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Motivation

The success of many machine learning applications

ChatGPT

> (Sub)gradient-based methods and their variants are the workhorse algorithms

— Gradient descent (GD), stochastic GD, coordinate descent,
quasi-Newton, etc.

» For smooth and convex cases, their performances are most well-understood.

— For example, if f(x) is strongly convex and L-smooth, then the basic
GD algorithm zxy1 = xx — t&x V f(z1) has linear convergence

f@re) = 7 Swr x (flze) = f7),  0<wi <1
|2hir — 2% Swz X ||zx — 2", O0<w2<1

» But strong convexity is a strong assumption; many machine learning models
lack either convexity or smoothness or both.
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Linear convergence of gradient descent

Alternative regularity conditions (weaker than strong convexity)

» One famous condition, introduced by Polyak [1963], is

LIVI@IP 2 8 x (f) ~ 1), Vo € R,

where the suboptimality is upper bounded by the gradient norm.

» Holds for strongly convex functions, and also non-convex functions like

» Many other problems like least squares, linear quadratic regulator (LQR) in
control, conic optimization (SDPs), etc.

> It is a special case of the tojasiewicz’ inequality [1963] —
Polyak-tojasiewicz (PL) inequality (or gradient dominance)
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Linear convergence of gradient descent

Simpler proof of linear convergence

» Consider an unconstrained smooth optimization minger~ f(x), where f(z)
satisfies the PL inequality and is L-smooth

L
Fly) < fl2) +(Vf(z).,y —2) + S lly — ).
» Applying one GD step: zx+1 = zx — tx V f(2), leads to

Fl@ran) < Flow) + (VFon), e — on) + ¢ lons — el

=fuw+(‘%j4”)HVﬂmm?

> If we choose 0 < 1, < 2/L, then Lt7 — 2t;, < 0.

» Applying PL inequality, we have the following linear convergence

flarer) < flaw) + Lty — 2te) x 5% (flon) = [7)
= flrrsr) — 7 < x (f(ze) = f7), 0<w <1
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Equivalence among regularity conditions

» Relationship with many other conditions, including

EB: error bounds [Luo and Tseng, 1993].

— QG: quadratic growth [Anitescu, 2000]

ESC: essential strong convexity [Liu et al., 2013].

— RSI: restricted secant inequality [Zhang & Yin, 2013].
a few others

» A nice summary is given in a paper by Karimi et al., 2016
[Karimi et al., 2016, Theorem 2] For the class of L-smooth functions, we have
SC —+ RSI - EB=PL — QG
If f(x) is further convex, we have RSI = EB = PL = QG.

> This result only focuses on the class of L-smooth functions (the key proof is
based on gradient curves)

» Many interesting nonsmooth cases, e.g.,

fly) ==y + 51 (c— A'y)

x| or indicator functions of cones

UC San Die;

ooooooooooo

e . Motivation: linear convergence of GD methods 6/23




This talk

The class of weakly convex functions

> A function f : R™ — R is called p-weakly convex if the following function
P 2
J@)+ Elal
is convex

» A much broader class of functions:

— any convex (potentially nonsmooth) functions, like |z|

any L-smooth (potentially nonconvex) functions, like —22 + sin?(x)

— many cost functions in modern machine learning applications
(Drusvyatskiy and Davis, 2020; Atenas et al. 2023)

Message 1: For the class of p weakly-convex functions, we have
(SC) — (RSI) — (EB) = (PL) — (QG)
If f(x) is further convex (might be nonsmooth) or the QG coefficient satisfies

Kq > p/2, we have (RSI) = (EB) = (PL) = (QG).

> Message 2: Exact or inexact PPM will enjoy linear convergence under
PL/EB/QG for convex optimization.
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EB, PL, and QG for weakly convex functions
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SC, EB, PL, and QG

For a p-weakly convex function, its Fréchet subdifferential is well-defined

of(z) = {s € R" | lim inf 1) = @) = (s,y = @) 20}.

y—ow lly — ||

Let S := argmin f(x) be the set of optimal solutions. Suppose S # (.
1. Strong Convexity (SC): there exists a positive constant us > 0 such that

f@) +(gy—a)+ns-ly -zl < fly), Vgedf(x).  (SC)
2. Polyak-tojasiewic (PL) inequality: there exists a constant y;, > 0 such that
po - (f(z) = f*) < dist™(0,0f (x)) (PL)
3. Error bound (EB): there exists a constant ue > 0 such that
dist(z, S) < pe - dist(0,0f(x)) (EB)
4. Quadratic Growth (QG): there exists a constant uq > 0 such that
piq - dist?(z, ) < f(z) — f* (QG)
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Examples

In principle, these properties are all generalizations of quadratic functions to
non-quadratic, nonconvex, and even nonsmooth cases

» which still maintain favourable “quadratic-like” properties.

