Sparse sum-of-squares (SOS) optimization: A bridge between DSOS/SDSOS and SOS optimization for sparse polynomials

Yang Zheng ${ }^{1}$, Giovanni Fantuzzi ${ }^{2}$ and Antonis Papachristodoulou ${ }^{3}$

${ }^{1}$ School of Engineering and Applied Science, Harvard University
${ }^{2}$ Department of Aeronautics, Imperial College London
${ }^{3}$ Department of Engineering Science, University of Oxford

ACC 2019, Philadelphia, USA
July 12, 2019

Imperial College London

Outline

(1) Introduction: sum-of-squares (SOS) optimization
(2) Improving scalability via imposing structures on matrix Q
(3) Bridging the gap via exploiting chordal sparsity
(4) Numerical examples
(5) Conclusion

Introduction: sum-of-squares optimization

Optimization over nonnegative polynomials

Motivation: Is $p(x) \geq 0$ over $\left\{x \in \mathbb{R}^{n} \mid g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\}$? This has a wide range of applications.

- Optimization: Lower bounds on polynomial optimization problems
- Control: Verifying asymptotic stability, finding region of attractions etc.

- Bernard, Lasserre Jean. Moments, positive polynomials and their applications. Vol. 1. World Scientific, 2009.
- Blekherman, Grigoriy, Pablo A. Parrilo, and Rekha R. Thomas, eds. Semidefinite optimization and convex algebraic geometry. Society for Industrial and Applied Mathematics, 2012.

How would you prove nonnegativity? SOS \rightarrow SDP

Main question: How to verify a polynomial $p(x)$ is non-negative $\forall x \in \mathbb{R}^{n}$?
This question is Not easy! (In fact, NP-hard for degree ≥ 4)

- Sum-of-squares (SOS) polynomials: $p(x)$ can be represented as a sum of finite squared polynomials $f_{i}(x), i=1, \ldots, m$

$$
p(x)=\sum_{i=1}^{m} f_{i}^{2}(x)
$$

- SDP characterization (Parrilo, Lasserre etc.): $p(x)$ is SOS if and only if there exists $Q \succeq 0$,

$$
p(x)=v_{d}(x)^{T} Q v_{d}(x)
$$

where $v_{d}(x)=\left[1, x_{1}, x_{2}, \ldots, x_{n}, x_{1}^{2}, x_{1} x_{2}, \ldots, x_{n}^{d}\right]^{T}$ is the standard monomial basis.

- Scalability issue: The size of the resulting SDP is

$$
\binom{n+d}{d} \times\binom{ n+d}{d}
$$

e.g. $n=10, d=4 \rightarrow 1001$.

Improving scalability via imposing structures on matrix Q

Linear program

second-order cone program

Imposing structures on matrix Q

SOS polynomials

$$
p(x)=v_{d}(x)^{T} Q v_{d}(x), \quad Q \succeq 0
$$

Inner approximations (Amadhi \& Anirudha, 2019)

1. Q is diagonally dominant (dd).

$$
Q_{i i} \geq \sum_{j=1, j \neq i}^{N} Q_{i j}, \forall i
$$

\rightarrow linear program

2. Q is scaled diagonally dominant (sdd).
\exists diagonal $D \succeq 0$,
s.t. $D Q D$ is dd
second-order cone program.

3. Other methods based on symmetry/sparsity of the polynomial $p(x)$, e.g., Gatermann \& Parrilo, 2004; Waki, Kim, Kojima, \& Muramatsu, 2006.

- Ahmadi, Amir Ali, and Anirudha Majumdar. "DSOS and SDSOS optimization: more tractable alternatives to sum of squares and semidefinite optimization." SIAM Journal on Applied Algebra and Geometry 3.2 (2019): 193-230.

