for n = 1, 2, . . . , nmax do
4: Compute x(n) using (18).
5: for k = 1, . . . , p do
6: Compute x(n)

k using (21).

7: Compute λ
(n)
k using (22).

8: end for
9: Update the residuals εc, ελ.
10: if max(εc, ελ) ≤ εtol then
11: break
12: end if
13: end for

4.1.4 Stopping conditions

TheADMMalgorithm is stopped after the nth iteration if the relative primal/dual error
measures

εc =

(∑p

k=1

∥∥∥x (n)
k − Hkx

(n)
∥∥∥
2
)1/2

max

{(∑p

k=1

∥∥∥x (n)
k

∥∥∥
2
)1/2

,

(∑p

k=1

∥∥∥Hkx
(n)
∥∥∥
2
)1/2

} , (23a)

ελ = ρ

( p∑

k=1

∥∥∥x (n)
k − x (n−1)

k

∥∥∥
2
)1/2 ( p∑

k=1

∥∥∥λ(n)
k

∥∥∥
2
)−1/2

, (23b)

are smaller than a specified tolerance, εtol. The reader is referred to [9] for a detailed
discussion of stopping conditions forADMMalgorithms. In conclusion, a primal-form
SDPwith domain-space decomposition (12) can be solved using the steps summarized
in Algorithm 1.

4.2 ADMM for the range-space decomposition

An ADMM algorithm similar to Algorithm 1 can be developed for the range-space
decomposition (13) of a dual-standard-form sparse SDP. As in Sect. 4.1, we start by
moving all but the consensus equality constraints zk = vk , k = 1, . . . , p, to the
objective using indicator functions. This leads to
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min − 〈b, y〉 + δ0

(
c − AT y −

p∑

k=1

HT
k vk

)
+

p∑

k=1

δSk (zk)

subject to zk = vk, k = 1, . . . , p. (24)

Given a penalty parameter ρ > 0 and a Lagrange multiplier λk for each of the
constraints zk = vk , k = 1, . . . , p,we consider the (modified) augmentedLagrangian

L(y, v1, . . . , vp, z1, . . . , z p, λ1, . . . , λp) := −〈b, y〉

+δ0

(
c − AT y −

p∑

k=1

HT
k vk

)
+

p∑

k=1

[
δSk (zk) + ρ

2

∥∥∥∥zk − vk + 1

ρ
λk

∥∥∥∥
2
]

, (25)

and consider three groups of variables, X := {y, v1, . . . , vp}, Y := {z1, . . . , z p},
and Z := {λ1, . . . , λp}. Similar to Sect. 4.1, each iteration of the ADMM algorithm
for (13) consists of minimizations over X and Y , and an update of the multipliers Z .
Each of these steps admits an inexpensive closed-form solution, as we demonstrate
next.

4.2.1 Minimization overX

Minimizing (25) over block X is equivalent to solving the equality-constrained
quadratic program

min
y,v1,...,vp

− 〈b, y〉 + ρ

2

p∑

k=0

∥∥∥∥z
(n)
k − vk + 1

ρ
λ

(n)
k

∥∥∥∥
2

subject to c − AT y −
p∑

k=1

HT
k vk = 0. (26)

Let ρx be the multiplier for the equality constraint. After some algebra, the optimality
conditions for (26) can be written as the KKT system

[
D AT

A 0

] [
x
y

]
=
[
c −∑p

k=1 H
T
k

(
z(n)
k + ρ−1λ

(n)
k

)

−ρ−1b

]
, (27)

plus a set of p uncoupled equations for the variables vk ,

vk = z(n)
k + 1

ρ
λ

(n)
k + Hkx, k = 1, . . . , p. (28)

The KKT system (27) is the same as (18) after rescaling x �→ −x , y �→ −y,
c �→ ρ−1c and b �→ ρb. Consequently, the numerical cost of (26) is the same as
in Sect. 4.1.1 plus the cost of (28), which is inexpensive and can be parallelized.
Moreover, as in Sect. 4.1.1, the factors of the coefficient matrix required to solve
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the KKT system (27) can be pre-computed and cached before iterating the ADMM
algorithm.

4.2.2 Minimization overY

As in Sect. 4.1.2, the variables z1, . . . , z p are updatedwith p independent projections,

z(n+1)
k = vec

{
P
S

|Ck |
+

[
mat

(
v

(n+1)
k − ρ−1λ

(n)
k

)]}
, (29)

where P
S

|Ck |
+

denotes projection on the PSD cone S|Ck |+ . Again, these projections can

be computed efficiently and in parallel.

Remark 4 As anticipated in Sect. 3.2, introducing the set of slack variables vk and
the consensus constraints zk = vk , k = 1, . . . , p is essential to obtain an efficient
algorithm for range-space decomposed SDPs. The reason is that the splitting strategy
of the ADMM decouples the conic and affine constraints, and the conic variables can
be updated using the simple conic projection (29).

4.2.3 Updating the multipliersZ

The multipliers λk , k = 1, . . . , p, are updated (possibly in parallel) with the inex-
pensive gradient ascent rule

λ
(n+1)
k = λ

(n)
k + ρ

(
z(n+1)
k − v

(n+1)
k

)
. (30)

4.2.4 Stopping conditions

Similar to Sect. 4.1.4, we stop our ADMM algorithm after the nth iteration if the
relative primal/dual error measures

εc =

(∑p

k=1

∥∥∥z(n)
k − v

(n)
k

∥∥∥
2
)1/2

max

{(∑p

k=1

∥∥∥z(n)
k

∥∥∥
2
)1/2

,

(∑p

k=1

∥∥∥v(n)
k

∥∥∥
2
)1/2

} , (31a)

ελ = ρ

( p∑

k=1

∥∥∥z(n)
k − z(n−1)

k

∥∥∥
2
)1/2 ( p∑

k=1

∥∥∥λ(n)
k

∥∥∥
2
)−1/2

, (31b)

are smaller than a specified tolerance, εtol. The ADMM algorithm to solve the range-
space decomposition (13) of a dual-form sparse SDP is summarized in Algorithm 2.
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Algorithm 2 ADMM for the range-space decomposition of sparse dual-form SDPs

1: Set ρ > 0, εtol > 0, a maximum number of iterations nmax and initial guesses y(0), v
(0)
1 , . . . , v

(0)
p ,

λ
(0)
1 , . . . , λ

(0)
p .

2: Data preprocessing: chordal extension, chordal decomposition, and factorization of the KKT system
(27).

3: for n = 1, 2, . . . , nmax do
4: for k = 1, . . . , p do
5: Compute z(n)

k using (29).
6: end for
7: Compute y(n), x using (27).
8: for k = 1, . . . , p do
9: Compute v

(n)
k using (28)

10: Compute λ
(n)
k using (32) (no cost).

11: end for
12: Update the residuals εc and ελ.
13: if max(εc, ελ) ≤ εtol then
14: break
15: end if
16: end for

4.3 Equivalence between the primal and dual ADMM algorithms

Since the computational cost of (28) is the same as (22), all ADMM iterations for the
dual-form SDP with range-space decomposition (13) have the same cost as those for
the primal-form SDP with domain-space decomposition (12), plus the cost of (30).
However, if oneminimizes the dual augmented Lagrangian (25) over z1, . . . , z p before
minimizing it over y, v1, . . . , vp, then (28) canbeused to simplify themultiplier update
equations to

λ
(n+1)
k = ρHkx

(n+1), k = 1, . . . , p. (32)

Given that the products H1x, . . . , Hpx have already been computed to update
v1, . . . , vp in (28), updating the multipliers λ1, . . . , λp requires only a scaling oper-
ation. Then, after swapping the order of X - and Y-block minimization of (25) and
recalling that (18) and (27) are scaled versions of the same KKT system, the ADMM
algorithms for the primal and dual standard form SDPs can be considered scaled ver-
sions of each other; see Fig. 4 for an illustration. In fact, the equivalence between
ADMM algorithms for the original (i.e., before chordal decomposition) primal and
dual SDPs was already noted in [45].

