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Stability and Stabilization

An autonomous system xt+1 = Axt is asymptotically stable if and only if A is
Schur stable, i.e.,

|λi(A)| < 1, i = 1, . . . n.

Stabilization
xt+1 = Axt + But

yt = Cxt

▶ Static state feedback ut = Kxt stabilizes the system if and only if

|λi(A + BK)| < 1, i = 1, . . . n.

▶ Dynamical output feedback u = Ky with

ξt+1 = AKξt + BKyt

ut = CKξt + DKyt

⇒
[

xt+1
ξt+1

]
=

[
A + BDKC BCK

BKC AK

] [
xt

ξt

]
,

K stabilizes the system if and only if∣∣∣∣λi

([
A + BDKC BCK

BKC AK

])∣∣∣∣ < 1
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Non-convexity

The set of stabilizing (static or dynamical) controllers is non-convex.

▶ Static state feedback: ut = Kxt

C1 = {K ∈ Rm×n | A + BK is Schur stable}

▶ Dynamical output feedback u = Ky with K = CK(zI − AK)−1BK + DK

C2 = {(AK, BK, CK, DK) |
[

A + BDKC BCK
BKC AK

]
is Schur stable}

(a) C2: Connected (b) C2: Disconnected 1

1Figure from Tang, Y., Zheng, Y. & Li, N. (2021). Analysis of the optimization
landscape of Linear Quadratic Gaussian (LQG) control. preprint arXiv:2102.04393.
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Input-output responses
▶ Dynamics and controller K = CK(zI − AK)−1BK + DK with noises

xt+1 = Axt + But + δxt ,

yt = Cxt + δyt ,
+

ξt+1 = Akξt + Bkyt,

ut = Ckξt + Dkyt + δut ,

▶ Closed-loop responses from (δx, δy, δu) to (x, y, u) as[x
y
u

]
=

[Φxx Φxy Φxu

Φyx Φyy Φyu

Φux Φuy Φuu

] [
δx

δy

δu

]
,

where Φxx = (zI − A − BKC)−1 and

Φxy = ΦxxBK, Φxu = ΦxxB,

Φyx = CΦxx, Φyy = CΦxxBK + I,

Φyu = CΦxxB, Φux = KCΦxx,

Φuy = K(CΦxxBK + I), Φuu = KCΦxxB + I.

Closed-loop convexity: Enforcing stability becomes a “convex” constraint in
certain closed-loop responses (Boyd & Barratt, 1991).
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Closed-loop convexity and Today’s Talk

P11 P12
P21 P22

K

�z � w

y
-

u

�

⇒
Φxx Φxy Φxu

Φyx Φyy Φyu

Φux Φuy Φuu

Φ

�z � w

Figure: Closed-loop optimization: instead of optimizing control policies K (left), we
directly optimize the closed-loop behavior Φ (right).
Classical and recent approaches
▶ Youla parameterization (Youla, Jabr, and Bongiorno, 1976)
▶ System-level parameterization (Wang, Matni, and Doyle, 2019)
▶ Input-output parameterization (Furieri, Zheng, Papachristodoulou, and

Kamgarpour, 2019)

Challenge: Despite being convex, closed-loop responses are infinitely
dimensional.
▶ Finite-dimensional approximations (such as FIR truncation) are inefficient

and impractical.
▶ No efficient numerical methods for computation!
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Closed-loop convexity

Closed-loop responses

[x
y
u

]
=

[Φxx Φxy Φxu

Φyx Φyy Φyu

Φux Φuy Φuu

] [
δx

δy

δu

]
,

Theorem (System-level parameterization (Wang, Matni, and Doyle, 2019))
Output-feedback controller u = Ky stabilizes the system if and only if

[
Φxx Φxy

Φux Φuy

]
∈ RH∞ and

[
zI − A −B

] [
Φxx Φxy

Φux Φuy

]
=

[
I 0

]
,[

Φxx Φxy

Φux Φuy

] [
zI − A

−C

]
=

[
I
0

]
,

Theorem (Input-output parameterization (Furieri, et al., 2019))
Output-feedback controller u = Ky stabilizes the system if and only if

[
Φyy Φyu

Φuy Φuu

]
∈ RH∞ and

[
I −G

] [
Φyy Φyu

Φuy Φuu

]
=

[
I 0

]
,[

Φyy Φyu

Φuy Φuu

] [
−G

I

]
=

[
0
I

]
.
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Youla parameterization

A collection of stable transfer functions, Ul, Vl, Nl, Ml, Ur, Vr, Nr, Mr is
called a doubly co-prime factorization of G if

G = NrM−1
r = M−1

l Nl

and [
Ul −Vl

−Nl Ml

] [
Mr Vr

Nr Ur

]
= I.

Theorem (Youla parameterization (Youla, et al., 1976))
Output-feedback controller u = Ky stabilizes the system if and only if

K = (Vr − MrQ)(Ur − NrQ)−1 and Q ∈ RH∞

A simple observation
▶ Define X = Ur − NrQ, and Y = Vr − MrQ. Then, we have

MlX − NlY = I, X, Y ∈ RH∞
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A variant of Youla parameterization

Theorem
Output-feedback controller u = Ky stabilizes the system if and only if

K = YX−1 and MlX − NlY = I, X, Y ∈ RH∞

Two features:
▶ This parameterization only has one affine constraint.
▶ The equality does not need to hold exactly.

Theorem
Output-feedback controller u = Ky stabilizes the system if and only if there
exist X and Y in RH∞ such that

∥MlX − NlY − I∥∞ < 1. (1)

If (1) holds, then K = YX−1 internally stabilizes G.

