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Motivation

Data-driven control (model free vs model-based)

▶ Become very popular in both academia and practice,
▶ Impressive empirical results in many applications: from game playing,

robotics, and drones, etc.

(a) DeepMind (b) Open-AI (c) Applications

Challenges: Lack of non-asymptotic performance guarantees

▶ Sample complexity

▶ Suboptimality

▶ Robustness, etc.
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Today’s lecture: Optimal control

Figure: Feedback paradigm

Linear Quadratic Optimal control

min
u1,u2,...,

lim
T→∞

E

[
1

T

T∑
t=1

(
xT
t Qxt + uT

t Rut

)]
subject to xt+1 = Axt +But + wt

yt = Cxt + vt

▶ Many practical applications

▶ Linear Quadratic Regulator (LQR) when the state xt directly observable

▶ Linear Quadratic Gaussian (LQG) control when only yt is observed

▶ Extensive classical results (Dynamic programming, Separation principle,
Riccati equations, etc.)

Major challenge: how to perform optimal control when the system is
unknown?
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Model free vs Model based approaches

▶ Model-free policy optimization

– Analysis is mainly based on geometrical landscape, stationary points,
saddle points, smoothness constants, convergence etc.

▶ Model-based certainty-equivalence or robust control

– Certainty-equivalence control treats the estimated model as the truth

– Robust control explicitly takes into account the estimation error

– Perturbation analysis
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Model-based LQR

▶ Standard Linear Quadratic Regulator

J∗ := min
u1,u2,...,

lim
T→∞

E

[
1

T

T∑
t=1

(
xT
t Qxt + uT

t Rut

)]
subject to xt+1 = Axt +But + wt

– Optimal policy is static ut = Kxt, e.g., from the Ricatti equation

▶ Robust LQR

J∗(ϵA, ϵB) := min
u1,u2,...,

sup
∥∆A∥≤ϵA,∥∆B∥≤ϵB

lim
T→∞

E

[
1

T

T∑
t=1

(
xT
t Qxt + uT

t Rut

)]
subject to xt+1 = (A+∆A)xt + (B +∆B)ut + wt

▶ These two problems become the same when max{ϵA, ϵB} → 0.

▶ It is unclear

– how J∗(ϵA, ϵB)− J∗ changes as max{ϵA, ϵB} → 0.
– how to achieve J∗(ϵA, ϵB)? The optimal policy form: static,

dynamic, nonlinear, existence etc?
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Model-based LQG

▶ Standard LQG

J∗ := min
u1,u2,...,

lim
T→∞

E

[
1

T

T∑
t=1

(
xT
t Qxt + uT

t Rut

)]
subject to xt+1 = Axt +But + wt

yt = Cxt + vt

– Optimal policy is a dynamical controller u = Ky, e.g., from two
Ricatti equations

x̂t+1 = (A−BK)x̂t + L(yt − Cx̂t),

ut = −Kx̂t.

▶ Robust LQG - different from LQR

– Estimation of Â, B̂, Ĉ in state-space is not unique
– The representation G = C(zI −A)−1B in frequency domain is

unique.
– We estimate a transfer function Ĝ as well as its uncertainty

(open-loop stable systems)

∥∆∥∞ := ∥G− Ĝ∥∞ < ϵ
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Model-based LQG

▶ Modified LQG

J∗ := min
u1,u2,...,

lim
T→∞

E

[
1

T

T∑
t=1

(
yT
t Qyt + uT

t Rut

)]
subject to xt+1 = Axt +But +Bwt

yt = Cxt + vt

▶ Robust LQG

J∗(ϵ) := min
K

sup
∥∆∥∞<ϵ

lim
T→∞

E

[
1

T

T∑
t=0

(
yT
t Qyt + uT

t Rut

)]
,

subject to y = (Ĝ+∆)u+ v

u = Ky +w,

▶ These two problems become the same when ϵ → 0.

▶ It is unclear

– how J∗(ϵ)− J∗ changes as ϵ → 0.
– how to achieve J∗(ϵ)?

Motivation and problem formulation 10/30



Outline

Motivation and problem formulation

Stability and convexity in frequency-domain

Robust formulation of LQR and its suboptimality

Robust formulation of LQG and its suboptimality

Summary

Stability and convexity in frequency-domain 11/30



Stability and Stabilization

An autonomous system xt+1 = Axt is asymptotically stable if and only if A is
Schur stable, i.e.,

|λi(A)| < 1, i = 1, . . . n.