Remark 5 Although the iterates of Algorithms 1 and 2 are the same up to scaling, the
convergence performance of these two algorithms differ in practice because first-order
methods are sensitive to the scaling of the problem data and of the iterates.
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5 Homogeneous self-dual embedding of domain- and range-space
decomposed SDPs

Algorithms 1 and 2, as well as other first-order algorithms that exploit chordal spar-
sity [26,30,38], can solve feasible problems, but cannot detect infeasibility in their
current formulation. Although some recent ADMMmethods resolve this issue [5,28],
an elegant way to deal with an infeasible primal-dual pair of SDPs—which we pursue
here—is to solve their homogeneous self-dual embedding (HSDE) [48].

The essence of theHSDEmethod is to search for a non-zero point in the intersection
of a convex cone and a linear space; this is non-empty because it always contains the
origin, meaning that the problem is always feasible. Given such a non-zero point, one
can either recover optimal primal and dual solutions of the original pair of optimization
problems, or construct a certificate of primal or dual infeasibility. HSDEs have been
widely used to develop IPMs for SDPs [37,47], and more recently O’Donoghue et
al. [32] have proposed an operator-splitting method to solve the HSDE of general
conic programs.

In this section,we formulate theHSDEof the domain- and range-space decomposed
SDPs (12) and (13), which is a primal-dual pair of SDPs. We also apply ADMM to
solve this HSDE; in particular, we extend the algorithm of [32] to exploit chordal
sparsity without increasing its computational cost (at least to leading order) compared
to Algorithms 1 and 2.

5.1 Homogeneous self-dual embedding

To simplify the formulation of the HSDE of the decomposed (vectorized) SDPs (12)
and (13), we let S := S1 × · · · × Sp be the direct product of all semidefinite cones
and define

s :=
⎡

⎢⎣
x1
...

xp

⎤

⎥⎦ , z :=
⎡

⎢⎣
z1
...

z p

⎤

⎥⎦ , t :=
⎡

⎢⎣
v1
...

vp

⎤

⎥⎦ , H :=
⎡

⎢⎣
H1
...

Hp

⎤

⎥⎦ .

When strong duality holds, the tuple (x∗, s∗, y∗, t∗, z∗) is optimal if and only if all
of the following conditions hold:

1. (x∗, s∗) is primal feasible, i.e., Ax∗ = b, s∗ = Hx∗, and s∗ ∈ S. For reasons that
will become apparent below, we introduce slack variables r∗ = 0 and w∗ = 0 of
appropriate dimensions and rewrite these conditions as

Ax∗ − r∗ = b, s∗ + w∗ = Hx∗, s∗ ∈ S, r∗ = 0, w∗ = 0. (33)

2. (y∗, t∗, z∗) is dual feasible, i.e., AT y∗ + HT t∗ = c, z∗ = t∗, and z∗ ∈ S. Again,
it is convenient to introduce a slack variable h∗ = 0 of appropriate size and write

AT y∗ + HT t∗ + h∗ = c, z∗ − t∗ = 0, z∗ ∈ S, h∗ = 0. (34)
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3. The duality gap is zero, i.e.

cT x∗ − bT y∗ = 0. (35)

The idea behind theHSDE [48] is to introduce twonon-negative and complementary
variables τ and κ and embed the optimality conditions (33), (34) and (35) into the
linear system v = Qu with u, v and Q defined as

u :=

⎡

⎢⎢⎢⎢⎣

x
s
y
t
τ

⎤

⎥⎥⎥⎥⎦
, v :=

⎡

⎢⎢⎢⎢⎣

h
z
r
w

κ

⎤

⎥⎥⎥⎥⎦
, Q :=

⎡

⎢⎢⎢⎢⎣

0 0 −AT −HT c
0 0 0 I 0
A 0 0 0 −b
H −I 0 0 0

−cT 0 bT 0 0

⎤

⎥⎥⎥⎥⎦
. (36)

Any nonzero solution of this embedding can be used to recover an optimal solution for
(9) and (11), or provide a certificate for primal or dual infeasibility, depending on the
values of τ and κ; details are omitted for brevity, and the interested reader is referred
to [32].

The decomposed primal-dual pair of (vectorized) SDPs (12)–(13) can therefore be
recast as the self-dual conic feasibility problem

find (u, v)

subject to v = Qu,

(u, v) ∈ K × K∗,
(37)

where, writing nd = ∑p
k=1 |Ck |2 for brevity, K := R

n2 × S × R
m × R

nd × R+ is a

cone and K∗ := {0}n2 × S × {0}m × {0}nd × R+ is its dual.

5.2 A simplified ADMM algorithm

The feasibility problem (37) is in a form suitable for the application of ADMM, and
moreover steps (4a)–(4c) can be greatly simplified by virtue of its self-dual charac-
ter [32]. Specifically, the nth iteration of the simplified ADMM algorithm for (37)
proposed in [32] consists of the following three steps, where PK denotes projection
onto the cone K:

û(n+1) = (I + Q)−1
(
u(n) + v(n)

)
, (38a)

u(n+1) = PK
(
û(n+1) − v(n)

)
, (38b)

v(n+1) = v(n) − û(n+1) + u(n+1). (38c)

Note that (38b) is inexpensive, sinceK is the cartesian product of simple cones (zero,
free and non-negative cones) and small PSD cones, and can be efficiently carried out
in parallel. The third step is also computationally inexpensive and parallelizable. On
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the contrary, even when the preferred factorization of I + Q (or its inverse) is cached
before starting the iterations, a direct implementation of (38a) may require substantial
computational effort because

Q ∈ S
n2+2nd+m+1

is a very large matrix (e.g., n2 + 2nd + m + 1 = 2,360,900 for problem rs365 in
Sect. 7.3). Yet, it is evident from (36) that Q is highly structured and sparse, and these
properties can be exploited to speed up step (38a) using a series of block-eliminations
and the matrix inversion lemma [10, Section C.4.3].

5.2.1 Solving the “outer” linear system

The affine projection step (38a) requires the solution of a linear system (which we
refer to as the “outer” system for reasons that will become clear below) of the form

[
M ζ

−ζ T 1

] [
û1
û2

]
=
[
ω1
ω2

]
, (39)

where

M :=
[
I − ÂT

Â I

]
, ζ :=

[
ĉ

−b̂

]
, Â :=

[
A 0
H −I

]
, ĉ :=

[
c
0

]
, b̂ :=

[
b
0

]

(40)

and we have split

u(n) + v(n) =
[
ω1
ω2

]
. (41)

Note that û2 and ω2 are scalars. Eliminating û2 from the first block equation in (39)
yields

(M + ζ ζ T )û1 = ω1 − ω2ζ, (42a)

û2 = ω2 + ζ T û1. (42b)

Moreover, applying the matrix inversion lemma [10, Section C.4.3] to (42a) shows
that

û1 =
[
I − (M−1ζ )ζ T

1 + ζ T (M−1ζ )

]
M−1 (ω1 − ω2ζ ) . (43)

Note that the vector M−1ζ and the scalar 1 + ζ T (M−1ζ ) depend only on the
problem data, and can be computed before starting the ADMM iterations (since M
is quasi-definite it can be inverted, and any symmetric matrix obtained as a permuta-
tion of M admits an LDL factorization). Instead, recalling from (41) that ω1 − ω2ζ

changes at each iteration because it depends on the iterates u(n) and v(n), the vector
M−1 (ω1 − ω2ζ )must be computed at each iteration. Consequently, computing û1 and
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û2 requires the solution of an “inner” linear system for the vector M−1 (ω1 − ω2ζ ),
followed by inexpensive vector inner products and scalar-vector operations in (43)
and (42b).