Closed-loop convexity and parameterizations 10/21



Outline

Introduction: stability and non-convexity

Closed-loop convexity and parameterizations

A filtering perspective and LMI formulation

Conclusions and future work

A filtering perspective and LMI formulation 11/21



A filtering perspective

▶ A robust filtering interpretation: find a stable filter
[
X Y

]
∈ RH∞

such that the residual MlX − NlY − I has H∞ norm less than 1.

∥MlX − NlY − I∥∞ < 1

Right-filtering problem vs Left-filtering problem2
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Figure: (a) Right-filtering problem (the filter F appears before the dynamical system
P1). (b) Left-filtering problem (the filter F appears after the dynamical system H1)

▶ Classical literature on robust filtering focuses on the left-filtering problem.
2Geromel, Bernussou, Garcia, & de Oliveira (2000). H2 and H∞ Robust Filtering for

Discrete-Time Linear Systems. SIAM Journal on Control and Optimization, 38(5), 1353-1368.
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A filtering perspective

Right H∞ filtering problem: given µ > 0 and P1(z), P2(z) ∈ RH∞ with a
state-space realization[

P1(z) P2(z)
]

=
[

A B1 B2

C D1 D2

]
,

find a stable filter F(z) ∈ RH∞ such that
∥P1(z)F(z) − P2(z)∥∞ < µ. (2)

Lemma (KYP lemma)
Let T(z) = C(zI − A)−1B + D ∈ RH∞. ∥T(z)∥2

∞ < µ if and only if P AP B 0
P AT P 0 P CT

BT 0 I DT

0 CP D µI

 ≻ 0, P ≻ 0.
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Decentralized filter/control

Theorem
There exists F(z) ∈ RH∞ such that (2) holds if and only if

X Z AX+B1L AZ+B1L B1R−B2 0
⋆ Z Q Q F 0
⋆ ⋆ X Z 0 XCT+LTDT

1
⋆ ⋆ ⋆ Z 0 ZCT+LTDT

1
⋆ ⋆ ⋆ ⋆ I RTDT

1 −DT
2

⋆ ⋆ ⋆ ⋆ ⋆ µ2I

≻0.

A state-space realization of the filter F(z) = Ĉ(zI − Â)−1B̂ + D̂ is[
Â B̂

Ĉ D̂

]
=

[
UTZ−1 0

0 I

] [
Q F
L R

] [
U−1 0

0 I

]T

,

where U is any non-singular matrix (represents a similarity transformation).

▶ The order of the filter is the same as the system dynamics P1 (i.e.,
full-order filter).

▶ Imposing block-diagonal structures on Z, Q, F , L, R leads to a
decentralized filter.
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Decentralized filter/control

Theorem
Let Ml and Nl have the state-space realization[

Ml(z) Nl(z)
]

=
[

A BM BN

C DM DN

]
.

There exist X(z) and Y(z) in RH∞ such that

∥Ml(z)X(z) − Nl(z)Y(z) − I∥∞ < ϵ

if and only if the following LMI is feasible
X Z f1(X, LX , LY ) f2(Z, LX , LY ) f3(RX , RY ) 0
⋆ Z Q Q F 0
⋆ ⋆ X Z 0 f4(X, LX , LY )
⋆ ⋆ ⋆ Z 0 f5(Z, LX , LY )
⋆ ⋆ ⋆ ⋆ I f6(RX , RY )
⋆ ⋆ ⋆ ⋆ ⋆ ϵ2I

 ≻ 0. (3)

Furthermore, the state-space realizations for X(z) and Y(z), as well as
K = YX−1, have the same order as the plant.
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Numerical experiments

Decentralized stabilization
min h(Q, F, LX , LY , RX , RY )

subject to (3),
X ≻ 0, Z, Q, F block diagonal,
LX , LY , RX , RY block diagonal,

(4)

where h(R, F, LX , LY , RX , RY ) :=
∥Q∥∞ + ∥F ∥∞ + ∥LX∥∞ + ∥LY ∥∞ + ∥RX∥∞ + ∥RY ∥∞

Example
Consider a chain of second-order subsystems with dynamics

xi[t + 1] =
[

1 1
−1 2

]
xi[t] +

∑
j∈Ni

α(i, j)xj [t] +
[

0
1

]
ui[t],

yi[t] =
[
0 1

]
xi[t],

where α(i, j) = 1
5 e−(i−j)2

, Ni = {i − 1, i + 1} ∩ {1, . . . , n} and i = 1, . . . , n.
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Numerical experiments

Case 1: three subsystems n = 3

(a) (b)

Figure: Responses with three subsystems n = 3: (a) Output measurement yi[t];
(b) Input ui[t].
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Numerical experiments

Case 2: varying the number of subsystems, and comparison with SLP+FIR

▶ Efficient computation: Order of magnitudes faster in time consumption

Table: Time (in seconds) for (4) and SLP + FIR (length 20). Includes YALMIP
time and MOSEK time.

# of nodes n 6 8 10 12 14

LMI (4) 0.49 0.60 0.75 0.99 1.28
SLP + FIR 3.22 8.60 22.68 53.19 132.87

▶ Efficient implementation: Controller order does not increase with the
length of FIR approximation.

Table: Controller order for (4) and SLP + FIR (length 20).

# of nodes n 6 8 10 12 14

LMI (4) 2 2 2 2 2
SLP + FIR 468 624 780 936 1092
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Summary

Stability is a non-convex constraint.
▶ Closed-loop parameterization (Youla/SLP/IOP etc) is convex but

infinite dimensional.
▶ A variant of Youla parameterization has a single affine constraint

∥MlX − NlY − I∥∞ < 1
which has an interesting robust filtering interpretation
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▶ This leads to an efficient LMI to parameterize all full-order
stabilizing controllers (efficient computation and implementation!).

Future work:
▶ Simultaneous filtering and Optimal control
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Thank you for your attention!
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