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Motivation

Data-driven control (model free vs model-based)
» Become very popular in both academia and practice,

» Impressive empirical results in many applications: from game playing,
robotics, and drones, etc.

PN

(a) DeepMind (b) Open-Al (c) Applications

Challenges: Lack of non-asymptotic performance guarantees

» Sample complexity
» Suboptimality
» Robustness, etc.
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Today’s lecture: Optimal control
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Figure: Feedback paradigm

» Many practical applications

Linear Quadratic Optimal control

T

% Z (mIth + u;rRut)

t=1

min lim E
UYL UDyeney T—o00

subject to  x¢y1 = Az + Bug + we
yr = Cxy + vt

» Linear Quadratic Regulator (LQR) when the state z, directly observable

» Linear Quadratic Gaussian (LQG) control when only y; is observed

> Extensive classical results (Dynamic programming, Separation principle,

Riccati equations, etc.)

Major challenge: how to perform optimal control when the system is

Motivation and problem formulation

unknown?
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Model free vs Model based approaches

» Model-free policy optimization
Apply a control Accumulate
strategy observed data
Refine the
control strategy

— Analysis is mainly based on geometrical landscape, stationary points,
saddle points, smoothness constants, convergence etc.

» Model-based certainty-equivalence or robust control

Physical systems

E - M"'WW Estimated model
T outout mene v = A B
Control inputs u, ﬁ. Output meas. y,

— Certainty-equivalence control treats the estimated model as the truth

— Robust control explicitly takes into account the estimation error
— Perturbation analysis
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Model-based LQR

» Standard Linear Quadratic Regulator

1
T Z (mIth + u;rRut)

t=1

J*:= min lim E
UL, U yeeny T— 00

subject to Ti41 = Al’t =4 But =+ we
— Optimal policy is static ux = Kx¢, e.g., from the Ricatti equation

» Robust LQR

J"(€a,€p) := min sup lim E
UL U2 | Ay | <easllapl<es T

T
1
T Z (x;rQa:t + uIRut):|
subject to w141 = (A4 Ax)ze + (B + Ap)ut + wy

» These two problems become the same when max{ea,eg} — 0.
» It is unclear

— how J*(ea,ep) — J* changes as max{ea,eg} — 0.
— how to achieve J*(e4,€p)? The optimal policy form: static,
dynamic, nonlinear, existence etc?
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Model-based LQG

» Standard LQG

T
* . . 1 T T
T min i E |5 3 (T Qe ul )
subject to  xt41 = Az + Bug + we
Yyt = Cxy + vy

— Optimal policy is a dynamical controller u = Ky, e.g., from two
Ricatti equations
it+1 = (A — BK)SEt + L(yt - Ci‘t),
Ut = —K:lAit.
» Robust LQG - different from LQR

— Estimation of A,B,C‘ in state-space is not unique
— The representation G = C(zI — A)~'B in frequency domain is

unique.
— We estimate a transfer function G as well as its uncertainty

(open-loop stable systems)
[Alloc := G = Gllec <€

Motivation and problem formulation
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Model-based LQG

> Modified LQG

T

73 (vl Qui +ul Ru)

t=1

J*:= min lim E
UYL, U --ny T—oo

subject to Ti41 = Axt + But + Bwt
ye = Cxy + vy

> Robust LQG

J*(¢) :=min sup lim E

b
K Jajeo<e T—oo

T

1

T E yi Que +UtTRUt)
t=0

subjectto y=(G+A)u+v
u=Ky+w,
» These two problems become the same when ¢ — 0.
» |t is unclear

— how J*(€) — J* changes as € — 0.
— how to achieve J*(€)?
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Stability and Stabilization

An autonomous system x;11 = Az, is asymptotically stable if and only if A is

Schur stable, i.e.,
Ni(A)] <1,i=1,...n.

Stabilization
Tiy1 = Az + Buy

ye = Cay
Kz, stabilizes the system if and only if

> Static state feedback u; =
N(A+BK)|<1i=1,...n.

» Dynamical output feedback u = Ky with

&i+1 = Ax&t + Brys N |:l't+1:| B { A BCK} [:vt]
yr = Ck&e §it1 BeC Ax | &)

stabilizes the system if and only if

A BCk
(e )
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Frequency-domain characterization

» Dynamics and controller with noises

Ti41 = Az + Buy + Oq,,
Yt = Czy + 6yt7

» Closed-loop responses from (85, 8y, u)

b'e D Py
Y| = | Pya Pyy
u Quz @uy

where ®,, = (2] — A — BKC)™! and

q:'a:y - (pacacBK7
Qyz = CQIZ,
®,, = CP,,B,

®,, = K(C®,,BK +I),

Stability and convexity in frequency-domain

&1 = Arés + Bryy,
ur = Cr&t + Dy + Ou,,s

to (x,y,u) as

P,y 69:
(I.yu 61/ )
Quu 6u

Py = Py B,

®,, =C®,,BK + I,
®,, = KC®,.,

®,, =KC®,,B+1.
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Frequency-domain characterization

LQR Performance specification

» LQR cost: assuming @ = I, R = I and the covariances of noises are |.