5.2.2 Solving the “inner” linear system

Recalling the definition of M from (40), the “inner” linear system to calculate û1
in (43) has the form [

I − ÂT

Â I

] [
σ1
σ2

]
=
[
ν1
ν2

]
. (44)

Here, σ1 and σ2 are the unknowns and represent suitable partitions of the vector
M−1(ω1 − ω2ζ ) in (43), which is to be calculated, and we have split

ω1 − ω2ζ =
[
ν1
ν2

]
.

Applying block elimination to remove σ1 from the second equation in (44), we obtain

(I + ÂT Â)σ1 = ν1 + ÂT ν2, (45a)

σ2 = − Âσ1 + ν2. (45b)

Recalling the definition of Â and recognizing that

D = HT H =
p∑

k=1

HT
k Hk

is a diagonal matrix, as already noted in Sect. 4.1.1, we also have

I + ÂT Â =
[
(I + D + AT A) −HT

−H 2I

]
.

Block elimination can therefore be used once again to solve (45a), and simple algebraic
manipulations show that the only matrix to be factorized (or inverted) is

I + 1

2
D + AT A ∈ S

n2 . (46)

Note that this matrix depends only on the problem data and the chordal decomposition,
so it can be factorized/inverted before starting the ADMM iterations. In addition, it is
of the “diagonal plus low rank” form because A ∈ R

m×n2 with m < n2 (in fact, often
m � n2). This means that the matrix inversion lemma can be used to reduce the size
of the matrix to factorize/invert even further: letting P = I + 1

2D be the diagonal part
of (46), we have

(P + AT A)−1 = P−1 − P−1AT (I + AP−1AT )−1AP−1.
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In summary, after a series of block eliminations and applications of the matrix
inversion lemma, step (38a) of theADMMalgorithm for (37) only requires the solution
of an m × m linear system of equations with coefficient matrix

I + A

(
I + 1

2
D

)−1

AT ∈ S
m, (47)

plus a sequence of matrix–vector, vector–vector, and scalar–vector multiplications. A
detailed count of floating-point operations is given in Sect. 6.

5.2.3 Stopping conditions

The ADMM algorithm described in the previous section can be stopped after the nth
iteration if a primal-dual optimal solution or a certificate of primal and/or dual infea-
sibility is found, up to a specified tolerance εtol. As noted in [32], rather than checking
the convergence of the variables u and v, it is desirable to check the convergence of
the original primal and dual SDP variables using the primal and dual residual error
measures normally considered in interior-point algorithms [37]. For this reason, we
employ different stopping conditions than those used in Algorithms 1 and 2, which
we define below using the following notational convention: we denote the entries of
u and v in (36) that correspond to x , y, τ , and z, respectively, by ux , uy , uτ , and vz .

If u(n)
τ > 0 at the nth iteration of the ADMM algorithm, we take

x (n) = u(n)
x

u(n)
τ

, y(n) = u(n)
y

u(n)
τ

, z(n) = HT v
(n)
z

u(n)
τ

(48)

as the candidate primal-dual solutions, and define the relative primal residual, dual
residual, and duality gap as

εp :=‖Ax (n) − b‖2
1 + ‖b‖2 , (49a)

εd :=‖AT y(n) + z(n) − c‖2
1 + ‖c‖2 , (49b)

εg := |cT x (n) − bT y(n)|
1 + |cT x (n)| + |bT y(n)| . (49c)

Also, we define the residual in consensus constraints as

εc := max{(23a), (31a)}. (50)

We terminate the algorithm if max{εp, εd, εg, εc} is smaller than εtol. If u
(n)
τ = 0,

instead, we terminate the algorithm if

max

{
‖Au(n)

x ‖2 + cT u(n)
x

‖c‖2 εtol, ‖AT u(n)
y + HT v(n)

z ‖2 − bT u(n)
y

‖b‖2 εtol

}
≤ 0. (51)
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Algorithm 3 ADMM for the HSDE of sparse SDPs with chordal decomposition

1: Set εtol > 0, a maximum number of iterations nmax and initial guesses û(0), u(0), v(0).
2: Data preprocessing: chordal extension, chordal decomposition and factorization of the matrix in (47).
3: for n = 1, . . . , nmax do
4: Compute û(n+1) using the sequence of block eliminations (39)-(47).
5: Compute u(n+1) using (38b).
6: Compute v(n+1) using (38c).

7: if u(n)
τ > 0 then

8: Compute εp, εd, εg, εc.
9: if max{εp, εd, εg, εc} ≤ εtol then
10: break
11: end if
12: else
13: if (51) holds then
14: break
15: end if
16: end if
17: end for

Certificates of primal or dual infeasibility (with tolerance εtol) are then given, respec-
tively, by the points u(n)

y /(bT u(n)
y ) and −u(n)

x /(cT u(n)
x ). These stopping criteria are

similar to those used by many other conic solvers, and coincide with those used in
SCS [33] except for the addition of the residual in the consensus constraints (50). The
complete ADMM algorithm to solve the HSDE of the primal-dual pair of domain-
and range-space decomposed SDPs is summarized in Algorithm 3.

6 Complexity analysis via flop count

The computational complexity of each iteration of Algorithms 1–3 can be assessed
by counting the total number of required floating-point operations (flops)—that is,
the number of additions, subtractions, multiplications, or divisions of two floating-
point numbers [10, Appendix C.1.1]—as a function of problem dimensions. For (18)
and (27) we have

A ∈ R
m×n2 , b ∈ R

m, c ∈ R
n2 , D ∈ S

n2 , Hk ∈ R
|Ck |2×n2 for k = 1, . . . , p,

while the dimensions of the variables are

x ∈ R
n2 , y ∈ R

m, xk, λk ∈ R
|Ck |2 for k = 1, . . . , p.

In this section, we count the flops in Algorithms 1–3 as a function of m, n, p, and
nd = ∑p

k=1 |Ck |2. We do not consider the sparsity in the problem data, both for sim-
plicity and because sparsity is problem-dependent. Thus, the matrix–vector product
Ax is assumed to cost (2n2 − 1)m flops (for each row, we need n2 multiplications
and n2 − 1 additions), while AT y is assumed to cost (2m − 1)n2 flops. In practice,
of course, these matrix–vector products may require significantly fewer flops if A is
sparse, and sparsity should be exploited in any implementation to reduce computa-
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tional cost. The only exception that wemake concerns thematrix–vector products Hkx
and HT

k xk because each Hk , k = 1, . . . , p, is an “entry-selector” matrix that extracts

the subvector xk ∈ R
|Ck |2 from x ∈ R

n2 . Hence, the operations Hkx and HT
k xk require

no actual matrix multiplications but only indexing operations (plus, possibly, making
copies of floating-point numbers depending on the implementation), so they cost no
flops according to our definition. However, we do not take into account that the vectors
HT
k xk ∈ R

n2 , k = 1, . . . , p, are often sparse, because their sparsity depends on the
particular problem at hand. It follows from these considerations that computing the
summation

∑p
k=1 H

T
k xk costs (p − 1)n2 flops.

