Sparse sum-of-squares (SOS) optimization: A bridge between DSOS/SDSOS and SOS optimization for sparse polynomials

Yang Zheng¹, Giovanni Fantuzzi² and Antonis Papachristodoulou³

¹School of Engineering and Applied Science, Harvard University ²Department of Aeronautics, Imperial College London ³Department of Engineering Science, University of Oxford

> ACC 2019, Philadelphia, USA July 12, 2019

Outline

- 1 Introduction: sum-of-squares (SOS) optimization
- 2 Improving scalability via imposing structures on matrix Q
- Bridging the gap via exploiting chordal sparsity
- 4 Numerical examples

Introduction: sum-of-squares optimization

Optimization over nonnegative polynomials

Motivation: Is $p(x) \ge 0$ over $\{x \in \mathbb{R}^n \mid g_1(x) \ge 0, \dots, g_m(x) \ge 0\}$? This has a wide range of applications.

• **Optimization:** Lower bounds on polynomial optimization problems

• **Control:** Verifying asymptotic stability, finding region of attractions *etc*.

- Bernard, Lasserre Jean. Moments, positive polynomials and their applications. Vol. 1. World Scientific, 2009.
- Blekherman, Grigoriy, Pablo A. Parrilo, and Rekha R. Thomas, eds. Semidefinite optimization and convex algebraic geometry. Society for Industrial and Applied Mathematics, 2012.

How would you prove nonnegativity? SOS \rightarrow SDP

Main question: How to verify a polynomial p(x) is non-negative $\forall x \in \mathbb{R}^n$?

This question is Not easy! (In fact, NP-hard for degree ≥ 4)

• Sum-of-squares (SOS) polynomials: p(x) can be represented as a sum of finite squared polynomials $f_i(x), i = 1, ..., m$

$$p(x) = \sum_{i=1}^{m} f_i^2(x),$$

• SDP characterization (Parrilo, Lasserre etc.): p(x) is SOS if and only if there exists $Q \succeq 0$,

$$p(x) = v_d(x)^T Q v_d(x).$$

where $v_d(x) = [1, x_1, x_2, \dots, x_n, x_1^2, x_1 x_2, \dots, x_n^d]^T$ is the standard monomial basis.

• Scalability issue: The size of the resulting SDP is

$$\binom{n+d}{d} \times \binom{n+d}{d},$$

e.g. $n = 10, d = 4 \rightarrow 1001.$

Harvard John A. Paulson School of Engineering

Introduction: sum-of-squares (SOS) optimization

Improving scalability via imposing structures on matrix ${\boldsymbol{Q}}$

Linear program

second-order cone program

Imposing structures on matrix Q

SOS polynomials

 $p(x) = v_d(x)^T Q v_d(x), \qquad Q \succeq 0$

Inner approximations (Amadhi & Anirudha, 2019)

1. Q is diagonally dominant (dd).

$$Q_{ii} \ge \sum_{j=1, j \neq i}^{N} Q_{ij}, \forall i$$

 \rightarrow linear program

2. Q is scaled diagonally dominant (sdd).

 $\begin{array}{l} \exists \text{ diagonal } D\succeq 0,\\ \text{ s.t.} DQD \text{ is } \text{ dd} \end{array} \rightarrow$

second-order cone program.

3. Other methods based on symmetry/sparsity of the polynomial p(x), *e.g.*, Gatermann & Parrilo, 2004; Waki, Kim, Kojima, & Muramatsu, 2006.

 Ahmadi, Amir Ali, and Anirudha Majumdar. "DSOS and SDSOS optimization: more tractable alternatives to sum of squares and semidefinite optimization." SIAM Journal on Applied Algebra and Geometry 3.2 (2019): 193-230.

chool of Engineering

and Applied Sciences

The gap between DSOS/SDSOS and SOS

A brief summary

- **SOS:** $p(x) = v_d(x)^T Q v_d(x) : Q$ is PSD \longrightarrow SDP
- **SDSOS:** $p(x) = v_d(x)^T Q v_d(x) : Q$ is sdd \longrightarrow SOCP
- **DSOS:** $p(x) = v_d(x)^T Q v_d(x) : Q \text{ is dd } \longrightarrow \mathsf{LP}$

Another viewpoint

- **SDP**: involves PSD constraints of dimension $N \times N$
- **SOCP**: involves PSD constraints of dimension 2×2
- LP: involves PSD constraints of dimension 1×1

What is missing? How about problems that involve PSD constraints of dimension $k\times k$, where $1\leq k\leq N$

- One approach: factor-width k matrices (Boman, et al. 2005) Not practical $\binom{n}{k}=\mathcal{O}(n^k)$
- Chordal decomposition by exploiting problem sparsity \longrightarrow the main topic today.