, 1 ®,.] |
i B 157 (sam o) | = | [
t=1 Ha
» The standard LQR problem becomes
1
i 5|3 (T )
subject to  x41 = Az + Bus + wy
w2 w2
= K ‘i’uz Ho = K Quz Ho
subject to u = Kx. subject to K stabilizes the system.
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Frequency-domain characterization

LQG performance specification

» LQG cost: assuming Q = I, R = I and the covariances of noises are I.

T
%Z (ytTQyt + utTRut) = H {izz izz]

t=1

2
lim E

T— o0

Ha

» The LQG problem becomes

T

=57 (w7 Que+ ul Rue)

t=1

subject to  xt41 = Azt + Bug + Bwy

yr = Cxy + vy
2 2
= K q)uy 29 Hy = K q:'uy 29 Ha
subject to u = Ky. subject to K stabilizes the system.
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Convex reformulation

Closed-loop convexity: instead of optimizing over the controller K, we
directly optimize the closed-loop responses.

Theorem (System—level parameterization (SLP))
State-feedback controller u = Kx stabilizes the system if and only if

QII
(I)uz:| € RHoo and [z —A B] { } =1.

(I)uz
Theorem (Input—output parameterization (IOP))

Output-feedback controller u = Ky stabilizes the system if and only if

el - s

o s [F] =1
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Robust LQR

T

% Z (xtTQa:t + utTRut)

t=1

J*(ea,€B) := min sup lim E
ULU2sn Ay |<en,lAplI<ep T

subject to 41 = (A + AA)xt + (B =+ AB)ut + wy

» It is unclear how J*(ea,ep) — J* changes as € = max{ea,ep} — 0.
» It is unclear how to achieve J*(e4,€ep)? The optimal policy form: static,
dynamic, nonlinear, existence etc?
A sequence of inner approximations and upper bounds
» Design a dynamical controller u = Kx via convex optimization such that
J(A,B,K) - J* .
% < O(e), when ¢ is small enough

» Together with a standard OLS estimation of A, B, we derive an
end-to-end sample complexity bound

J(A, B(,]I*{) -7 ( Cromy/ p?\;og 1/5)

provided that the number of samples N is large enough.
Robust formulation of LQR and its suboptimality 18/30



Robust LQR - upper bounds

» Inner approximation 1: dynamical controller
u=Kx

> Inner approximation 2: robust stabilization for all A + A4, B+ Ap with
[Aall <eaand [|[Ap|| < €5

o, AL
8o = aa a5 [37]] < 'H et ’ <1
] oo Vi—a ¥
where o € (0,1) is any fixed constant between 0 and 1.
» Inner approximation 3: upper bounds on the performance
-1
P, P,
J(A,B,K) = {(I)u] (1+ [Aa Ap] [%D
Ho
_ b,
<ir+ a7 5]
u HZ
! J(A, B,K)
T l-Alle
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Robust LQR - quasi convex optimization

» Another upper bound by combining approximation 1 & approximation 3

=],

<I>I,<I> )

Ve ®e
€B
mq)“

J(A,B,K) <

Hy( Py, ®.) = H

oo

» Finally, we arrive at the following quasi-convex optimization formulation

1 e o [e.
mlnlmlchfe[“~1)1,fyq:11,{£u 0 R% >, y
2
-~ ~1 | P, E_A(I’I
e ] o (i | S
u Vica !l

1
P, P, c ;RHOC‘

Some remarks

» The controller is constructed as K = <I>u<I>;1;
» The problem is still infinitely dimensional. An finite impulse response
(FIR) approximation was used in the original paper.
» This might be inefficient in both computation and implementation.
Robust formulation of LQR and its suboptimality 20/30



Robust LQR - suboptimality

Theorem 4.1. Let J, denote the minimal LQR cost achievable by any controller for the dynamical
system with transition matrices (A, B), and let K, denote the optimal contoller. Let (A,B) be

estimates of the transition matrices such that |Aall2 < ea, [|ABll2 < ep. Then, if K is synthesized
via (3.18) with a = 1/2, the relative error in the LQR cost is

J(A,B.K) - J, .
HABR =T e+ el )P (&)

as long as (ca + e[|Kull2)|Rar b, [ < 1/5.

Some remarks

» The proof is essentially based on some careful perturbation analysis
(first-order Taylor expansion)

» Combining with standard OLS estimation of A, B, one can show
(Corollary 4.3)

J(A,B,K) — J*
J*

(n+p)logl/d

<O | Crgr N

provided that the number of samples N is large enough.