Using these rules, in the Appendix we prove the following results.

Proposition 1 Given the Cholesky factorization of AD−1AT = LLT , where L is
lower triangular, solving the linear systems (18) and (27) via block elimination costs
(4m + p + 3)n2 + 2m2 + 2nd flops.

Proposition 2 Given the constant vector ζ̂ := (M−1ζ )/(1+ ζ T M−1ζ ) ∈ R
n2+2nd+m

and the Cholesky factorization I + A(I + 1
2D)−1AT = LLT , where L is lower

triangular, solving (38a) using the sequence of block eliminations (39)–(47) requires
(8m + 2p + 11)n2 + 2m2 + 7m + 21nd − 1 flops.

These propositions reveal that the computational complexity of the affine projections
in Algorithms 1 and 2, which amount to solving the linear systems (18) and (27),
is comparable to that of the affine projection (38a) in Algorithm 3. In fact, since
typically m � n2, we expect that the affine projection step of Algorithm 3 will be
only approximately twice as expensive as the corresponding step inAlgorithms 1 and 2
in terms of the number of flops, and therefore also in terms of CPU time (the numerical
results presented in Table 11, Sect. 7.4 will confirm this expectation).

Similarly, the following result (also proved in the Appendix) guarantees that the
leading-order costs of the conic projections inAlgorithms 1–3 are identical and, impor-
tantly, depend only on the size and number of the maximal cliques in the chordal
decomposition, not on the dimension n of the original PSD cone in (1)–(2).

Proposition 3 The computational costs of the conic projections in Algorithms 1–3
require O(

∑p
k=1 |Ck |3) floating-point operations.

In particular, the computational burden grows as a linear function of the number of
cliques when their size is fixed, and as a cubic function of the clique size.

Finally, we emphasize that Propositions 1–3 suggest that Algorithms 1–3 should
solve a primal-dual pair of sparse SDPs more efficiently than the general-purpose
ADMMmethod for conic programs of [32], irrespective of whether this is used before
or after chordal decomposition. In the former case, the benefit comes from working
with smaller PSD cones: one block-elimination in equation (28) of [32] allows solving
affine projection step (38a) inO(mn2) flops, which is typically comparable to the flop
count of Propositions 1 and 2,1 but the conic projection step costsO(n3) flops, which
for typical sparse SDPs is significantly larger than O(

∑p
k=1 |Ck |3). In the latter case,

1 This can be seen more clearly after using the crude bound nd ≤ pn2 in Propositions 1 and 2 and recalling
that, for typical problems, m � n2 and p � n.
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instead, the conic projection (38b) costs the same for all methods, but projecting the
iterates onto the affine constraints becomesmuchmore expensive according to our flop
count when the sequences of block eliminations described in Sect. 5 is not exploited
fully.

7 Implementation and numerical experiments

We implemented Algorithms 1–3 in an open-source MATLAB solver which we
call CDCS (Cone Decomposition Conic Solver). We refer to our implementation
of Algorithms 1–3 as CDCS-primal, CDCS-dual and CDCS-hsde, respectively. This
section briefly describes CDCS and presents numerical results on sparse SDPs from
SDPLIB [7], large and sparse SDPs with nonchordal sparsity patterns from [4], and
randomly generated SDPs with block-arrow sparsity pattern. Such problems have also
been used as benchmarks in [4,38].

In order to highlight the advantages of chordal decomposition, first-order algo-
rithms, and their combination, the three algorithms in CDCS are compared to the
interior-point solver SeDuMi [37], and to the single-threaded direct implementation
of the first-order algorithm of [32] provided by the conic solver SCS [33]. All experi-
mentswere carried out on a PCwith a 2.8GHz Intel Core i7CPUand 8GBofRAMand
the solvers were called with termination tolerance εtol = 10−3, number of iterations
limited to 2000, and their default remaining parameters. The purpose of comparing
CDCS to a low-accuracy IPM is to demonstrate the advantages of combining FOMs
with chordal decomposition, while a comparison to the high-performance first-order
conic solver SCS highlights the advantages of chordal decomposition alone. When
possible, accurate solutions (εtol = 10−8) were also computed using SeDuMi; these
can be considered “exact”, and used to assess how far the solution returned by CDCS
is from optimality. Note that tighter tolerances could be used also with CDCS and
SCS to obtain a more accurate solution, at the expense of increasing the number of
iterations required to meet the convergence requirements. More precisely, given the
proven convergence rate of general ADMM algorithms, any termination tolerance εtol
is generally reached in at most O( 1

εtol
) iterations.

7.1 CDCS

To the best of our knowledge, CDCS is the first open-source first-order conic solver
that exploits chordal decomposition for the PSD cones and is able to handle infeasible
problems. Cartesian products of the following cones are supported: the cone of free
variables Rn , the non-negative orthant Rn+, second-order cones, and PSD cones. The
current implementation is written in MATLAB and can be downloaded from https://
github.com/oxfordcontrol/cdcs. Note that although many steps of Algorithms 1–3
can be carried out in parallel, our implementation is sequential. Interfaces with the
optimization toolboxes YALMIP [29] and SOSTOOLS [34] are also available.
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7.1.1 Implementation details

CDCS applies chordal decomposition to all PSD cones. Following [42], the sparsity
pattern of each PSD cone is chordal extended using the MATLAB function chol to
compute a symbolic Cholesky factorization of the approximate minimum-degree per-
mutation of the cone’s adjacency matrix, returned by the MATLAB function symamd.
Themaximal cliques of the chordal extension are then computed using a .mex function
from SparseCoLO [16].

As far as the steps of our ADMM algorithms are concerned, projections onto the
PSD cone are performed using the MATLAB routine eig, while projections onto
other supported cones only use vector operations. The Cholesky factors of the m ×m
linear system coefficient matrix (permuted using symamd) are cached before starting
the ADMM iterations. The permuted linear system is solved at each iteration using
the routines cs_lsolve and cs_ltsolve from the CSparse library [13].

CDCS solves the decomposed problems (12) and/or (13) using anyofAlgorithms 1–
3, and then attempts to construct a primal-dual solution of the original SDPs (1) and (2)
with a maximum determinant completion routine (see [17, Section 2], [42, Chapter
10.2]) adapted from SparseCoLO [16]. We adopted this approach for simplicity of
implementation, even though we cannot guarantee that the principal sub-matrices
ECk X∗ET

Ck of the partial matrix X∗ returned by CDCS as the candidate solution are
strictly positive definite (a requirement for the maximum determinant completion to
exist). This may cause the current completion routine to fail, although for all cases in
which we have observed failure, this was due to CDCS returning a candidate solution
with insufficient accuracy that was not actually PSD-completable. In any case, our
current implementation issues a warning when the matrix completion routine fails;
future versions of CDCS will include alternative completion methods, such as that
discussed in [42, Chapter 10.3] and the minimum-rank PSD completion [30, Theorem
1], which work also in the lack of strict positive definiteness.