> Example 1: f(z) = ®. Naturally, all properties hold.

> Example 2: f(z) =2 if |z| < 1; otherwise f(z) = 1(z* + 1); All properties
hold, but it is not L-smooth globally.

> Example 3: fi(z) = 2® + 2sin*(z) (left) and fo(x) = 2 4 6sin®(x) (right)

15 15

Both of them satisfy (QG), but the right one does not satisfy (PL) or (EB).
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Relationship and equivalency

Theorem
Let f be a proper closed p-weakly convex function. We have

(SC) — (RSI) — (EB) = (PL) — (QG).

Furthermore, if 1) f(z) is convex (i.e., p=0), or 2) the (QG) coefficient satisfies
Kq > &, then the following equivalence holds

(RSI) = (EB) = (PL) = (QG).

An example of nonconvex function with pq > £, satisfying PL/EB/QG

—2? 41 if —l<z<—-05 ’
- :

3(z+1)% otherwise.

> It satisfies (QG) with pgq = 3/2, since =
“
3 2 1
0
> f(x) is p-weakly convex with p = 2. -1.5 -1 0.5 0
UC San Die; I
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Literature and Proof techniques

An extensive list of literature [an incomplete summary below]
> Smooth case: a nice summary appears in [Karimi et al. 2016, Theorem 2],
which is a special case of p-weakly convex functions.
» Nonsmooth but convex case:

— Equivalence between (EB) and (QG): [Drusvyatskiy and Lewis, 2018,
Theorem 3.3] and [Artacho and Geoffroy, 2008, Theorem 3.3]

— Equivalence between (PL) and (QG): [Bolte et al., 2017, Theorem 5]
— (PL), (EB), (QG) are equivalent: [Ye et al., 2021, Proposition 2], [Zhu et
al. (2023)]

» Nonsmooth and nonconvex case: The most closely related work is
Drusvyatskiy et al. (2021) on nonsmooth optimization using taylor-like
models.

» Our proof from (PL) — (EB) relies on a notion of slop techniques in
Drusvyatskiy et al., 2021.
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Proof sketches

Let f be a proper closed p-weakly convex function. We have

(SC) — (RSI) — (EB) = (PL) — (QG).

» The proof: (SC) — (RSI) — (EB) — (PL) — (QG) are relatively simple.
» Take (EB) — (PL) for example. A function is p weakly convex iff
f@) 2 f@) + vy —a) = Flly—al’, Vay eR"vedf(@). (1)
— We would like to prove (EB) — (PL), i.e.,
dist(z, ) < pe - dist(0,0f(2)) = mp(f(2) = f7) < dist®(0,0 ())

distance to the solution set — suboptimality gap of the cost

— Fix z € R™ and take y = IIg(x); from the quadratic lower bound (1),
;2 f@) + (0. s(@) - 2) - £|[s(2) =, Vo € 0f(a)
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Proof sketches

Let f be a proper closed p-weakly convex function. We have

(SC) — (RSI) — (EB) = (PL) — (QG).

» Fix z € R™ and take y = IIg(z); from the quadratic lower bound (1),
[* 2 f@) + (0. TIs(2) = 2) = §|Ts(2) — 2|, Vo€ 0f ()
» Choose v as the minimal norm element in df(x), completing (EB) — (PL)
fz) — f* < dist(0, 0f (z))dist(z, S) + gdistQ(m, S)  Cauchy-Schwartz
< pe - dist?(0, 81 (2)) + %“gdisﬁ(o,af(x)) Applying (EB)
= ((2pe + pp2)/2) dist*(0,9f (x)).

» The proof from (PL) — (EB) is much more involved: the slope technique
[Drusvyatskiy et al., 2021], and Ekeland's variational principle [Ekeland, 1974].
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Proof sketches

Let f be a proper closed p-weakly convex function. if 1) f(z) is convex (i.e.,
p =0), or 2) the (QG) coefficient satisfies jiq > § > 0, then

(RS) = (EB) = (PL) = (QG).

> We only need to prove (QG) — (EB) when piq > £ >0
» Indeed, we have
o - dist* (@, 8) < f(@) — [ < (9,0 — Hs(2)) + Sdist’ (2, ).

