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Introduction: sum-of-squares optimization



Optimization over nonnegative polynomials

Motivation: Is p(x) ≥ 0 over {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0}? This has a wide
range of applications.

Optimization: Lower bounds on
polynomial optimization problems

Control: Verifying asymptotic
stability, finding region of
attractions etc.

Bernard, Lasserre Jean. Moments, positive polynomials and their applications. Vol. 1. World Scientific,
2009.

Blekherman, Grigoriy, Pablo A. Parrilo, and Rekha R. Thomas, eds. Semidefinite optimization and
convex algebraic geometry. Society for Industrial and Applied Mathematics, 2012.
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How would you prove nonnegativity? SOS → SDP

Main question: How to verify a polynomial p(x) is non-negative ∀x ∈ Rn?

This question is Not easy! (In fact, NP-hard for degree ≥ 4)

Sum-of-squares (SOS) polynomials: p(x) can be represented as a sum of finite
squared polynomials fi(x), i = 1, . . . ,m

p(x) =

m∑
i=1

f2
i (x),

SDP characterization (Parrilo, Lasserre etc.): p(x) is SOS if and only if there
exists Q � 0,

p(x) = vd(x)
TQvd(x).

where vd(x) = [1, x1, x2, . . . , xn, x
2
1, x1x2, . . . , x

d
n]
T is the standard monomial basis.

Scalability issue: The size of the resulting SDP is(
n+ d

d

)
×

(
n+ d

d

)
,

e.g. n = 10, d = 4→ 1001.
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Improving scalability via imposing structures on
matrix Q

Linear program second-order cone program



Imposing structures on matrix Q

SOS polynomials
p(x) = vd(x)

TQvd(x), Q � 0

Inner approximations (Amadhi & Anirudha, 2019)

1. Q is diagonally dominant
(dd).

Qii ≥
N∑

j=1,j 6=i

Qij ,∀i

→ linear program

2. Q is scaled diagonally
dominant (sdd).

∃ diagonal D � 0,

s.t.DQD is dd
→

second-order cone
program.

3. Other methods based
on symmetry/sparsity of
the polynomial p(x), e.g.,
Gatermann & Parrilo,
2004; Waki, Kim, Kojima,
& Muramatsu, 2006.

Ahmadi, Amir Ali, and Anirudha Majumdar. ”DSOS and SDSOS optimization: more tractable
alternatives to sum of squares and semidefinite optimization.” SIAM Journal on Applied Algebra and
Geometry 3.2 (2019): 193-230.
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The gap between DSOS/SDSOS and SOS

A brief summary

SOS: p(x) = vd(x)
TQvd(x) : Q is PSD −→ SDP

SDSOS: p(x) = vd(x)
TQvd(x) : Q is sdd −→ SOCP

DSOS: p(x) = vd(x)
TQvd(x) : Q is dd −→ LP

Another viewpoint

SDP: involves PSD constraints of dimension N ×N
SOCP: involves PSD constraints of dimension 2× 2

LP: involves PSD constraints of dimension 1× 1

What is missing? How about problems that involve PSD constraints of dimension
k × k, where 1 ≤ k ≤ N

One approach: factor-width k matrices (Boman, et al. 2005) −→ Not practical(
n
k

)
= O(nk)

Chordal decomposition by exploiting problem sparsity −→ the main topic today.
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Bridging the gap via exploiting chordal sparsity

— Chordal decomposition

⇒

Vandenberghe, Lieven, and Martin S. Andersen. ”Chordal graphs and semidefinite optimization.”
Foundations and Trends in Optimization 1.4 (2015): 241-433.



Sparsity in polynomials

Question: How to describe the sparsity in a polynomial

p(x) = x21 + x1x2 + x22x
2
3

Correlative sparsity pattern: (Waki et al, 2006) a symmetric matrix csp(p) ∈ Sn

[csp(p)]ij =

{
1, if i = j or ∃α | αi, αj ≥ 1 and cα 6= 0,

0, otherwise.

For example, we have

csp(p(x) = x21 + x1x2 + x22x
2
3) =

1 1 0
1 1 1
0 1 1

 .
Describe the pattern of csp(p) ∈ Sn as an undirected graph

x1 x2 x3
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Decomposition in sparse polynomials

Define a set of sparse SOS polynomials as

SOSn,2d(E) := {p(x) | csp(p) ∈ Sn(E , 0)} ∩ SOSn,2d.