Robust formulation of LQR and its suboptimality 21/30



Outline

Robust formulation of LQG and its suboptimality

Robust formulation of LQG and its suboptimality 22/30



Robust LQG

1 T
> (vl Que + utTRut)

t
subject to y = (G +A)u+v
u=Ky+w,
» It is unclear how J*(€) — J* changes as ¢ — 0.

J*(€) := min sup lim E
K jafle<e  Tme0

I

» It is unclear how to achieve J*(¢)?

One upper bound
» Design a dynamical controller u = Ky via convex optimization such that

J—J,

*

< O(e), when ¢ is small enough

» Together with a standard OLS estimation of G, we derive (open-loop

stable systems)
j_ J* T T
< — * s
A —O(VN“’(A) )

with high probability provided the number of samples N is sufficiently
large, where T is the length of FIR model estimation,
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Robust LQG - equivalent formulation

Closed-loop convexity: Instead of designing u = Ky, we consider
v [(I-GK)™ ([-GK)'G][v] _[Y W][v
u|  |KI-G.K)™' (I-KG)™' ||w| ~|U Z]||w

Theorem
The robust LQG problem is equivalent to

Y(I - AU ?a_Aﬁr%équH

min max  J(G.,K) = ‘H ot AU; oA

YW, 0,Z [[Allec<e o

LD

Y, W,U,Z € RHoo, ||U]| < =,

subject to  [I —G] {Y W} [I o],

o | =

where the optimal robust controller is recovered as K = UY .
Robust formulation of LQG and its suboptimality 24/30



Robust LQG - upper bound

J(G, K)? =Y (I = AU) 3, + 00 — AU) 3,
+ (I =UA) ' Z|fy, + Y (I~ AV) (G + A3,

Proposition

IF|U)loo < 1, [|Alloe < € and G € RH oo, then, we have (W = YG)

_67

HY(I o Afj)fl(é + A)H’H HWH'H2 + 6||YH7'12 (2 + HU”OO”G”OO) )

1— €Ul
Theorem )
IfF|Ulo < L, [|Alloo < € and G € RH.oo, the robust LQG cost is upper
bounded by
JGLK) < L [[ViHhE IOy Wi
1- EHUHOO U 7 "

where Y, W, U, Z satisfy the IOP constraints, and the factor

h(e, [Ullso) = O(e)

Robust formulation of LQG and its suboptimality 25/30



Robust LQG - quasi-convex optimization

Theorem
Given G € RHoo, @ model estimation error €, and any constant o > 0, the
robust LQG problem is upper bounded by the following problem

VIFREDY W
A R

1
min
WE[Ol/C) l—ey vwW,u,z

o %l-u o

o 2 [0

Y, W, Z € RHoo, ||U]loo <7, U]l < o,

subject to [I —G][ )

where h(e, @) = €]|Gloo (2 + || G o) + €2(2 + || G|00) %
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Robust LQG - suboptimality

Theorem

Let K, be the optimal LQG controller, and the corresponding closed-loop
responses be Y., U,, W,,Z,. Let G be the plant estimation with error
|Allo < €, where A = G, — G. Suppose that €||U, || < %, and choose the

50
V2||Us |l 1

constant hyper-parameter o € [1 O e ) We denote the optimal

solution to (2) as ’y*,Y*, U.,W.,Z,. Then, when applying the resulting
controller K = U Y L to the true plant G, the relative error in the LQG cost
is upper bounded by

J (G, K)* — J(G+, K.)?
J(G.,K.)?

< 20€¢][Uslloo + R(e, @) + g(€, [Usllo),  (3)

where

9(&, [Usloe) = €llGialloo (2 + [Unfloc [Galloo) + €2 + Ul [|Gllo) . (4)

Optimality O(e?) vs Robustness O(e): the price of obtaining a faster rate is
that the certainty equivalent controller becomes less robust to uncertainty.

Robust formulation of LQG and its suboptimality 27/30
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Summary

T
T 1
1 B : T, T
min sup lim E |~ 2] Qry + u] Ru, min - sup lim E 72 (yt Que +uy R“f)
K HAAH‘HLEH« Tooe | T g( ( Qi+ ui ) K |afwce T | T
subject to 41 = (A + AA)zy + (B + AB)u; + v, subject to y = (G + A)u+v
u=Kx u=Ky+w,
Sys ID < Least squares <+ Least squares
methods |A— Ayl € ea,||B— Bl < es, Al =Gy — G|l < €
< Frequency domain < Frequency domain
Synthesis <+ System-level synthesis, “* Input-output parameterization, 10P,
Technique SLS (Wang et al., 2019) (Furieri et al., 2019)
<+ Taylor expansion < Taylor expansion
% both stable and unstable systems «+ Only for open-loop stable system
Sample

Complexity

J(K) = J,

o ()

JK) - J,

o)
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Thank you for your attention!

Q&A
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