7.1.2 Adaptive penalty strategy

While the ADMM algorithms proposed in the previous sections converge indepen-
dently of the choice of penalty parameter ρ, in practice its value strongly influences
the number of iterations required for convergence. Unfortunately, analytic results for
the optimal choice of ρ are not available except for very special problems [19,35].
Consequently, in order to improve the convergence rate and make performance less
dependent on the choice of ρ, CDCS employs the dynamic adaptive rule

ρk+1 =

⎧
⎪⎨

⎪⎩

μρ(n) if ‖ε(n)
p ‖2 ≥ ν‖ε(n)

d ‖2,
μ−1ρ(n) if ‖ε(n)

d ‖2 ≥ ν‖ε(n)
p ‖2,

ρ(n) otherwise.

Here, ε(n)
p and ε

(n)
d are the primal and dual residuals at the nth iteration, while μ and ν

are parameters no smaller than 1. Note that since ρ does not enter any of the matrices
being factorized/inverted, updating its value is computationally inexpensive.
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The idea of the rule above is to adapt ρ to balance the convergence of the primal
and dual residuals to zero; more details can be found in [9, Section 3.4.1]. Typical
choices for the parameters (the default in CDCS) are μ = 2 and ν = 10 [9].

7.1.3 Scaling the problem data

The relative scaling of the problem data also affects the convergence rate of ADMM
algorithms. CDCS scales the problem data after the chordal decomposition step using
a strategy similar to [32]. In particular, the decomposed SDPs (12) and (13) can be
rewritten as:

min
x̂

ĉT x̂

subject to Âx̂ = b̂

x̂ ∈ R
n2 × K,

(52a)

max
ŷ,ẑ

b̂T ŷ

subject to ÂT ŷ + ẑ = ĉ

ẑ ∈ {0}n2 × K̂∗
(52b)

where

x̂ =
[
x
s

]
, ŷ =

[
y
t

]
, ẑ =

[
0
z

]
, ĉ =

[
c
0

]
, b̂ =

[
b
0

]
, Â =

[
A 0
H −I

]
.

CDCS solves the scaled decomposed problems

min
x̂

σ(Dĉ)T x̄

subject to E ÂDx̄ = ρEb̂

x̄ ∈ R
n2 × K,

(53a)

max
ŷ,ẑ

ρ(Eb)T ȳ

subject to DÂT E ȳ + z̄ = σDĉ

z̄ ∈ {0}n2 × K∗,

(53b)

obtained by scaling vectors b̂ and ĉ by positive scalars ρ and σ , and the primal and dual
equality constraints by positive definite, diagonal matrices D and E . Note that such
a rescaling does not change the sparsity pattern of the problem. As already observed
in [32], a good choice for E , D, σ and ρ is such that the rows of Ā and b̄ have Euclidean
norm close to one, and the columns of Ā and c̄ have similar norms. If D and D−1

are chosen to preserve membership to the cone R
n2 × K and its dual, respectively
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(how this can be done is explained in [32, Section 5]), an optimal point for (56) can
be recovered from the solution of (59):

x̂∗ = Dx̄∗

ρ
, ŷ∗ = E ȳ∗

σ
, ẑ∗ = D−1 z̄∗

σ
.

7.2 Sparse SDPs from SDPLIB

Our first experiment is based on large-scale benchmark problems from SDPLIB [7]:
two Lovász ϑ number SDPs (theta1 and theta2), two infeasible SDPs (infd1
andinfd2), twoMaxCut problems (maxG11 andmaxG32), and twoSDP relaxations
of box-constrained quadratic programs (qpG11 and qpG51). Table 1 reports the
dimensions of these problems, as well as chordal decomposition details. Problems
theta1 and theta2 are dense, so have only one maximal clique; all other problems
are sparse and havemanymaximal cliques of size much smaller than the original cone.

The numerical results are summarized in Tables 2, 3, 4, 5, 6 and 7. Table 2 shows
that the small dense SDPs theta1 and theta2, were solved in approximately the
same CPU time by all solvers. Note that since these problems only have one maximal
clique, SCS and CDCS-hsde use similar algorithms, and performance differences are
mainly due to the implementation (most notably, SCS is written in C). Table 3 confirms
that CDCS-hsde successfully detects infeasible problems, while CDCS-primal and
CDCS-dual do not have this ability.

Table 1 Details of the SDPLIB problems considered in this work

Small Infeasible Large and sparse

theta1 theta2 infd1 infd2 maxG11 maxG32 qpG11 qpG51

Original cone size, n 50 100 30 30 800 2000 1600 2000

Affine constraints, m 104 498 10 10 800 2000 800 1000

Number of cliques, p 1 1 1 1 598 1499 1405 1675

Maximum clique size 50 100 30 30 24 60 24 304

Minimum clique size 50 100 30 30 5 5 1 1

Table 2 Results for two small SDPs, theta1 and theta2, in SDPLIB

theta1 theta2

Time (s) # Iter. Objective Time (s) # Iter. Objective

SeDuMi (high) 0.281 14 23.00 1.216 15 32.88

SeDuMi (low) 0.161 8 23.00 0.650 8 32.88

SCS (direct) 0.057 140 22.99 0.244 200 32.89

CDCS-primal 0.297 163 22.92 0.618 188 32.94

CDCS-dual 0.284 154 22.83 0,605 178 32.89

CDCS-hsde 0.230 156 23.03 0.392 118 32.88
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Table 3 Results for two infeasible SDPs in SDPLIB

infp1 infp2

Time (s) # Iter. Objective Time (s) # Iter. Objective

SeDuMi (high) 0.127 2 + Inf 0.033 2 + Inf

SeDuMi (low) 0.120 2 + Inf 0.031 2 + Inf

SCS (direct) 0.067 20 + Inf 0.031 20 + Inf

CDCS-hsde 0.109 118 + Inf 0.114 101 + Inf

An objective value of + Inf denotes infeasiblity. Results for the primal-only and dual-only algorithms in
CDCS are not reported since they cannot detect infeasibility

Table 4 Results for four large-scale sparse SDPs in SDPLIB, maxG11, maxG32, qpG11 and qpG51

maxG11 maxG32

Time (s) # Iter. Objective Time (s) # Iter. Objective

SeDuMi (high) 88.9 13 629.2 1266 14 1568

SeDuMi (low) 48.7 7 628.7 624 7 1566

SCS (direct) 93.9 1080 629.1 2433 2000 1568

CDCS-primal 22.2 230 629.5 84 311 1569

CDCS-dual 16.9 220 629.2 61 205 1567

CDCS-hsde 10.9 182 629.3 56 291 1568

qpG11 qpG51

Time (s) # Iter. Objective Time (s) # Iter. Objective

SeDuMi (high) 650 14 2449 1895 22 1182

SeDuMi (low) 357 8 2448 1530 18 1182

SCS (direct) 1065 2000 2449 2220 2000 1288

CDCS-primal 29 249 2450 482 1079 1145

CDCS-dual 21 193 2448 396 797 1201

CDCS-hsde 16 219 2449 865 2000 1182

The CPU time, number of iterations and terminal objective value for the four large-
scale sparse SDPs maxG11, maxG32, qpG11 and qpG51 are listed in Table 4. All
algorithms in CDCS were faster than either SeDuMi or SCS, especially for problems
with smaller maximum clique size as one would expect in light of the complexity
analysis of Sect. 6. Notably, CDCS solved maxG11, maxG32, and qpG11 in less
than 100 s, a speedup of approximately 9×, 43×, and 66× over SCS. In addition,
even though FOMs are only meant to provide moderately accurate solutions, the
terminal objective value returned by CDCS-hsde was always within 0.2% of the high-
accuracy optimal value computed using SeDuMi. This is an acceptable difference in
many practical applications.