School of Engineering and Applied Sciences

Bridging the gap via exploiting chordal sparsity

- Chordal decomposition

 Vandenberghe, Lieven, and Martin S. Andersen. "Chordal graphs and semidefinite optimization." Foundations and Trends in Optimization 1.4 (2015): 241-433.

Sparsity in polynomials

• Question: How to describe the sparsity in a polynomial

$$p(x) = x_1^2 + x_1 x_2 + x_2^2 x_3^2$$

• Correlative sparsity pattern: (Waki et al, 2006) a symmetric matrix $csp(p) \in \mathbb{S}^n$

$$[\operatorname{csp}(p)]_{ij} = \begin{cases} 1, & \text{if } i = j \text{ or } \exists \alpha \mid \alpha_i, \alpha_j \ge 1 \text{ and } c_\alpha \neq 0, \\ 0, & \text{otherwise.} \end{cases}$$

For example, we have

$$\operatorname{csp}(p(x) = x_1^2 + x_1 x_2 + x_2^2 x_3^2) = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

 $\bullet\,$ Describe the pattern of $\operatorname{csp}(p)\in\mathbb{S}^n$ as an undirected graph

Define a set of sparse SOS polynomials as

$$SOS_{n,2d}(\mathcal{E}) := \{p(x) \mid csp(p) \in \mathbb{S}^n(\mathcal{E}, 0)\} \cap SOS_{n,2d}$$

Question: How to use the graph information?

$$p(x) = x_1^2 + x_1 x_2 + x_2^2 x_3^2$$
 (x1) (x2) (x3)

• Motivation from matrix decomposition (a special case of chordal decomposition)

$$\underbrace{\begin{bmatrix} * & * & 0 \\ * & * & * \\ 0 & * & * \end{bmatrix}}_{\geq 0} = \underbrace{\begin{bmatrix} * & * & 0 \\ * & * & 0 \\ 0 & 0 & 0 \end{bmatrix}}_{\geq 0} + \underbrace{\begin{bmatrix} 0 & 0 & 0 \\ 0 & * & * \\ 0 & * & * \end{bmatrix}}_{\geq 0}$$

• Imposing a sparsity structure on Q: A sparse polynomial $p(x) \in SOS_{n,2d}(\mathcal{E})$ does not necessarily means a sparse Q

$$p(x) = \sum_{\beta,\gamma \in \mathbb{N}_d^n} Q_{\beta,\gamma} x^{\beta+\gamma} = \sum_{\alpha \in \mathbb{N}_{2d}^n} \left(\sum_{\beta+\gamma=\alpha} Q_{\beta,\gamma} \right) x^{\alpha}.$$

Harvard John A. Pau School of Engineeri and Applied Sciences

Recall

$$p(x) = v_d^{\mathsf{T}}(x)Qv_d(x) = \sum_{\beta,\gamma \in \mathbb{N}_d^n} Q_{\beta,\gamma} x^{\beta+\gamma}, \qquad Q \succeq 0.$$

Our key idea: Imposing sparsity in matrix Q:

• Define as subset of

$$SSOS_{n,2d}(\mathcal{E}) \subset SOS_{n,2d}(\mathcal{E})$$

by imposing $Q_{\beta,\gamma} = 0$ if $x^{\beta+\gamma}$ violates the correlative sparsity pattern \mathcal{E} . Example 1: Quadratic polynomials

$$p(x) = x_1^2 + 2x_1x_2 + 2x_2^2 + 2x_2x_3 + x_3^2 = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \underbrace{\begin{bmatrix} * & * & 0 \\ * & * & * \\ 0 & * & * \end{bmatrix}}_{Q \succeq 0} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
$$= \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \left(\underbrace{\begin{bmatrix} * & * & 0 \\ * & * & 0 \\ 0 & 0 & 0 \end{bmatrix}}_{\succeq 0} + \underbrace{\begin{bmatrix} 0 & 0 & 0 \\ 0 & * & * \\ 0 & * & * \end{bmatrix}}_{\succeq 0} \right) \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
$$= (x_1 + x_2)^2 + (x_2 + x_3)^2 \in SSOS_{3,2}(\mathcal{E}).$$

