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Motivation

2

❑ Model-free methods and data-driven control 
• Use direct policy updates 

• Become very popular in both academia and practice, from game playing, robotics, 
and drones, etc.

DeepMind OpenAI Applications

Duan et al. 2016; Silver et al., 2017; Dean et al., 2019; Tu and Recht, 2019; 
Mania et al., 2019; Fazel et al., 2018; Recht, 2019; 



Motivation
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❑ Model-free methods and data-driven control 

Apply a control 

strategy

Accumulate 

observed data

Refine the 

control strategy

• Lack of non-asymptotic performance 
guarantees 

➢ Convergence

➢ Suboptimality

➢ Sample complexity, etc. 

❖ Highly nontrivial even for linear dynamical systems

• Directly search over a given policy class

• Directly optimize performance on the true 
system, bypassing the model estimation

Opportunities Challenges



Today’s talk
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❑ Linear Quadratic Gaussian Control

Linear system

Feedback 

controller

MeasurementControl 

input

Gaussian white

LQG as a non-convex optimization problem

Direct policy iteration

✓ Does it converge at all?

✓ Converge to which point?

✓ How to escape saddle points?

❑ A classical control problem, rich theory in 

classical control (model-based)

❑Many practical applications 

❑ Allows partial observation of the state

• Perfect state observation is often not available



Outline

❑ LQG problem setup

❑ Stationary points and strict saddle points

❑ Escaping saddle points via perturbations

❑ Conclusions
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LQG Problem Setup
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Gaussian white

➢ order of the controller

➢ full-order

➢ reduced-order

Plant

w(t)v(t)

dynamical controller

➢ internal state of the controller

u(t)y(t)

Minimal controller

The input-output behavior cannot be 

replicated by a lower order controller.

*                       controllable and observable

Controllable

Observable

Standard 
Assumption

Objective: The LQG cost



Separation principle
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Gaussian white

Plant

w(t)v(t)

dynamical controller

u(t)y(t)

Solution: Kalman filter for state estimation 
+ LQR based on the estimated state

Two Riccati equations

➢ Kalman gain

➢ Feedback gain
Explicit dependence on the dynamics

Objective: The LQG cost



LQG as a non-convex optimization problem

Model-free Optimization formulation
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❑ Closed-loop dynamics

❑ Feasible region of the controller parameters 

❑ Cost function

Solution to Lyapunov equations

Q1: Structure of stationary 
points

Q2: How to escape saddle 
points

Direct policy iteration



Outline
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❑ LQG problem setup

❑ Stationary points and strict saddle points

❑ Escaping saddle points via perturbations

❑ Conclusions



Structure of stationary points
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How does the set of Stationary 
Points look like?

❑ Non-unique, non-isolated ❑ Existence of high-order 

saddle points 

❑ Theorem 1 (informal): all bad stationary points are in the same form

If                                       is a stationary point but not minimal, then                                         is 

also a stationary point with the same LQG cost, where                                  is a minimal realization  

Good news: All stationary points corresponding to controllable and observable 
controllers are globally optimum (Tang, Zheng, Li, 2021).



Structure of stationary points
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❑ Theorem 1 (informal): all bad stationary points are in the same form

a stationary point

If it is minimal, then it is globally optimal

If it is not minimal, find a minimal realization

The following full-order controller with any 

stable     is also a stationary point with the 

same LQG cost

Proof idea:     and      corresponds to the same transfer 

function in the frequency domain

Thus, they have the same LQG cost, and the new controller 

remains a stationary point 



Strict saddle points
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a stationary point

❑ Theorem 2 (informal): Under a mild condition, choosing the diagonal stable block     

randomly leads to a strict saddle point with probability 1

Figure taken from Zhang et al., 2020

✓ Strict saddle points: the hessian has a strict negative 

eigenvalue (i.e., escaping direction) 

✓ Non-strict (high-order) saddle points: no such 

escaping direction, i.e., minimum eigenvalue is zero. 

✓ Simple perturbed gradient descent (PGD) methods can 
escape strict saddle points efficiently (e.g., Jin et al., 2017) 

The same form

Jin, C., Ge, R., Netrapalli, P., Kakade, S. M., & Jordan, M. I. (2017, July). How to escape saddle points 
efficiently. In International Conference on Machine Learning (pp. 1724-1732). PMLR.



Strict saddle points
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Theorem 2: consider a stationary point of the form

We can compute a transfer function

❑ If      is globally optimal, then the transfer function above is identically zero for all s.

❑ If          is not identically zero, then choosing the diagonal stable block     randomly leads to a 

strict saddle point with probability 1

Proof idea:

✓ The diagonal entries is always 0, 

✓ while the off-diagonal entries can be nonzero if           is 

not identically zero

Example



LQG example
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Performance weights

Any zero controller is a stationary point

❑ Choosing a random     leads to a strict saddle point. 

❑ For example, when                                 , the hessian 

has eigenvalues

Example: System dynamics



Outline
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❑ LQG problem setup

❑ Stationary points and strict saddle points

❑ Escaping saddle points via perturbations

❑ Conclusions



Perturbed Gradient Descent
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Our idea: a structural perturbation + standard PGD

A strict saddle point 
with the same LQG cost

A high-order 
saddle 

❑ Theorem 1 (informal): all bad stationary points are in the same form

❑ Theorem 2 (informal): Choosing the diagonal stable block     randomly leads to a 

strict saddle point with probability almost 1

Standard PGD algorithm 
(Jin et al., 2017)

Perturbation on Perturbation on gradients 

✓ Jin, C., Ge, R., Netrapalli, P., Kakade, S. M., & Jordan, M. I. (2017, July). How to escape saddle points efficiently. 

In International Conference on Machine Learning (pp. 1724-1732). PMLR.



Numerical examples
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A point that is close to a high-order saddle with zero hessian

Performance weights

Example: System dynamics

Three policy gradient algorithms

1. Vanilla gradient descent

2. Standard PGD algorithm (adding a small random perturbation on iterates; Jin et al., 2017;)

3. Structural perturbation + standard PGD
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Outline

❑ LQG problem setup

❑ Stationary points and strict saddle points

❑ Escaping saddle points via perturbations

❑ Conclusions
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Summary

Linear system

Feedback 

controller

MeasurementControl 

input

Gaussian white

LQG as a non-convex optimization problem

❑ Message 1: all bad stationary points are in the 

same form
A strict saddle point 

with the same LQG cost
Standard PGD algorithm 

(Jin et al., 2017)

Perturbation on Perturbation on gradients 

❑ Message 3: Escaping saddle points for LQG control

✓ Convergence proof of perturbed policy gradient (PGD)

✓ More quantitative analysis of PGD algorithms

✓ Alternative model-free parametrization

Ongoing and future work
❑ Message 2: Choosing the diagonal stable block        

randomly leads to a strict saddle point with 

probability almost 1



Thank you for your attention!

Q & A

Escaping High-order Saddles in Policy Optimization for 

Linear Quadratic Gaussian (LQG) Control
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