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Motivation

J Model-free methods and data-driven control

* Use direct policy updates

 Become very popular in both academia and practice, from game playing, robotics,
and drones, etc.

DeepMind

Duan et al. 2016; Silver et al., 2017; Dean et al., 2019; Tu and Recht, 2019;
Mania et al., 2019; Fazel et al., 2018; Recht, 2019;



Motivation

J Model-free methods and data-driven control

Apply a control Accumulate
strategy observed data

Refine the
control strategy

Opportunities Challenges
* Directly search over a given policy class * Lack of non-asymptotic performance
* Directly optimize performance on the true guarantees

system, bypassing the model estimation » Convergence

» Suboptimality
» Sample complexity, etc.

N/

** Highly nontrivial even for linear dynamical systems



Today’s talk

] Linear Quadratic Gaussian Control

Gaussian white

t), v(t
M» Linear system
u(t) _ y(t)
—> i(t) = Ax(t)+ Bu(t)+w(t)
y(t) = Ca(t) + v(t)
Control Feedback <I\/Ieasuremenl
input controller

Direct policy iteration K¢+1 = K; — aiVJ(Ki)

Apply a control
strategy

Refine the
control strategy

Accumulate
observed data

[ A classical control problem, rich theory in
classical control (model-based)

U Many practical applications
O Allows partial observation of the state

* Perfect state observation is often not available

LQG as a non-convex optimization problem

mlin J(K)

s.t. K=(4k, Bk, Ck) € Cr

v’ Does it converge at all?
v Converge to which point?
v' How to escape saddle points?



Outline

J LQG problem setup
] Stationary points and strict saddle points
] Escaping saddle points via perturbations

J Conclusions



LQG Problem Setup

v(t)  Gaussian white  w(t)

l !

Plant
©(t) = Az(t) + Bu(t) + w(t)
y(t) = Cx(t) + v(t)

y(t)

u(t)

Standard
Assumption

dynamical controller
K= (AK7 BK7 CK)

(A, B), (A,W1/2) Controllable
(C,A), (Q'/2, A) Observable

Objective: The LQG cost

1 T
lim —]E/ (z' Qx4+ u' Ru)dt

> £(t) internal state of the controller
» dim£(t) order of the controller

> dim&(t) = dim z(t) full-order

> dim&(t) < dimz(t) reduced-order

Minimal controller

The input-output behavior cannot be

replicated by a lower order controller.

*(Ak, Bk, Ck) controllable and observable



Separation principle

v(t)  Gaussian white  w(t)

l !

Plant

vit) | €(t) = Ac€(t) + Bey(®) | ult

dynamical controller
K= (AK7 BK7 CK)

Explicit dependence on the dynamics

Objective: The LQG cost
1

T
TETOO T]E/o (2" Qz +u' Ru)dt

Solution: Kalman filter for state estimation
+ LQR based on the estimated state

§ =(A—-BK){+ L(y — C%),
u=—KE¢.

Two Riccati equations
> Kalmangain [, = PCTy !
AP+ PAT — PC'V'CP+W =0,
> Feedbackgain K — R~1BTS
A'S+SA—SBR'B'S+Q=0



Model-free Optimization formulation

1 Closed-loop dynamics
LQG as a non-convex optimization problem

dlz] T A BCK:ZL‘ I 0] [w :

dt € = BkC  Ag ]:[J T {0 BK] [,U] : e J(K)
_y_ B C:__O__;c__'_ v S.t. KZ(AK,BK,CK) € Crull
U 10 OK 5 0]

(1 Feasible region of the controller parameters
Ceunl = {K K = (A, Bk, Ck) is full order

A BCk
BxC Ak

Direct policy iteration K¢+1 = K; — Offz'VJ(K'i)

VJ(K;) =0
} 1s Hurwitz Stable}

Q1: Structure of stationary

points

1 T
[ Cost function lim T]E / (2" Qx + u' Ru)dt
0

T—+4+o0

0 w0
J(K) = tr ([%2 C;RCK] XK) = tr ({ 0 BKVBT] YK) Q2: How to escape saddle

points

Xk, Yk Solution to Lyapunov equations



Outline

] Stationary points and strict saddle points



Structure of stationary points

How does the set of Stationary O Non-unique, non-isolated O Existence of high-order
Points look like? J saddle points
", | A T (K +tA)
G 8J(K) —0 3 ) 0.8336]
8AK Ny’ ? 0.8335}
0J(K) 1
KeC o — 07 0 0.8334
\ full | 57 > ~
2I(K) _ L
L 8OK 4 004 -0.02 002 004 o

Good news: All stationary points corresponding to controllable and observable

controllers are globally optimum (Tang, Zheng, Li, 2021).