Harvar School and Ap

School of Engineering and Applied Sciences

Our key idea: Imposing sparsity in matrix Q:

Define as subset of

$$SSOS_{n,2d}(\mathcal{E}) \subset SOS_{n,2d}(\mathcal{E})$$

by imposing $Q_{\beta,\gamma} = 0$ if $x^{\beta+\gamma}$ violates the correlative sparsity pattern \mathcal{E} . **Example 2:** Quartic polynomials

and Applied Sciences

chool of Engineering

Result 1: Sparse polynomial decomposition

Let $\mathcal{G}(\mathcal{V},\mathcal{E})$ be a chordal graph with maximal cliques $\mathcal{C}_1,\ldots,\mathcal{C}_t.$ Then,

$$p(x) \in SSOS_{n,2d}(\mathcal{E}) \iff p(x) = \sum_{k=1}^{t} p_k(E_{\mathcal{C}_k}x),$$

where $p_k(E_{\mathcal{C}_k}x)$ is SOS that depends on a subset of the variable x.

• The proof is easy: since Q is sparse by definition, then applying chordal decomposition leads to the result;

$$p(x) = v_d^{\mathsf{T}}(x)Qv_d(x) = v_d^{\mathsf{T}}(x)(Q_1 + Q_2 + \dots + Q_t)v_d(x) = \sum_{k=1}^t v_d^{\mathsf{T}}(x)Q_kv_d(x) = \sum_{k=1}^t p_k(E_{\mathcal{C}_k}x)$$

• This result is the same as the correlative sparsity technique by Waki et al. 2006.

Harvard John A. Paulson School of Engineering and Applied Sciences

Summary: LP/SOCP/SDP

Result 2: A hierarchy of inner approximations:

For any sparsity pattern $\ensuremath{\mathcal{E}}$, we have the following inclusion relationship

 $DSOS_{n,2d}(\mathcal{E}) \subset SDSOS_{n,2d}(\mathcal{E}) \subset SOS_{n,2d}(\mathcal{E}) \subseteq SOS_{n,2d}(\mathcal{E})$

- Proof idea: if a matrix is (scaled) diagonally dominant, then it is still (scaled) diagonally dominant when replacing any off-diagonal elements with zeros.
- A brief summary (scalability):

Solution quality: $\mathcal{P}_{dsos}, \mathcal{P}_{sdsos}$ and \mathcal{P}_{ssos} are a sequence of inner approximations with increasing accuracy to the SOS problem \mathcal{P}_{sos} , meaning that

$$f^*_{\rm dsos} \ge f^*_{\rm sdsos} \ge f^*_{\rm ssos} \ge f^*_{\rm sos},$$

Implementations and numerical comparison

Packages

- SOS optimization: SOSTOOLS, YALMIP
- DSOS/SDSOS optimization: SPOTLESS
- Chordal decomposition: YALMIP (we adapted the option of correlative sparsity technique)
- SDP solver: Mosek

Numerical examples and applications

- Polynomial optimization: eigenvalues bounds on polynomial matrices
- Control application: finding Lyapunov functions

Example 1: Polynomial optimization problems

Eigenvalue bounds on matrix polynomials

$$\begin{array}{ll} \min_{\gamma} & \gamma \\ \text{subject to} & P(x) + \gamma I \succeq 0, \forall x \in \mathbb{R}^2 \end{array}$$

where n = 2, 2d = 2, the polynomial is randomly generated. P(x) has an arrow pattern.

Dimension r	10	20	30	40	50	60	70	80
SOS	1.447	4.813	5.917	4.154	21.61	10.09	7.364	10.19
SSOS	1.454	4.878	5.917	4.498	21.64	12.71	7.558	11.39
SDSOS	40.1	279.3	1254.4	145.5	762.8	1521.1	1217.3	598.0
DSOS	**	**	**	**	**	**	**	**

Table: Optimal value γ

**: The program is infeasible.

Example 1: Polynomial optimization problems

Eigenvalue bounds on matrix polynomials

$$\begin{array}{ll} \min_{\gamma} & \gamma \\ \text{subject to} & P(x) + \gamma I \succeq 0, \forall x \in \mathbb{R}^2 \end{array}$$

where n = 2, 2d = 2, the polynomial is randomly generated. P(x) has an arrow pattern.