The gap between DSOS/SDSOS and SOS

A brief summary

- SOS: $p(x)=v_{d}(x)^{T} Q v_{d}(x): Q$ is PSD \longrightarrow SDP
- SDSOS: $p(x)=v_{d}(x)^{T} Q v_{d}(x): Q$ is sdd \longrightarrow SOCP
- DSOS: $p(x)=v_{d}(x)^{T} Q v_{d}(x): Q$ is dd \longrightarrow LP

Another viewpoint

- SDP: involves PSD constraints of dimension $N \times N$
- SOCP: involves PSD constraints of dimension 2×2
- LP: involves PSD constraints of dimension 1×1

What is missing? How about problems that involve PSD constraints of dimension $k \times k$, where $1 \leq k \leq N$

- One approach: factor-width k matrices (Boman, et al. 2005) \longrightarrow Not practical $\binom{n}{k}=\mathcal{O}\left(n^{k}\right)$
- Chordal decomposition by exploiting problem sparsity \longrightarrow the main topic today.

Bridging the gap via exploiting chordal sparsity

- Chordal decomposition

- Vandenberghe, Lieven, and Martin S. Andersen. "Chordal graphs and semidefinite optimization." Foundations and Trends in Optimization 1.4 (2015): 241-433.

Sparsity in polynomials

- Question: How to describe the sparsity in a polynomial

$$
p(x)=x_{1}^{2}+x_{1} x_{2}+x_{2}^{2} x_{3}^{2}
$$

- Correlative sparsity pattern: (Waki et al, 2006) a symmetric matrix $\operatorname{csp}(p) \in \mathbb{S}^{n}$

$$
[\operatorname{csp}(p)]_{i j}= \begin{cases}1, & \text { if } i=j \text { or } \exists \alpha \mid \alpha_{i}, \alpha_{j} \geq 1 \text { and } c_{\alpha} \neq 0 \\ 0, & \text { otherwise }\end{cases}
$$

For example, we have

$$
\operatorname{csp}\left(p(x)=x_{1}^{2}+x_{1} x_{2}+x_{2}^{2} x_{3}^{2}\right)=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

- Describe the pattern of $\operatorname{csp}(p) \in \mathbb{S}^{n}$ as an undirected graph

Decomposition in sparse polynomials

Define a set of sparse SOS polynomials as

$$
\operatorname{SOS}_{n, 2 d}(\mathcal{E}):=\left\{p(x) \mid \operatorname{csp}(p) \in \mathbb{S}^{n}(\mathcal{E}, 0)\right\} \cap \operatorname{SOS}_{n, 2 d} .
$$

Question: How to use the graph information?

$$
p(x)=x_{1}^{2}+x_{1} x_{2}+x_{2}^{2} x_{3}^{2}
$$

- Motivation from matrix decomposition (a special case of chordal decomposition)

$$
\underbrace{\left[\begin{array}{lll}
* & * & 0 \\
* & * & * \\
0 & * & *
\end{array}\right]}_{\succeq 0}=\underbrace{\left[\begin{array}{lll}
* & * & 0 \\
* & * & 0 \\
0 & 0 & 0
\end{array}\right]}_{\succeq 0}+\underbrace{\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & * & * \\
0 & * & *
\end{array}\right]}_{\succeq 0}
$$

- Imposing a sparsity structure on Q : A sparse polynomial $p(x) \in \operatorname{SOS}_{n, 2 d}(\mathcal{E})$ does not necessarily means a sparse Q

$$
p(x)=\sum_{\beta, \gamma \in \mathbb{N}_{d}^{n}} Q_{\beta, \gamma} x^{\beta+\gamma}=\sum_{\alpha \in \mathbb{N}_{2 d}^{n}}\left(\sum_{\beta+\gamma=\alpha} Q_{\beta, \gamma}\right) x^{\alpha} .
$$

Decomposition in sparse polynomials

Recall

$$
p(x)=v_{d}^{\top}(x) Q v_{d}(x)=\sum_{\beta, \gamma \in \mathbb{N}_{d}^{n}} Q_{\beta, \gamma} x^{\beta+\gamma}, \quad Q \succeq 0
$$