Stabilization
xt+1 = Axt +But

yt = Cxt

▶ Static state feedback ut = Kxt stabilizes the system if and only if

|λi(A+BK)| < 1, i = 1, . . . n.

▶ Dynamical output feedback u = Ky with

ξt+1 = AKξt +BKyt

yt = CKξt
⇒

[
xt+1

ξt+1

]
=

[
A BCK

BKC AK

] [
xt

ξt

]
,

stabilizes the system if and only if∣∣∣∣λi

([
A BCK

BKC AK

])∣∣∣∣ < 1

Stability and convexity in frequency-domain 12/30



Frequency-domain characterization

▶ Dynamics and controller with noises

xt+1 = Axt +But + δxt ,

yt = Cxt + δyt ,
+

ξt+1 = Akξt +Bkyt,

ut = Ckξt +Dkyt + δut ,

▶ Closed-loop responses from (δx, δy, δu) to (x,y,u) asxy
u

 =

Φxx Φxy Φxu

Φyx Φyy Φyu

Φux Φuy Φuu

δxδy
δu

 ,

where Φxx = (zI −A−BKC)−1 and

Φxy = ΦxxBK, Φxu = ΦxxB,

Φyx = CΦxx, Φyy = CΦxxBK+ I,

Φyu = CΦxxB, Φux = KCΦxx,

Φuy = K(CΦxxBK+ I), Φuu = KCΦxxB + I.
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Frequency-domain characterization

LQR Performance specification

▶ LQR cost: assuming Q = I, R = I and the covariances of noises are I.

lim
T→∞

E

[
1

T

T∑
t=1

(
xT
t Qxt + uT

t Rut

)]
=

∥∥∥∥[Φxx

Φux

]∥∥∥∥2
H2

▶ The standard LQR problem becomes

min
u1,u2,...,

lim
T→∞

E

[
1

T

T∑
t=1

(
xT
t Qxt + uT

t Rut

)]
subject to xt+1 = Axt +But + wt

⇔
min
K

∥∥∥∥[Φxx

Φux

]∥∥∥∥2
H2

subject to u = Kx.

⇔
min
K

∥∥∥∥[Φxx

Φux

]∥∥∥∥2
H2

subject to K stabilizes the system.
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Frequency-domain characterization

LQG performance specification

▶ LQG cost: assuming Q = I, R = I and the covariances of noises are I.

lim
T→∞

E

[
1

T

T∑
t=1

(
yT
t Qyt + uT

t Rut

)]
=

∥∥∥∥[Φyy Φyu

Φuy Φuu

]∥∥∥∥2
H2

▶ The LQG problem becomes

min
u1,u2,...,

lim
T→∞

E

[
1

T

T∑
t=1

(
yT
t Qyt + uT

t Rut

)]
subject to xt+1 = Axt +But +Bwt

yt = Cxt + vt

⇔
min
K

∥∥∥∥[Φyy Φyu

Φuy Φuu

]∥∥∥∥2
H2

subject to u = Ky.

⇔
min
K

∥∥∥∥[Φyy Φyu

Φuy Φuu

]∥∥∥∥2
H2

subject to K stabilizes the system.
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Convex reformulation

Closed-loop convexity: instead of optimizing over the controller K, we
directly optimize the closed-loop responses.

Theorem (System-level parameterization (SLP))

State-feedback controller u = Kx stabilizes the system if and only if[
Φxx

Φux

]
∈ RH∞ and

[
zI −A B

] [Φxx

Φux

]
= I.

Theorem (Input-output parameterization (IOP))

Output-feedback controller u = Ky stabilizes the system if and only if

[
Φyy Φyu

Φuy Φuu

]
∈ RH∞ and

[
I −G

] [Φyy Φyu

Φuy Φuu

]
=
[
I 0

]
,[

Φyy Φyu

Φuy Φuu

] [
−G
I

]
=

[
0
I

]
.
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Robust LQR

J∗(ϵA, ϵB) := min
u1,u2,...,

sup
∥∆A∥≤ϵA,∥∆B∥≤ϵB

lim
T→∞

E

[
1

T

T∑
t=1

(
xT
t Qxt + uT

t Rut

)]
subject to xt+1 = (A+∆A)xt + (B +∆B)ut + wt

▶ It is unclear how J∗(ϵA, ϵB)− J∗ changes as ϵ = max{ϵA, ϵB} → 0.