Question: How to use the graph information?

p(x) = x21 + x1x2 + x22x
2
3

x1 x2 x3

Motivation from matrix decomposition (a special case of chordal decomposition)∗ ∗ 0
∗ ∗ ∗
0 ∗ ∗


︸ ︷︷ ︸

�0

=

∗ ∗ 0
∗ ∗ 0
0 0 0


︸ ︷︷ ︸

�0

+

0 0 0
0 ∗ ∗
0 ∗ ∗


︸ ︷︷ ︸

�0

Imposing a sparsity structure on Q: A sparse polynomial p(x) ∈ SOSn,2d(E) does
not necessarily means a sparse Q

p(x) =
∑

β,γ∈Nn
d

Qβ,γx
β+γ =

∑
α∈Nn

2d

 ∑
β+γ=α

Qβ,γ

xα.
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Decomposition in sparse polynomials

Recall
p(x) = vT

d (x)Qvd(x) =
∑

β,γ∈Nn
d

Qβ,γx
β+γ , Q � 0.

Our key idea: Imposing sparsity in matrix Q:

Define as subset of
SSOSn,2d(E) ⊂ SOSn,2d(E)

by imposing Qβ,γ = 0 if xβ+γ violates the correlative sparsity pattern E .

Example 1: Quadratic polynomials

p(x) = x21 + 2x1x2 + 2x22 + 2x2x3 + x23 =
[
x1 x2 x3

] ∗ ∗ 0
∗ ∗ ∗
0 ∗ ∗


︸ ︷︷ ︸

Q�0

x1x2
x3



=
[
x1 x2 x3

] (∗ ∗ 0
∗ ∗ 0
0 0 0


︸ ︷︷ ︸

�0

+

0 0 0
0 ∗ ∗
0 ∗ ∗


︸ ︷︷ ︸

�0

)x1x2
x3



= (x1 + x2)
2 + (x2 + x3)

2 ∈ SSOS3,2(E).

Bridging the gap via exploiting chordal sparsity 12/23



Decomposition in sparse polynomials

Our key idea: Imposing sparsity in matrix Q:

Define as subset of
SSOSn,2d(E) ⊂ SOSn,2d(E)

by imposing Qβ,γ = 0 if xβ+γ violates the correlative sparsity pattern E .

Example 2: Quartic polynomials

p(x) = 1 + x21 + 2x1x2 + x22 + x22x
2
3

=



1
x1
x2
x3
x21
x1x2
x1x3
x22
x2x3
x23



T 

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ 0 ∗ ∗ 0 ∗ 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ 0 ∗ ∗ 0 0 0 ∗ ∗ ∗
∗ ∗ ∗ 0 ∗ ∗ 0 ∗ 0 0

. . .

. . .

. . .

. . .

. . .


︸ ︷︷ ︸

Q�0



1
x1
x2
x3
x21
x1x2
x1x3
x22
x2x3
x23



= 1 + (x1 + x2)
2 + (x2x3)

2 ∈ SSOS3,4(E).
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Decomposition in sparse polynomials

Result 1: Sparse polynomial decomposition

Let G(V, E) be a chordal graph with maximal cliques C1, . . . , Ct. Then,

p(x) ∈ SSOSn,2d(E)⇐⇒ p(x) =

t∑
k=1

pk(ECkx),

where pk(ECkx) is SOS that depends on a subset of the variable x.

The proof is easy: since Q is sparse by definition, then applying chordal
decomposition leads to the result;

p(x) = vT
d (x)Qvd(x)

= vT
d (x)(Q1 +Q2 + . . .+Qt)vd(x)

=
t∑

k=1

vT
d (x)Qkvd(x) =

t∑
k=1

pk(ECkx).

This result is the same as the correlative sparsity technique by Waki et al. 2006.
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Summary: LP/SOCP/SDP

Result 2: A hierarchy of inner approximations:
For any sparsity pattern E , we have the following inclusion relationship

DSOSn,2d(E) ⊂ SDSOSn,2d(E) ⊂ SSOSn,2d(E) ⊆ SOSn,2d(E)

Proof idea: if a matrix is (scaled) diagonally dominant, then it is still (scaled)
diagonally dominant when replacing any off-diagonal elements with zeros.