Our key idea: Imposing sparsity in matrix \mathbf{Q} :

- Define as subset of

$$
\operatorname{SSOS}_{n, 2 d}(\mathcal{E}) \subset \operatorname{SOS}_{n, 2 d}(\mathcal{E})
$$

by imposing $Q_{\beta, \gamma}=0$ if $x^{\beta+\gamma}$ violates the correlative sparsity pattern \mathcal{E}.
Example 1: Quadratic polynomials

$$
\begin{aligned}
p(x) & =x_{1}^{2}+2 x_{1} x_{2}+2 x_{2}^{2}+2 x_{2} x_{3}+x_{3}^{2}=\left[\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right] \underbrace{\left[\begin{array}{lll}
* & * & 0 \\
* & * & * \\
0 & * & *
\end{array}\right]}_{Q \succeq 0}\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \\
& =\left[\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right](\underbrace{\left[\begin{array}{lll}
* & * & 0 \\
* & * & 0 \\
0 & 0 & 0
\end{array}\right]}_{\succeq 0}+\underbrace{\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & * & * \\
0 & * & *
\end{array}\right]}_{\succeq 0})\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \\
& =\left(x_{1}+x_{2}\right)^{2}+\left(x_{2}+x_{3}\right)^{2} \in \operatorname{SSOS}_{3,2}(\mathcal{E}) .
\end{aligned}
$$

Decomposition in sparse polynomials

Our key idea: Imposing sparsity in matrix Q:

- Define as subset of

$$
\operatorname{SSOS}_{n, 2 d}(\mathcal{E}) \subset \operatorname{SOS}_{n, 2 d}(\mathcal{E})
$$

by imposing $Q_{\beta, \gamma}=0$ if $x^{\beta+\gamma}$ violates the correlative sparsity pattern \mathcal{E}.
Example 2: Quartic polynomials

$$
\begin{aligned}
& p(x)=1+x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{2}+x_{2}^{2} x_{3}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =1+\left(x_{1}+x_{2}\right)^{2}+\left(x_{2} x_{3}\right)^{2} \in \operatorname{SSOS}_{3,4}(\mathcal{E}) \text {. }
\end{aligned}
$$

Decomposition in sparse polynomials

Result 1: Sparse polynomial decomposition

Let $\mathcal{G}(\mathcal{V}, \mathcal{E})$ be a chordal graph with maximal cliques $\mathcal{C}_{1}, \ldots, \mathcal{C}_{t}$. Then,

$$
p(x) \in \operatorname{SSOS}_{n, 2 d}(\mathcal{E}) \Longleftrightarrow p(x)=\sum_{k=1}^{t} p_{k}\left(E_{\mathcal{C}_{k}} x\right),
$$

where $p_{k}\left(E_{\mathcal{C}_{k}} x\right)$ is SOS that depends on a subset of the variable x.

- The proof is easy: since Q is sparse by definition, then applying chordal decomposition leads to the result;

$$
\begin{aligned}
p(x) & =v_{d}^{\top}(x) Q v_{d}(x) \\
& =v_{d}^{\top}(x)\left(Q_{1}+Q_{2}+\ldots+Q_{t}\right) v_{d}(x) \\
& =\sum_{k=1}^{t} v_{d}^{\top}(x) Q_{k} v_{d}(x)=\sum_{k=1}^{t} p_{k}\left(E_{\mathcal{C}_{k}} x\right) .
\end{aligned}
$$

- This result is the same as the correlative sparsity technique by Waki et al. 2006.

