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Motivation

The success of many machine learning applications

▶ (Sub)gradient-based methods and their variants are the workhorse algorithms
– Gradient descent (GD), stochastic GD, coordinate descent,

quasi-Newton, etc.
▶ For smooth and convex cases, their performances are most well-understood.

– For example, if f(x) is strongly convex and L-smooth, then the basic
GD algorithm xk+1 = xk − tk∇f(xk) has linear convergence

f(xk+1) − f∗ ≤ ω1 × (f(xk) − f∗), 0 < ω1 < 1
∥xk+1 − x∗∥ ≤ ω2 × ∥xk − x∗∥, 0 < ω2 < 1

▶ But strong convexity is a strong assumption; many machine learning models
lack either convexity or smoothness or both.
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Linear convergence of gradient descent

Alternative regularity conditions (weaker than strong convexity)
▶ One famous condition, introduced by Polyak [1963], is

1
2∥∇f(x)∥2 ≥ β × (f(x) − f⋆), ∀x ∈ Rn,

where the suboptimality is upper bounded by the gradient norm.
▶ Holds for strongly convex functions, and also non-convex functions like

▶ Many other problems like least squares, linear quadratic regulator (LQR) in
control, conic optimization (SDPs), etc.

▶ It is a special case of the  Lojasiewicz’ inequality [1963] —
Polyak- Lojasiewicz (PL) inequality (or gradient dominance)
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Linear convergence of gradient descent

Simpler proof of linear convergence
▶ Consider an unconstrained smooth optimization minx∈Rn f(x), where f(x)

satisfies the PL inequality and is L-smooth

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩ + L

2 ∥y − x∥2.

▶ Applying one GD step: xk+1 = xk − tk∇f(xk), leads to

f(xk+1) ≤ f(xk) + ⟨∇f(xk), xk+1 − xk⟩ + L

2 ∥xk+1 − xk∥2

= f(xk) +
(

−2tk + Lt2
k

2

)
∥∇f(xk)∥2.

▶ If we choose 0 < tk < 2/L, then Lt2
k − 2tk < 0.

▶ Applying PL inequality, we have the following linear convergence

f(xk+1) ≤ f(xk) + (Lt2
k − 2tk) × β × (f(xk) − f∗)

⇒ f(xk+1) − f∗ ≤ ω1 × (f(xk) − f∗), 0 < ω1 < 1
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Equivalence among regularity conditions

▶ Relationship with many other conditions, including
– EB: error bounds [Luo and Tseng, 1993].
– QG: quadratic growth [Anitescu, 2000]
– ESC: essential strong convexity [Liu et al., 2013].
– RSI: restricted secant inequality [Zhang & Yin, 2013].
– a few others

▶ A nice summary is given in a paper by Karimi et al., 2016

[Karimi et al., 2016, Theorem 2] For the class of L-smooth functions, we have

SC → RSI → EB ≡ PL → QG

If f(x) is further convex, we have RSI ≡ EB ≡ PL ≡ QG.

▶ This result only focuses on the class of L-smooth functions (the key proof is
based on gradient curves)

▶ Many interesting nonsmooth cases, e.g., |x| or indicator functions of cones

f(y) = −bTy + δSn
+

(c − ATy)

Motivation: linear convergence of GD methods 6/23



This talk
The class of weakly convex functions
▶ A function f : Rn → R̄ is called ρ-weakly convex if the following function

f(x) + ρ

2 ∥x∥2

is convex
▶ A much broader class of functions:

– any convex (potentially nonsmooth) functions, like |x|
– any L-smooth (potentially nonconvex) functions, like −x2 + sin2(x)
– many cost functions in modern machine learning applications

(Drusvyatskiy and Davis, 2020; Atenas et al. 2023)

Message 1: For the class of ρ weakly-convex functions, we have

(SC) → (RSI) → (EB) ≡ (PL) → (QG)

If f(x) is further convex (might be nonsmooth) or the QG coefficient satisfies
µq > ρ/2, we have (RSI) ≡ (EB) ≡ (PL) ≡ (QG).

▶ Message 2: Exact or inexact PPM will enjoy linear convergence under
PL/EB/QG for convex optimization.
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SC, EB, PL, and QG

For a ρ-weakly convex function, its Fréchet subdifferential is well-defined

∂f(x) =
{

s ∈ Rn | lim inf
y→x

f(y) − f(x) − ⟨s, y − x⟩
∥y − x∥ ≥ 0

}
.