▶ It is unclear how to achieve J∗(ϵA, ϵB)? The optimal policy form: static,
dynamic, nonlinear, existence etc?

A sequence of inner approximations and upper bounds

▶ Design a dynamical controller u = Kx via convex optimization such that

J(A,B,K)− J∗

J∗ ≤ O(ϵ), when ϵ is small enough

▶ Together with a standard OLS estimation of A,B, we derive an
end-to-end sample complexity bound

J(A,B,K)− J∗

J∗ ≤ O

(
CLQR

√
(n+ p) log 1/δ

N

)
provided that the number of samples N is large enough.
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Robust LQR - upper bounds

▶ Inner approximation 1: dynamical controller

u = Kx

▶ Inner approximation 2: robust stabilization for all A+∆A, B +∆B with
∥∆A∥ ≤ ϵA and ∥∆B∥ ≤ ϵB

∥∆∥∞ :=

∥∥∥∥[∆A ∆B

] [Φx

Φu

]∥∥∥∥
∞

≤

∥∥∥∥∥
[

ϵA√
α
Φx

ϵB√
1−α

Φu

]∥∥∥∥∥
∞

< 1

where α ∈ (0, 1) is any fixed constant between 0 and 1.

▶ Inner approximation 3: upper bounds on the performance

J(A,B,K) =

∥∥∥∥∥
[
Φx

Φu

](
I +

[
∆A ∆B

] [Φx

Φu

])−1
∥∥∥∥∥
H2

≤ ∥(I +∆)−1∥∞
∥∥∥∥[Φx

Φu

]∥∥∥∥
H2

≤ 1

1− ∥∆∥∞
J(Â, B̂,K)
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Robust LQR - quasi convex optimization

▶ Another upper bound by combining approximation 1 & approximation 3

Hα(Φx,Φu) :=

∥∥∥∥∥
[

ϵA√
α
Φx

ϵB√
1−α

Φu

]∥∥∥∥∥
∞

⇒ J(A,B,K) ≤

∥∥∥∥[Φx

Φu

]∥∥∥∥
H2

1−Hα(Φx,Φu)

▶ Finally, we arrive at the following quasi-convex optimization formulation

Some remarks

▶ The controller is constructed as K = ΦuΦ
−1
x ;

▶ The problem is still infinitely dimensional. An finite impulse response
(FIR) approximation was used in the original paper.

▶ This might be inefficient in both computation and implementation.
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Robust LQR - suboptimality

Some remarks

▶ The proof is essentially based on some careful perturbation analysis
(first-order Taylor expansion)

▶ Combining with standard OLS estimation of A,B, one can show
(Corollary 4.3)

J(A,B,K)− J∗

J∗ ≤ O

(
CLQR

√
(n+ p) log 1/δ

N

)
provided that the number of samples N is large enough.
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Robust LQG

J∗(ϵ) := min
K

sup
∥∆∥∞<ϵ

lim
T→∞

E

[
1

T

T∑
t=0

(
yT
t Qyt + uT

t Rut

)]
,

subject to y = (Ĝ+∆)u+ v

u = Ky +w,
▶ It is unclear how J∗(ϵ)− J∗ changes as ϵ → 0.

▶ It is unclear how to achieve J∗(ϵ)?

One upper bound

▶ Design a dynamical controller u = Ky via convex optimization such that

Ĵ − J⋆

J⋆
≤ O(ϵ), when ϵ is small enough

▶ Together with a standard OLS estimation of G, we derive (open-loop
stable systems)

Ĵ − J⋆

J⋆
≤ O

(√
T

N
+ ρ(A⋆)

T

)
,

with high probability provided the number of samples N is sufficiently
large, where T is the length of FIR model estimation,
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Robust LQG - equivalent formulation

Closed-loop convexity: Instead of designing u = Ky, we consider[
y
u

]
=

[
(I −G⋆K)−1 (I −G⋆K)−1G⋆

K(I −G⋆K)−1 (I −KG⋆)
−1

] [
v
w

]
=

[
Y W
U Z

] [
v
w

]

Theorem
The robust LQG problem is equivalent to

min
Ŷ,Ŵ,Û,Ẑ

max
∥∆∥∞<ϵ

J(G⋆,K) =

∥∥∥∥[Ŷ(I −∆Û)−1 Ŷ(I −∆Û)−1(Ĝ+∆)