To provide further evidence to assess the relative performance of the tested solvers,
Tables 5 and 6 report the constraint violations for the original (not decomposed)
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Table 6 Residuals εp and εd,
defined as in (49a) and (49b), for
the solutions returned by
SeDuMi and SCS

SeDuMi SCS

εp εd εp εd

maxG11 8.36e−6 5.95e−7 4.71e−6 9.98e−4

maxG32 8.45e−6 3.85e−7 2.46e−6 3.20e−3

qpG11 1.13e−5 2.90e−7 1.32e−5 2.85e−2

qpG51 4.23e−6 5.41e−7 1.15e−4 2.36e−1

rs35 4.33e−7 1.73e−10 1.41e−5 7.60e−2

rs200 5.41e−6 4.83e−9 1.55e−5 4.43e−1

rs228 3.40e−6 1.89e−9 2.09e−5 1.72e−1

rs365 *** *** 2.70e−5 7.20e−1

rs1555 *** *** 3.67e−6 9.22e−1

rs1907 *** *** 3.29e−5 7.96e−1

Both solvers were called with εtol = 10−3, and the maximum number
of iterations for SCS is 2000. Entries marked *** denote failure due
to memory limitations

Table 7 Average CPU time per iteration (in seconds) for the SDPs from SDPLIB tested in this work

theta1 theta2 maxG11 maxG32 qpG11 qpG51

SCS (direct) 4.0 × 10−4 1.2 × 10−3 0.087 1.216 0.532 1.110

CDCS-primal 1.8 × 10−3 3.3 × 10−3 0.076 0.188 0.101 0.437

CDCS-dual 1.8 × 10−3 3.4 × 10−3 0.064 0.174 0.091 0.484

CDCS-hsde 1.5 × 10−3 3.3 × 10−3 0.048 0.140 0.064 0.430

SDPs, alonside the error in the consensus constraints for the decomposed problems.
Specifically:

1. For CDCS-primal, we measure how far the partial matrix X = mat(x) ∈ S
n(E, ?)

is from being PSD-completable. This is the only quantity of interest because the
equality constraints in (1) are satisfied exactly by virtue of the second block equa-
tion in (18). Instead of calculating the distance between X and the cone Sn+(E, ?)
exactly (using, for instance, the methods of [39]) we bound it from above by com-
puting the smallest non-negative constant α such that X +α I ∈ S

n+(E, ?); indeed,
for suchα it is clear thatminY∈Sn+(E,0) ‖Y−X‖F ≤ ‖(X+α I )−X‖F = α

√
n. This

strategy is more economical because, letting λmin(M) be the minimum eigenvalue
of a matrix M , Theorem 1 implies that

α = −min
{
0, λmin [mat (H1x)] , . . . , λmin

[
mat

(
Hpx

)]}
.

To mitigate the dependence on the scaling of X , Table 5 lists the normalized error

εα := α

1 + ‖X‖F . (54)
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2. For CDCS-dual, given the candidate solutions y and Z = mat(
∑p

k=1 H
T
k zk) =∑p

k=1 ECk mat(zk)ET
Ck we report the violation of the equality constraints in (2)

given by the relative dual residual εd, defined as in (49b). Note that (29) guarantees
that the matrices mat(z1), . . . , mat(z p) are PSD, so Z is also PSD.

3. For the candidate solution (48) returned by CDCS-hsde, we list the relative primal
and dual residuals εp and εd defined in (49a) and (49b), as well as the error measure
εα computed with (54).

4. For SeDuMi and SCS, we report only the primal and dual residuals (49a)–(49b)
since the PSD constraints are automatically satisfied in both the primal and the
dual problems.

The results in Table 5 demonstrate that, for the problems tested in this work, the
residuals for the original SDPs are comparable to the convergence tolerance used in
CDCS even when they are not tracked directly. The performance of SCS on our test
problems is relatively poor. It iswell known that the performance ofADMMalgorithms
is sensitive to their parameters, as well as problem scaling. We have calibrated CDSC
using typical parameter values that offer a good compromise between efficiency and
reliability, but we have not tried to fine-tune SCS under the assumption that good
parameter values have already been chosen by its developers. Although performance
may be improved through further parameter optimization, the discrepancy between
the primal and dual residuals reported in Table 6 suggests that slow convergence may
be due to problem scaling for these instances. Note that CDCS and SCS adopt the same
rescaling strategy, but one key difference is that CDCS applies it to the decomposed
SDP rather than to the original one. Thus, CDCS has more degrees of scaling freedom
than SCS, which might be the reason for the substantial improvement in convergence
performance. Further investigation of the effect of scaling inADMM-based algorithms
for conic programming, however, is beyond the scope of this work.

Finally, to offer a comparison of the performance of CDCS and SCS that is insen-
sitive both to problem scaling and to differences in the stopping conditions, Table 7
reports the average CPU time per iteration required to solve the sparse SDPs maxG11,
maxG32, qpG11 and qpG51, as well as the dense SDPs theta1 and theta2. Evi-
dently, all algorithms in CDCS are faster than SCS for the large-scale sparse SDPs
(maxG11, maxG32, qpG11 and qpG51), and in particular CDCS-hsde improves on
SCS by approximately 1.8×, 8.7×, 8.3×, and 2.6× for each problem, respectively.
This is to be expected since the conic projection step in CDCS is more efficient due
to smaller semidefinite cones, but the results are remarkable considering that CDCS
is written in MATLAB, while SCS is implemented in C. Additionally, the perfor-
mance of CDCS could be improved even further with a parallel implementation of the
projections onto small PSD cones.

7.3 Nonchordal SDPs

In our second experiment, we solved six large-scale SDPs with nonchordal sparsity
patterns form [4]:rs35,rs200,rs228,rs365,rs1555, andrs1907. The aggre-
gate sparsity patterns of these problems, illustrated in Fig. 5, come from the University
of Florida Sparse Matrix Collection [14]. Table 8 demonstrates that all six sparsity
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(a) (b) (c)

(d) (e) (f)

Fig. 5 Aggregate sparsity patterns of the nonchordal SDPs in [4]; see Table 8 for the matrix dimensions

Table 8 Summary of chordal decomposition for the chordal extensions of the nonchordal SDPs form [4]

rs35 rs200 rs228 rs365 rs1555 rs1907

Original cone size, n 2003 3025 1919 4704 7479 5357

Affine constraints, m 200 200 200 200 200 200

Number of cliques, p 588 1635 783 1244 6912 611

Maximum clique size 418 102 92 322 187 285

Minimum clique size 5 4 3 6 2 7

patterns admit chordal extensions with maximum cliques that are much smaller than
the original cone.

Total CPU time, number of iterations, and terminal objective values are presented
in Table 9. For all problems, the algorithms in CDCS (primal, dual and hsde) are all
much faster than either SCS or SeDuMi. In addition, SCS never terminates succesfully,
while the objective value returned by CDCS is always within 2% of the high-accuracy
solutions returned by SeDuMi (when this could be computed). The residuals listed in
Tables 5 and 6 suggest that this performance difference might be due to poor problem
scaling in SCS.