Summary: LP/SOCP/SDP

Result 2: A hierarchy of inner approximations:

For any sparsity pattern \mathcal{E}, we have the following inclusion relationship

$$
\operatorname{DSOS}_{n, 2 d}(\mathcal{E}) \subset \operatorname{SDSOS}_{n, 2 d}(\mathcal{E}) \subset \operatorname{SSOS}_{n, 2 d}(\mathcal{E}) \subseteq \operatorname{SOS}_{n, 2 d}(\mathcal{E})
$$

- Proof idea: if a matrix is (scaled) diagonally dominant, then it is still (scaled) diagonally dominant when replacing any off-diagonal elements with zeros.

A brief summary (scalability):

$$
\begin{array}{lll}
D S O S_{n, 2 d}(\mathcal{E}) & \longrightarrow & \text { LP (PSD cones: } 1 \times 1) \\
S D S O S_{n, 2 d}(\mathcal{E}) & \longrightarrow & \text { SOCP (PSD cones: } 2 \times 2) \\
S S O S_{n, 2 d}(\mathcal{E}) & \longrightarrow & \text { SDP with smaller PSD cones of } k \times k \\
S O S_{n, 2 d}(\mathcal{E}) & \longrightarrow & \text { SDP with a PSD cone of } N \times N
\end{array}
$$

Solution quality: $\mathcal{P}_{\text {dsos }}, \mathcal{P}_{\text {sdsos }}$ and $\mathcal{P}_{\text {ssos }}$ are a sequence of inner approximations with increasing accuracy to the SOS problem $\mathcal{P}_{\text {sos }}$, meaning that

$$
f_{\mathrm{dsos}}^{*} \geq f_{\mathrm{sdsos}}^{*} \geq f_{\mathrm{ssos}}^{*} \geq f_{\mathrm{sos}}^{*}
$$

Implementations and numerical comparison

Packages

- SOS optimization: SOSTOOLS, YALMIP
- DSOS/SDSOS optimization: SPOTLESS
- Chordal decomposition: YALMIP (we adapted the option of correlative sparsity technique)
- SDP solver: Mosek

Numerical examples and applications

- Polynomial optimization: eigenvalues bounds on polynomial matrices
- Control application: finding Lyapunov functions

Example 1: Polynomial optimization problems

Eigenvalue bounds on matrix polynomials

$$
\begin{aligned}
\min _{\gamma} & \gamma \\
\text { subject to } & P(x)+\gamma I \succeq 0, \forall x \in \mathbb{R}^{2}
\end{aligned}
$$

where $n=2,2 d=2$, the polynomial is randomly generated. $P(x)$ has an arrow pattern.

Table: Optimal value γ

Dimension r	10	20	30	40	50	60	70	80
SOS	1.447	4.813	5.917	4.154	21.61	10.09	7.364	10.19
SSOS	1.454	4.878	5.917	4.498	21.64	12.71	7.558	11.39
SDSOS	40.1	279.3	1254.4	145.5	762.8	1521.1	1217.3	598.0
DSOS	$* *$	$* *$	$* *$	$* *$	$* *$	$* *$	$* *$	$* *$

[^0]
Example 1: Polynomial optimization problems

Eigenvalue bounds on matrix polynomials

$$
\begin{aligned}
\min _{\gamma} & \gamma \\
\text { subject to } & P(x)+\gamma I \succeq 0, \forall x \in \mathbb{R}^{2}
\end{aligned}
$$

where $n=2,2 d=2$, the polynomial is randomly generated. $P(x)$ has an arrow pattern.

Table: CPU time (in seconds) required by Mosek (not very fair)

Dimension r	10	20	30	40	50	60	70	80
SOS	0.30	1.33	6.64	27.3	108.1	308.7	541.3	1018.6
SSOS	0.34	0.34	0.35	0.35	0.33	0.32	0.32	0.33
SDSOS	0.47	0.63	1.09	1.29	2.67	3.70	4.40	6.02
DSOS	$* *$	$* *$	$* *$	$* *$	$* *$	$* *$	$* *$	$* *$