Û(I −∆Û)−1 (I − Û∆)−1Ẑ

]∥∥∥∥
H2

subject to
[
I −Ĝ

] [Ŷ Ŵ

Û Ẑ

]
=
[
I 0

]
,[

Ŷ Ŵ

Û Ẑ

] [
−Ĝ
I

]
=

[
0
I

]
,

Ŷ,Ŵ, Û, Ẑ ∈ RH∞, ∥Û∥∞ ≤ 1

ϵ
,

where the optimal robust controller is recovered as K = ÛŶ−1.
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Robust LQG - upper bound

J(G⋆,K)2 =∥Ŷ(I −∆Û)−1∥2H2
+ ∥Û(I −∆Û)−1∥2H2

+ ∥(I − Û∆)−1Ẑ∥2H2
+ ∥Ŷ(I −∆Û)−1(Ĝ+∆)∥2H2

.

Proposition
If ∥Û∥∞ ≤ 1

ϵ
, ∥∆∥∞ < ϵ and Ĝ ∈ RH∞, then, we have (Ŵ = ŶĜ)

∥Ŷ(I −∆Û)−1(Ĝ+∆)∥H2 ≤ ∥Ŵ∥H2 + ϵ∥Ŷ∥H2(2 + ∥Û∥∞∥Ĝ∥∞)

1− ϵ∥Û∥∞
.

Theorem
If ∥Û∥∞ ≤ 1

ϵ
, ∥∆∥∞ < ϵ and Ĝ ∈ RH∞, the robust LQG cost is upper

bounded by

J(G⋆,K) ≤ 1

1− ϵ∥Û∥∞

∥∥∥∥∥
[√

1 + h(ϵ, ∥Û∥∞)Ŷ Ŵ

Û Ẑ

]∥∥∥∥∥
H2

, (1)

where Ŷ,Ŵ, Û, Ẑ satisfy the IOP constraints, and the factor

h(ϵ, ∥Û∥∞) = O(ϵ)
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Robust LQG - quasi-convex optimization

Theorem
Given Ĝ ∈ RH∞, a model estimation error ϵ, and any constant α > 0, the
robust LQG problem is upper bounded by the following problem

min
γ∈[0,1/ϵ)

1

1− ϵγ
min

Ŷ,Ŵ,Û,Ẑ

∥∥∥∥[√1 + h(ϵ, α)Ŷ Ŵ

Û Ẑ

]∥∥∥∥
H2

subject to
[
I −Ĝ

] [Ŷ Ŵ

Û Ẑ

]
=
[
I 0

]
,[

Ŷ Ŵ

Û Ẑ

] [
−Ĝ
I

]
=

[
0
I

]
,

Ŷ,Ŵ, Ẑ ∈ RH∞, ∥Û∥∞ ≤ γ, ∥Û∥∞ ≤ α,

(2)

where h(ϵ, α) = ϵ∥Ĝ∥∞(2 + α∥Ĝ∥∞) + ϵ2(2 + α∥Ĝ∥∞)2.
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Robust LQG - suboptimality

Theorem
Let K⋆ be the optimal LQG controller, and the corresponding closed-loop
responses be Y⋆,U⋆,W⋆,Z⋆. Let Ĝ be the plant estimation with error
∥∆∥∞ < ϵ, where ∆ = G⋆ − Ĝ. Suppose that ϵ∥U⋆∥∞ < 1

5
, and choose the

constant hyper-parameter α ∈
[ √

2∥U⋆∥∞
1−ϵ∥U⋆∥∞ , 1

ϵ

)
. We denote the optimal

solution to (2) as γ⋆, Ŷ⋆, Û⋆,Ŵ⋆, Ẑ⋆. Then, when applying the resulting
controller K = Û⋆Ŷ

−1
⋆ to the true plant G⋆, the relative error in the LQG cost

is upper bounded by

J(G⋆,K)2 − J(G⋆,K⋆)
2

J(G⋆,K⋆)2
≤ 20ϵ∥U⋆∥∞ + h(ϵ, α) + g(ϵ, ∥U⋆∥∞), (3)

where

g(ϵ, ∥U⋆∥∞) = ϵ∥G⋆∥∞(2 + ∥U⋆∥∞∥G⋆∥∞) + ϵ2(2 + ∥U⋆∥∞∥G⋆∥∞)2. (4)

Optimality O(ϵ2) vs Robustness O(ϵ): the price of obtaining a faster rate is
that the certainty equivalent controller becomes less robust to uncertainty.
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Thank you for your attention!

Q & A
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