The advantages of the algorithms proposed in this work are evident from Table 10:
the average CPU time per iteration in CDCS-hsde is approximately 22×, 24×, 28×,
and 105× faster compared to SCS for problems rs200, rs365, rs1907, and
rs1555, respectively. The results for averageCPU time per iteration also demonstrate
that the computational complexity of all three algorithms in CDCS (primal, dual, and
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Table 9 Results for large-scale SDPs with nonchordal sparsity patterns form [4]

rs35 rs200

Time (s) # Iter. Objective Time (s) # Iter. Objective

SeDuMi (high) 1391 17 25.33 4451 17 99.74

SeDuMi (low) 986 11 25.34 2223 8 99.73

SCS (direct) 2378 2000 25.08 9697 2000 81.87

CDCS-primal 370 379 25.27 159 577 99.61

CDCS-dual 272 245 25.53 103 353 99.72

CDCS-hsde 2019 2000 25.47 254 1114 99.70

rs228 rs365

Time (s) # Iter. Objective Time (s) # Iter. Objective

SeDuMi (high) 1655 21 64.71 *** *** ***

SeDuMi (low) 809 10 64.80 *** *** ***

SCS (direct) 2338 2000 62.06 34,497 2000 44.02

CDCS-primal 94 400 64.65 321 401 63.37

CDCS-dual 84 341 64.76 240 265 63.69

CDCS-hsde 79 361 64.87 332 442 63.64

rs1555 rs1907

Time (s) # Iter. Objective Time (s) # Iter. Objective

SeDuMi (high) *** *** *** *** *** ***

SeDuMi (low) *** *** *** *** *** ***

SCS (direct) 139,314 2000 34.20 50,047 2000 45.89

CDCS-primal 1721 2000 61.22 330 349 62.87

CDCS-dual 317 317 69.54 271 252 63.30

CDCS-hsde 1413 2000 61.36 393 414 63.14

Entries marked *** indicate that the problem could not be solved due to memory limitations

Table 10 Average CPU time per iteration (in seconds) for the nonchordal SDPs form [4]

rs35 rs200 rs228 rs365 rs1555 rs1907

SCS (direct) 1.188 4.847 1.169 17.250 69.590 25.240

CDCS-primal 0.944 0.258 0.224 0.715 0.828 0.833

CDCS-dual 1.064 0.263 0.232 0.774 0.791 0.920

CDCS-hsde 1.005 0.222 0.212 0.735 0.675 0.893

hsde) is independent of the original problem size: problems rs35 and rs228 have
similar cone size n and the same number of constraints m, yet the average CPU time
for the latter is approximately 5× smaller. This can be explained by noticing that
for all test problems considered here the number of constraints m is moderate, so the
overall complexity of our algorithms is dominated by the conic projection. As stated

123



Chordal decomposition in operator-splitting methods for…

l blocks

d

d

h

h

Fig. 6 Block-arrow sparsity pattern (dots indicate repeating diagonal blocks). The parameters are: the
number of blocks, l; block size, d; the width of the arrow head, h

in Proposition 3, this depends only on the size and number of the maximal cliques, not
on the size of the original PSD cone. A more detailed investigation of how the number
of maximal cliques, their size, and the number of constraints affect the performance
of CDCS is presented next.

7.4 Random SDPs with block-arrow patterns

To examine the influence of the number of maximal cliques, their size, and the number
of constraints on the computational cost of Algorithms 1–3, we considered randomly
generated SDPs with a “block-arrow” aggregate sparsity pattern, illustrated in Fig. 6.
Such a sparsity pattern is characterized by: the number of blocks, l; the block size, d;
and the size of the arrow head, h. The associated PSD cone has dimension ld +h. The
block-arrow sparsity pattern is chordal, with l maximal cliques all of the same size
d + h. The effect of the number of constraints in the SDP, m, is investigated as well,
and numerical results are presented below for the following scenarios:

1. Fix l = 100, d = 10, h = 20, and vary the number of constraints, m;
2. Fixm = 200, d = 10, h = 20, and vary l (hence, the number of maximal cliques);
3. Fixm = 200, l = 50, h = 10, and vary d (hence, the size of the maximal cliques).

In our computations, the problem data are generated randomly using the following
procedure. First, we generate random symmetric matrices A1, . . . , Am with block-
arrow sparsity pattern, whose nonzero entries are drawn from the uniform distribution
U (0, 1) on the open interval (0, 1). Second, a strictly primal feasible matrix Xf ∈
S
n+(E, 0) is constructed as Xf = W +α I , whereW ∈ S

n(E, 0) is randomly generated
with entries from U (0, 1) and α is chosen to guarantee Xf � 0. The vector b in
the primal equality constraints is then computed such that bi = 〈Ai , Xf〉 for all i =
1, . . . ,m. Finally, the matrix C in the dual constraint is constructed as C = Zf +∑m

i=1 yi Ai , where y1, . . . , ym are drawn from U (0, 1) and Zf � 0 is generated
similarly to Xf.

The averageCPU timeper 100 iterations for thefirst-order solvers is plotted inFig. 7.
As already observed in the previous sections, in all three test scenarios the algorithms
in CDCS are faster than SCS, when the latter is used to solve the original SDPs (before
chordal decomposition). Of course, as onewould expect, the computational cost grows
when either the number of constraints, the size of the maximal cliques, or their number
is increased. Note, however, that the CPU time per iteration of CDCS grows more
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Fig. 7 Average CPU time (in seconds) per 100 iterations for SDPs with block-arrow patterns. Left to right:
varying the number of constraints; varying the number of blocks; varying the block size

Table 11 Average CPU time (× 10−2 s) required by the affine projection steps in CDCS-primal, CDCS-
dual, and CDCS-hsde as a function of the number of constraints (m) for l = 100, d = 10, and h = 20

m 200 239 286 342 409 489 585 699 836 1000

CDCS-primal 1.05 1.21 1.40 1.63 1.90 2.22 2.60 3.12 3.59 4.29

CDCS-dual 1.10 1.26 1.46 1.67 1.94 2.28 2.65 3.16 3.66 4.31

CDCS-hsde 1.84 2.14 2.55 2.95 3.50 4.12 4.85 5.80 6.81 8.04

slowly than that of SCS as a function of the number of maximal cliques, which is
the benefit of considering smaller PSD cones in CDCS. Precisely, the CPU time per
iteration of CDCS increases linearlywhen the number of cliques l is raised, as expected
from Proposition 3; instead, the CPU time per iteration of SCS grows cubically, since
the eigenvalue decomposition on the original cone requiresO(l3) flops (note that when
d and h are fixed, (ld + h)3 = O(l3)). Finally, the results in Table 11 confirm the
analysis in Propositions 1 and 2, according to which the CPU time required in the
affine projection of CDCS-hsde was approximately twice larger than that of CDCS-
primal or CDCS-dual. On the other hand, the increase in computational cost with the
number of constraints m is slower than predicted by Propositions 1 and 2 due to the
fact that, contrary to the complexity analysis presented in Sect. 6, our implementation
of Algorithms 1–3 takes advantage of sparse matrix operations where possible.

8 Conclusion

In this paper, we have presented a conversion framework for large-scale SDPs charac-
terized by chordal sparsity. This framework is analogous to the conversion techniques
for IPMs of [17,27], but is more suitable for the application of FOMs. We have then
developed efficient ADMM algorithms for sparse SDPs in either primal or dual stan-
dard form, and for their homogeneous self-dual embedding. In all cases, a single
iteration of our ADMM algorithms only requires parallel projections onto small PSD
cones and a projection onto an affine subspace, both of which can be carried out effi-
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ciently. In particular, when the number of constraints m is moderate the complexity
of each iteration is determined by the size of the largest maximal clique, not the size
of the original problem. This enables us to solve large, sparse conic problems that are
beyond the reach of standard interior-point and/or other first-order methods.