Table: CPU time (in seconds) required by Mosek (not very fair)

Dimension r	10	20	30	40	50	60	70	80
SOS	0.30	1.33	6.64	27.3	108.1	308.7	541.3	1018.6
SSOS	0.34	0.34	0.35	0.35	0.33	0.32	0.32	0.33
SDSOS	0.47	0.63	1.09	1.29	2.67	3.70	4.40	6.02
DSOS	**	**	**	**	**	**	**	**

**: The program is infeasible.

Example 2: Finding Lyapunov functions

Control application: finding Lyapunov functions

• Consider a dynamical system with a banded pattern

$$\begin{split} \dot{x}_1 &= f_1(x_1, x_2), \qquad g_1(x) = \gamma - x_1^2 \ge 0 \\ \dot{x}_2 &= f_2(x_1, x_2, x_3), \qquad g_2(x) = \gamma - x_2^2 \ge 0 \\ \vdots \\ \dot{x}_n &= f_n(x_{n-1}, x_n), \qquad g_2(x) = \gamma - x_n^2 \ge 0 \end{split}$$

- Generate locally stable systems of degree three;
- Consider a polynomial Lyapunov function of degree two with a banded pattern

$$V(x) = V_1(x_1, x_2) + V_2(x_1, x_2, x_3) + \ldots + V_n(x_{n-1}, x_n)$$

• Then, we consider the following SOS program

Find
$$V(x), r_i(x)$$

subject to $V(x) - \epsilon(x^T x)$ is SOS
 $- \langle \nabla V(x), f(x) \rangle - \sum_{i=1}^n r_i(x)g_i(x)$ is SOS
 $r_i(x)$ is SOS, $i = 1, \dots, n$.

Harvard John A. Paulson School of Engineering and Applied Sciences

Numerical examples

Example 2: Finding Lyapunov functions

Control application: finding Lyapunov functions

Table: CPU time (in seconds) required by Mosek (not very fair)

$n \mid$	10	15	20	30	40	50
SOS	1.29	18.44	247.84	*	*	*
SSOS	0.55	0.68	0.71	0.83	1.04	1.17
SDSOS	0.71	1.76	4.47	32.21	85.99	257.20
DSOS	0.70	1.42	3.58	35.12	73.64	324.32

*: Out of memory.

Conclusion

Take-home message

• Message 1: Imposing structures on matrix Q:

$$p(x) = v_d(x)^T Q v_d(x), \qquad Q \succeq 0$$

Different choices lead to different inner approximations.

• Message 2: A hierarchy of inner approximations: bridging the gap

 $DSOS_{n,2d}(\mathcal{E}) \subset SDSOS_{n,2d}(\mathcal{E}) \subset SSOS_{n,2d}(\mathcal{E}) \subseteq SOS_{n,2d}(\mathcal{E})$

Maintain the correlative sparsity pattern of $p(\boldsymbol{x})$ by carefully imposing a sparsity pattern on \boldsymbol{Q}

$DSOS_{n,2d}(\mathcal{E})$	\longrightarrow	LP (PSD cones: 1×1)
$SDSOS_{n,2d}(\mathcal{E})$	\longrightarrow	SOCP (PSD cones: 2×2)
$SSOS_{n,2d}(\mathcal{E})$	\longrightarrow	SDP with smaller PSD cones of $k \times k$
$SOS_{n,2d}(\mathcal{E})$	\longrightarrow	SDP with a PSD cone of $N\times N$

Future work: Exploit the sparsity in the degree of polynomials; Maintain the sparsity structure in the applications of SOS optimization.

Conclusion

Thank you for your attention!

Q & A

 Zheng, Yang, Giovanni Fantuzzi, and Antonis Papachristodoulou. "Sparse sum-of-squares (SOS) optimization: A bridge between DSOS/SDSOS and SOS optimization for sparse polynomials." arXiv preprint arXiv:1807.05463 (2018).