O Theorem 1 (informal): all bad stationary points are in the same form

0 CK N 0 | CK D
If K= € C,, is a stationary point but not minimal, then K= | B, "A, 0 | €Cn is
BK AK A 0 | 0 A
also a stationary point with the same LQG cost, where K = [ B(’) S{K e C, is @ minimal realization
K K 10



Structure of stationary points

O Theorem 1 (informal): all bad stationary points are in the same form

N

( 0J(K) )
0Ax 0, a stationary point
0J(K) 0 C
KelC u = U, _ K
full 9B« 0, ¢ K= |:BK AK] cC,
0J(K) 0
\ OCx

Proof idea: K and K corresponds to the same transfer
function in the frequency domain

CK(SI — AK)_IBK = OK(SI — AK)_léK

Thus, they have the same LQG cost, and the new controller
remains a stationary point

If it is minimal, then it is globally optimal

If it is not minimal, find a minimal realization

. 0 Ok
K : -~ ~
{ B AJ e C,

The following full-order controller with any
stable A is also a stationary point with the
same LQG cost

11



Strict saddle points

, 9I(K) p §
Ak % a stationary point The same erm
0J (K) - [0k 0
< =0 =5 S K= 1" Be A cC,
9 il "5 B, K= |:BK AK] 2, 15;{ | ;{1;{ K
2I(K) . . )
. 8C’K )

O Theorem 2 (informal): Under a mild condition, choosing the diagonal stable block A
randomly leads to a strict saddle point with probability 1

v’ Strict saddle points: the hessian has a strict negative
eigenvalue (i.e., escaping direction)

- “

P . . .
v" Non-strict (high-order) saddle points: no such

Minimizer Saddle Maximizer . . . . . . .

V20> 0 e g V20 <0 escaping direction, i.e., minimum eigenvalue is zero.

Amax V¥ > 0 v' Simple perturbed gradient descent (PGD) methods can

oneriHeal Folntl¥ve B Selticel Solnlaiy o= 1) escape strict saddle points efficiently (e.g., Jin et al., 2017)

Figure taken from Zhang et al., 2020 Jin, C., Ge, R., Netrapalli, P., Kakade, S. M., & Jordan, M. I. (2017, July). How to escape saddle points ,,

efficiently. In International Conference on Machine Learning (pp. 1724-1732). PMLR.



Strict saddle points

Theorem 2: consider a stationary point of the form

We can compute a transfer function G(s) := C(sl — A )™

Q If K is globally optimal, then the transfer function above is identically zero for all s.

Q If G(s) is not identically zero, then choosing the diagonal stable block A randomly leads to a
strict saddle point with probability 1

Proof idea: Example
Hess g (A A Hess (AW, A2)

2 0 1 2
HeSSR(A(l),A(2)) Hess - (A(z) A(2)) €S L O] €S

v The diagonal entries is always 0,

v" while the off-diagonal entries can be nonzero if G(s) is
not identically zero

A+ Ao = 0,00 = —

13



LQG example

Any zero controller is a stationary point

5(2s — 1)

G(S) = Ocl(SI — A;I;)_ch]

O Choosing a random A leads to a strict saddle point.
0 For example, when A = —diag(0.5,0.1) | the hessian - 6

has eigenvalues Minimizer Saddle Maximizer
. Vip>0 Riin Vo< ) Vip <0
A1 = 0.0561, Ay = —0.0561,\; =0, =3,...,8 Amax V20 > 0

Critical Points (V¢ = 0)

T 108(2s +3s+ 1)

14



Outline

J Escaping saddle points via perturbations
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Perturbed Gradient Descent

U Theorem 1 (informal): all bad stationary points are in the same form

U Theorem 2 (informal): Choosing the diagonal stable block A randomly leads to a
strict saddle point with probability almost 1

Our idea: a structural perturbation + standard PGD

A high-order A strict saddle point Standard PGD algorithm
saddle with the same LQG cost (Jin et al., 2017)
Perturbation on A Perturbation on gradients

v Jin, C., Ge, R., Netrapalli, P., Kakade, S. M., & Jordan, M. I. (2017, July). How to escape saddle points efficiently.

In International Conference on Machine Learning (pp. 1724-1732). PMLR.
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Numerical examples

Three policy gradient algorithms

1. Vanilla gradient descent K; 1 = K; — a; VJ(K;)

2. Standard PGD algorithm (adding a small random perturbation on iterates; Jin et al., 2017;)

3. Structural perturbation + standard PGD

Example: System dynamics
—0.5 0 — 1l 1 11
A:{0.5 —1]’3211]’0:[_6 12)

Performance weights
W=Q=1,V=R=1

A point that is close to a high-order saddle with zero hessian

0

0.01] , Ck,0=[0,-0.01]

Ak o=—0.515, Bxo= [

1073

— —
o o
l‘“‘ )JL

Suboptimality (J; — J*)/J*

—
i
[=2]

1077
0

Our Algorithm

5000

10000 15000
Iterations

Standard PGD Vanilla GD

17



J Conclusions

Outline
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Summary

Gaussian white
w(t),v(t)
—_—

Linear system . LQG as a non-convex optimization problem
ult) (1) = A(t)+ Bu(t)+w(t) — , K
y(t) = Ca(t) + v(t) e J(K)
s.t. K=(A4k, Bk, Ck) € Cr
Control Feedback <I\/Ieasurememt
input controller
L Message 1: all bad stationary points are in the 0 Message 3: Escaping saddle points for LQG control
same form . i
0 ' 0 A strict saddle point Standard PGD algorithm
N g S with the same LQG cost + Jin et al.. 2017
K= BK | AK 0 € C“ ( ! ’ )
0 0 A Perturbation on A Perturbation on gradients

0 Message 2: Choosing the diagonal stable block A Ongoing and future work

randomly leads to a strict saddle point with v' Convergence proof of perturbed policy gradient (PGD)
probability almost 1 v' More quantitative analysis of PGD algorithms

v' Alternative model-free parametrization 19



Escaping High-order Saddles in Policy Optimization for
Linear Quadratic Gaussian (LQG) Control

Thank you for your attention!

Q&A

20
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