A brief summary (scalability):

DSOSn,2d(E) −→ LP (PSD cones: 1× 1)

SDSOSn,2d(E) −→ SOCP (PSD cones: 2× 2)

SSOSn,2d(E) −→ SDP with smaller PSD cones of k × k
SOSn,2d(E) −→ SDP with a PSD cone of N ×N

Solution quality: Pdsos,Psdsos and Pssos are a sequence of inner approximations with
increasing accuracy to the SOS problem Psos, meaning that

f∗dsos ≥ f∗sdsos ≥ f∗ssos ≥ f∗sos,
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Implementations and numerical comparison

Packages

SOS optimization: SOSTOOLS, YALMIP

DSOS/SDSOS optimization: SPOTLESS

Chordal decomposition: YALMIP (we adapted the option of correlative sparsity
technique)

SDP solver: Mosek

Numerical examples and applications

Polynomial optimization: eigenvalues bounds on polynomial matrices

Control application: finding Lyapunov functions
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Example 1: Polynomial optimization problems

Eigenvalue bounds on matrix polynomials

min
γ

γ

subject to P (x) + γI � 0, ∀x ∈ R2

where n = 2, 2d = 2, the polynomial is randomly generated. P (x) has an arrow pattern.

Table: Optimal value γ

Dimension r 10 20 30 40 50 60 70 80

SOS 1.447 4.813 5.917 4.154 21.61 10.09 7.364 10.19
SSOS 1.454 4.878 5.917 4.498 21.64 12.71 7.558 11.39

SDSOS 40.1 279.3 1 254.4 145.5 762.8 1 521.1 1 217.3 598.0
DSOS ** ** ** ** ** ** ** **

**: The program is infeasible.
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Example 1: Polynomial optimization problems

Eigenvalue bounds on matrix polynomials

min
γ

γ

subject to P (x) + γI � 0, ∀x ∈ R2

where n = 2, 2d = 2, the polynomial is randomly generated. P (x) has an arrow pattern.

Table: CPU time (in seconds) required by Mosek (not very fair)

Dimension r 10 20 30 40 50 60 70 80

SOS 0.30 1.33 6.64 27.3 108.1 308.7 541.3 1 018.6
SSOS 0.34 0.34 0.35 0.35 0.33 0.32 0.32 0.33

SDSOS 0.47 0.63 1.09 1.29 2.67 3.70 4.40 6.02
DSOS ** ** ** ** ** ** ** **

**: The program is infeasible.
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Example 2: Finding Lyapunov functions

Control application: finding Lyapunov functions

Consider a dynamical system with a banded pattern

ẋ1 = f1(x1, x2), g1(x) = γ − x21 ≥ 0

ẋ2 = f2(x1, x2, x3), g2(x) = γ − x22 ≥ 0

...

ẋn = fn(xn−1, xn), g2(x) = γ − x2n ≥ 0

Generate locally stable systems of degree three;

Consider a polynomial Lyapunov function of degree two with a banded pattern

V (x) = V1(x1, x2) + V2(x1, x2, x3) + . . .+ Vn(xn−1, xn)

Then, we consider the following SOS program

Find V (x), ri(x)

subject to V (x)− ε(xT x) is SOS

− 〈∇V (x), f(x)〉 −
n∑
i=1

ri(x)gi(x) is SOS

ri(x) is SOS, i = 1, . . . , n.
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Example 2: Finding Lyapunov functions

Control application: finding Lyapunov functions

Table: CPU time (in seconds) required by Mosek (not very fair)

n 10 15 20 30 40 50

SOS 1.29 18.44 247.84 * * *
SSOS 0.55 0.68 0.71 0.83 1.04 1.17

SDSOS 0.71 1.76 4.47 32.21 85.99 257.20
DSOS 0.70 1.42 3.58 35.12 73.64 324.32

*: Out of memory.
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Conclusion



Take-home message

Message 1: Imposing structures on matrix Q:

p(x) = vd(x)
TQvd(x), Q � 0

Different choices lead to different inner approximations.

Message 2: A hierarchy of inner approximations: bridging the gap

DSOSn,2d(E) ⊂ SDSOSn,2d(E) ⊂ SSOSn,2d(E) ⊆ SOSn,2d(E)

Maintain the correlative sparsity pattern of p(x) by carefully imposing a sparsity
pattern on Q

DSOSn,2d(E) −→ LP (PSD cones: 1× 1)

SDSOSn,2d(E) −→ SOCP (PSD cones: 2× 2)

SSOSn,2d(E) −→ SDP with smaller PSD cones of k × k
SOSn,2d(E) −→ SDP with a PSD cone of N ×N

Future work: Exploit the sparsity in the degree of polynomials; Maintain the sparsity
structure in the applications of SOS optimization.
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Thank you for your attention!

Q & A

Zheng, Yang, Giovanni Fantuzzi, and Antonis Papachristodoulou. ”Sparse sum-of-squares (SOS)
optimization: A bridge between DSOS/SDSOS and SOS optimization for sparse polynomials.” arXiv
preprint arXiv:1807.05463 (2018).
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