[^1]
Example 2: Finding Lyapunov functions

Control application: finding Lyapunov functions

- Consider a dynamical system with a banded pattern

$$
\begin{array}{rlrl}
\dot{x}_{1} & =f_{1}\left(x_{1}, x_{2}\right), & & g_{1}(x)=\gamma-x_{1}^{2} \geq 0 \\
\dot{x}_{2} & =f_{2}\left(x_{1}, x_{2}, x_{3}\right), & & g_{2}(x)=\gamma-x_{2}^{2} \geq 0 \\
& & \\
\dot{x}_{n} & =f_{n}\left(x_{n-1}, x_{n}\right), & & g_{2}(x)=\gamma-x_{n}^{2} \geq 0
\end{array}
$$

- Generate locally stable systems of degree three;
- Consider a polynomial Lyapunov function of degree two with a banded pattern

$$
V(x)=V_{1}\left(x_{1}, x_{2}\right)+V_{2}\left(x_{1}, x_{2}, x_{3}\right)+\ldots+V_{n}\left(x_{n-1}, x_{n}\right)
$$

- Then, we consider the following SOS program

Find $\quad V(x), r_{i}(x)$ subject to $V(x)-\epsilon\left(x^{T} x\right)$ is SOS

$$
\begin{aligned}
& -\langle\nabla V(x), f(x)\rangle-\sum_{i=1}^{n} r_{i}(x) g_{i}(x) \text { is SOS } \\
& r_{i}(x) \text { is } \mathrm{SOS}, i=1, \ldots, n .
\end{aligned}
$$

Example 2: Finding Lyapunov functions

Control application: finding Lyapunov functions
Table: CPU time (in seconds) required by Mosek (not very fair)

n	10	15	20	30	40	50
SOS	1.29	18.44	247.84	$*$	$*$	$*$
SSOS	0.55	0.68	0.71	0.83	1.04	1.17
SDSOS	0.71	1.76	4.47	32.21	85.99	257.20
DSOS	0.70	1.42	3.58	35.12	73.64	324.32

[^2]
Conclusion

Take-home message

- Message 1: Imposing structures on matrix Q :

$$
p(x)=v_{d}(x)^{T} Q v_{d}(x), \quad Q \succeq 0
$$

Different choices lead to different inner approximations.

- Message 2: A hierarchy of inner approximations: bridging the gap

$$
\operatorname{DSOS}_{n, 2 d}(\mathcal{E}) \subset \operatorname{SDSOS}_{n, 2 d}(\mathcal{E}) \subset \operatorname{SSOS}_{n, 2 d}(\mathcal{E}) \subseteq \operatorname{SOS}_{n, 2 d}(\mathcal{E})
$$

Maintain the correlative sparsity pattern of $p(x)$ by carefully imposing a sparsity pattern on Q

$$
\begin{array}{ll}
D S O S_{n, 2 d}(\mathcal{E}) & \longrightarrow \\
\text { LP (PSD cones: } 1 \times 1) \\
\operatorname{SDSOS}_{n, 2 d}(\mathcal{E}) & \longrightarrow \\
\text { SOCP (PSD cones: } 2 \times 2) \\
S S O S_{n, 2 d}(\mathcal{E}) & \longrightarrow \\
\text { SDP with smaller PSD cones of } k \times k \\
S O S_{n, 2 d}(\mathcal{E}) & \longrightarrow \\
\text { SDP with a PSD cone of } N \times N
\end{array}
$$

Future work: Exploit the sparsity in the degree of polynomials; Maintain the sparsity structure in the applications of SOS optimization.

Thank you for your attention!

$Q \& A$

- Zheng, Yang, Giovanni Fantuzzi, and Antonis Papachristodoulou. "Sparse sum-of-squares (SOS) optimization: A bridge between DSOS/SDSOS and SOS optimization for sparse polynomials." arXiv preprint arXiv:1807.05463 (2018).

[^0]: **: The program is infeasible.

[^1]: **: The program is infeasible.

[^2]: *: Out of memory.