Choosing g as the minimal norm element, yields

(ha=§) - dist(@.5) < (9,0~ s(2)
< dist(0,0f(z)) x dist(z, S). Cauchy-Schwartz
» Cancelling a factor, we have (EB)
(1o — p/2) - dist(z, S) < dist(0,0f()).
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Linear convergences of proximal point methods
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Proximal point method

Consider the optimization problem
f*=min f(z),
where f : R™ — R is a proper closed convex function.
» Define the proximal mapping

. 1 2
pros,, (¢) := argmin f(z) + 5l — ol

» The PPM generates iterates by
J]‘k+1 :proxck;f(xk)7 k:O71727'--

where {ck }r>0 is a sequence of positive real numbers.

» Conceptually very simple algorithm; historically used for guiding the
design/analysis of other algorithms

— Proximal bundle methods (Lemarechal et al., 1981), augmented
Lagrangian methods (Rockafellar, 1976a).
— Increasing applications in modern machine learning (Drusvyatskiy, 2017)
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Linear convergences

» The convergence of PPM for (nonsmooth) convex optimization has been
studied since 1970s (Rockafellar, 1976b).

» The sublinear convergence of cost gaps is relatively easy to establish,

» Different assumptions exist for linear convergences: [Rockafellar, 1976b]
[Luque, 1984] [Leventhal, 2009] [Cui et al. 2016] [Drusvyatskiy and Lewis, 2018].

— The classical result by Rockafellar, 1976b requires that (9f) ™! is locally
Lipschitz at 0 (implying a unique solution).

Theorem (Linear convergence)

Let f:R™ =R be a proper closed convex function, and S # (). Suppose f satisfies

(PL) (or (EB), (QG)) over the sublevel set [f < f* + v]|. Then, the PPM iterates
enjoy linear convergence rates, i.e.,

f@r1) = <wi - (Flzx) = f7),
dist(zx+1,S) < O - dist(zx, S),

for all k > ko, where wi = 2/(2 + ppcr) < 1,0 < 0 < 1.
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Inexact PPM and Linear convergences

» Inexact PPM: consider an inexact update

Thi1 A prox., (Tk).

> Two classical criteria in Rockafellar's seminal work [Rockafellar, 1976b]

leir — prox., (an)| < exs 5, e < oo, (A)
losss — prox,, (@)l < ellones —zel, S0k <00 (B)

Theorem (Linear convergence of inexact PPM)

Let f:R™—R be a proper closed convex function, and S # (. Suppose f satisfies
(EB) (or (QG), (PL)) over the sublevel set [f < f* +v]. Let {zy} be any
sequence generated by inexact PPM; There exists a nonnegative 0 < 1 and a
large k > 0 such that for all k > k, we have

Ok + 201

dist(zr41,S) < ékdist(ack,S), where 0, = T7%
— Ok

and lim ék =0 < 1.
k— oo
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Numerical examples

Machine Learning instances
» Linear support vector machine (SVM) (Zhang and Lin (2015)),
> Lasso (Tibshirani (1996)),
» Elastic-net (Zou and Hastie (2005))
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Figure: Linear convergences of cost value gaps for linear SVM (left), lasso
(middle), and elastic-net (right).
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Conclusions
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Summary

> Relationship and equivalency for p-weakly convex functions:

Let f be a proper closed p-weakly convex function. We have
(SC) — (RSI) — (EB) = (PL) — (QG).

Furthermore, if 1) f(z) is convex (i.e., p = 0), or 2) the (QG) coefficient satisfies
tq > &, then we have (RSI) = (EB) = (PL) = (QG).

> Linear convergences of PPM and inexact PPM under (EB), (PL), (QG).

» Ongoing work: Applications in conic optimizations using the augmented
Lagrangian method.
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Thank you for your attention!
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Extra slides



Restricted Secant Inequality

Restricted Secant Inequality (RSI): there exists a positive constant j, > 0 such
that
pe - dist?(z, ) < (g, z — IIg(x)), Vg€ of(x). (RSI)

1. Strong Convexity (SC): there exists a positive constant s > 0 such that
f@) +(gy—a)+ns-ly -zl < fly), Vgedf(x).  (SC)
2. Polyak-tojasiewic (PL) inequality: there exists a constant u, > 0 such that
pp - (f(x) = ) < dist*(0,0f (x)) (PL)
3. Error bound (EB): there exists a constant pe > 0 such that
dist(z, S) < pe - dist(0,0f(x)) (EB)
4. Quadratic Growth (QG): there exists a constant pq > 0 such that

o - dist* (@, $) < f() — * (QG)

UC San Diego
JACos SCHOOL OF ENGINEERING

27/23



	Motivation: linear convergence of GD methods
	EB, PL, and QG for weakly convex functions
	Linear convergences of proximal point methods
	Conclusions
	Appendix