All our algorithms have been made available in the open-source MATLAB solver
CDCS. Numerical simulations on benchmark problems, including selected sparse
problems from SDPLIB, large and sparse SDPs with a nonchordal sparsity pattern,
and SDPs with a block-arrow sparsity pattern, demonstrate that our methods can
significantly reduce the total CPU time requirement compared to the state-of-the-art
interior-point solver SeDuMi [37] and the efficient first-order solver SCS [33]. We
remark that the current implementation of our algorithms is sequential, but many
steps can be carried out in parallel, so further computational gains may be achieved
by taking full advantage of distributed computing architectures. Besides, it would be
interesting to integrate some acceleration techniques (e.g., [15,41]) that promise to
improve the convergence performance of ADMM in practice.

Finally, we note that the conversion framework we have proposed relies on chordal
sparsity, but there exist large SDPs which do not have this property. An example
with applications in many areas is that of SDPs from sum-of-squares relaxations of
polynomial optimization problems. Future work should therefore explore whether and
towhich extent first ordermethods can be used to take advantage other types of sparsity
and structure.
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Appendix

A Proof of Proposition 1

Since (18) and (27) are the same modulo scaling, we only consider the former. Also,
we drop the superscript (n) to lighten the notation. Recall that HT

k xk is an indexing
operation and requires no flops, and let

b̂ :=
p∑

k=1

HT
k

(
xk + ρ−1λk

)
− ρ−1c ∈ R

n2 . (55)
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After a suitable block elimination and writing AD−1AT = LLT , the solution of (18)
is given by

LLT y = AD−1b̂ − b, (56a)

x = D−1
(
b̂ − AT y

)
. (56b)

Computing x and y cost (4m + p + 3)n2 + 2m2 + 2nd flops, counted as the sum of:

(i) (p + 1)n2 + 2nd flops to form b̂: no flops to multiply by Hk , 2|Ck |2 flops to
compute xk + ρ−1λk , n2 flops to calculate ρ−1c, and (p − 1)n2 + n2 flops to
sum all addends in (55).

(ii) (2m + 1)n2 flops to compute AD−1b̂− b: n2 flops to compute D−1b̂ since D is
diagonal, (2n2 − 1)m flops to multiply by A, and m flops to subtract b.

(iii) 2m2 flops to compute y via forward and backward substitutions using (56a).
(iv) (2m + 1)n2 flops to compute x via (56b): (2m − 1)n2 flops to find AT y, n2 flops

to subtract it from b̂, and n2 flops to multiply by D−1.

B Proof of Proposition 2

Consider the “inner” system (44) first. Partition the vectors σ1 and σ2 as

σ1 =
[
σ11
σ12

]
, σ2 =

[
σ21
σ22

]
,

where σ11 ∈ R
n2 , σ12, σ22 ∈ R

nd , and σ21 ∈ R
m . The vectors ν1 and ν2 on the

right-hand side of (44) can be partitioned in a similar way.
Recalling the definition of the matrix Â from (40), (45b) becomes

[
σ21
σ22

]
=
[

ν21 − Aσ11
ν22 − Hσ11 + σ12

]
. (57)

To calculate σ11 and σ12 one needs to solve (45a), which after partitioning all variables
can be rewritten as

[(
I + D + AT A

) −HT

−H 2I

] [
σ11
σ12

]
=
[
ν11 + AT ν21 + HT ν22

ν12 − ν22

]
. (58)

Eliminating σ12 from the first block equation results in

(
I + 1

2
D + AT A

)
σ11 = ν11 + AT ν21 + 1

2
HT (ν12 + ν22) , (59a)

σ12 = 1

2
(ν12 − ν22 + Hσ11). (59b)
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After defining P := I + 1
2D and η := ν11 + AT ν21 + 1

2H
T (ν12 + ν22) to lighten the

notation, an application of the matrix inversion lemma to (59a) yields

σ11 = P−1η − P−1AT (I + AP−1AT )−1AP−1η. (60)

We are now in a position to count the flops required to solve the “inner” linear system.
First, computing σ11 via (60) requires a total (6m+ p+3)n2+2m2−m flops, counted
as follows:

(i) (2m + p + 1)n2 flops to form η;
(ii) n2 flops to compute P−1η, since P is an n2 × n2 diagonal matrix;
(iii) (2n2 − 1)m flops to calculate AP−1η;
(iv) 2m2 flops to form the vector (I + AP−1AT )−1AP−1η using forward and back-

ward substitutions (we assume that the Cholesky decomposition I + AP−1AT =
LLT has been cached);

(v) (2m − 1)n2 flops to find AT (I + AP−1AT )−1AP−1η;
(vi) 2n2 flops to compute σ11 via (60) given P−1η and AT (I + AP−1AT )−1AP−1η.

Once σ11 is known, σ12 is found from (59b) with 3nd flops because the product Hσ11
is simply an indexing operation and costs no flops. Given σ11 and σ12, computing σ21
and σ22 from (57) requires 2mn2 + 2nd flops, so the “inner” linear system (44) costs
a total of (8m + 2p + 3)n2 + 2m2 − m + 5nd flops.

After the inner system has been solved, we see that computing û1 from (43) requires
(8m + 2p + 9)n2 + 2m2 + 5m + 17nd − 1 flops in total:

(i) 2(n2 + 2nd + m) flops to compute ω1 − ω2ζ ;
(ii) (8m + 2p + 3)n2 + 2m2 − m + 5nd flops to solve the “inner” linear system

M−1(ω1 − ω2ζ );
(iii) 2(n2 + 2nd + m) − 1 flops to compute ζ T M−1(ω1 − ω2ζ ) ∈ R;
(iv) n2 + 2nd + m flops to calculate ζ̂ · ζ T M−1(ω1 − ω2ζ );
(v) n2 + 2nd +m flops to compute û1 = M−1(ω1 −ω2ζ )− ζ̂ · ζ T M−1(ω1 −ω2ζ ).

Summing this to the 2(n2 +2nd +m) flops required to calculate û2 using (42b) yields
the desired result.

C Proof of Proposition 3

The conic projection (21) in Algorithm 1 amounts to projecting the matrices

mat
(
Hkx

(n+1) − ρ−1λ
(n)
k

)
∈ S

|Ck |, k = 1, . . . , p

onto the PSD cone S|Ck |+ . Computing Hkx (n+1)−ρ−1λ
(n)
k requires 2|Ck |2 flops, while a

PSD projection using a full eigenvalue decomposition costsO(|Ck |3) flops to leading
order, so the overall number of flops isO(

∑p
k=1 |Ck |3). The same argument holds for

the conic projection (29) in Algorithm 2.
In Algorithm 3, instead, the projection is onto the cone K := R

n2 × S × R
m ×

R
nd × R+. Nothing needs to be done to project onto R

n2 , Rm and R
nd , while the
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projection of a ∈ R onto R+ is given by max{0, a} and requires no flops according to
our definition. Finally, projecting onto S requires eigenvalue decompositions of the
matrices mat(xk), k = 1, . . . , p, with a leading-order cost of O(

∑p
k=1 |Ck |3) flops.
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