Let S := arg min f(x) be the set of optimal solutions. Suppose S ̸= ∅.
1. Strong Convexity (SC): there exists a positive constant µs > 0 such that

f(x) + ⟨g, y − x⟩ + µs · ∥y − x∥2 ≤ f(y), ∀g ∈ ∂f(x). (SC)

2. Polyak- Lojasiewic (PL) inequality: there exists a constant µp > 0 such that

µp · (f(x) − f⋆) ≤ dist2(0, ∂f(x)) (PL)

3. Error bound (EB): there exists a constant µe > 0 such that

dist(x, S) ≤ µe · dist(0, ∂f(x)) (EB)

4. Quadratic Growth (QG): there exists a constant µq > 0 such that

µq · dist2(x, S) ≤ f(x) − f⋆ (QG)
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Examples

In principle, these properties are all generalizations of quadratic functions to
non-quadratic, nonconvex, and even nonsmooth cases
▶ which still maintain favourable “quadratic-like” properties.

▶ Example 1: f(x) = x2. Naturally, all properties hold.
▶ Example 2: f(x) = x2 if |x| ≤ 1; otherwise f(x) = 1

2 (x4 + 1); All properties
hold, but it is not L-smooth globally.

▶ Example 3: f1(x) = x2 + 2 sin2(x) (left) and f2(x) = x2 + 6 sin2(x) (right)

Both of them satisfy (QG), but the right one does not satisfy (PL) or (EB).
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Relationship and equivalency

Theorem
Let f be a proper closed ρ-weakly convex function. We have

(SC) → (RSI) → (EB) ≡ (PL) → (QG).

Furthermore, if 1) f(x) is convex (i.e., ρ = 0), or 2) the (QG) coefficient satisfies
µq > ρ

2 , then the following equivalence holds

(RSI) ≡ (EB) ≡ (PL) ≡ (QG).

An example of nonconvex function with µq > ρ
2 , satisfying PL/EB/QG

f(x) =
{

−x2 + 1 if − 1 < x < −0.5,

3(x + 1)2 otherwise.

▶ It satisfies (QG) with µq = 3/2, since

f(x) ≥ 3
2(x + 1)2, ∀x ∈ R

▶ f(x) is ρ-weakly convex with ρ = 2.
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Literature and Proof techniques

An extensive list of literature [an incomplete summary below]
▶ Smooth case: a nice summary appears in [Karimi et al. 2016, Theorem 2],

which is a special case of ρ-weakly convex functions.

▶ Nonsmooth but convex case:
– Equivalence between (EB) and (QG): [Drusvyatskiy and Lewis, 2018,

Theorem 3.3] and [Artacho and Geoffroy, 2008, Theorem 3.3]

– Equivalence between (PL) and (QG): [Bolte et al., 2017, Theorem 5]

– (PL), (EB), (QG) are equivalent: [Ye et al., 2021, Proposition 2], [Zhu et
al. (2023)]

▶ Nonsmooth and nonconvex case: The most closely related work is
Drusvyatskiy et al. (2021) on nonsmooth optimization using taylor-like
models.

▶ Our proof from (PL) → (EB) relies on a notion of slop techniques in
Drusvyatskiy et al., 2021.
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Proof sketches

Let f be a proper closed ρ-weakly convex function. We have

(SC) → (RSI) → (EB) ≡ (PL) → (QG).

▶ The proof: (SC) → (RSI) → (EB) → (PL) → (QG) are relatively simple.

▶ Take (EB) → (PL) for example. A function is ρ weakly convex iff

f(y) ≥ f(x) + ⟨v, y − x⟩ − ρ

2 ∥y − x∥2, ∀x, y ∈ Rn, v ∈ ∂f(x). (1)

– We would like to prove (EB) → (PL), i.e.,

dist(x, S) ≤ µe · dist(0, ∂f(x)) ⇒ µp(f(x) − f∗) ≤ dist2(0, ∂f(x))

distance to the solution set → suboptimality gap of the cost
– Fix x ∈ Rn and take y = ΠS(x); from the quadratic lower bound (1),

f⋆ ≥ f(x) + ⟨v, ΠS(x) − x⟩ − ρ

2 ∥ΠS(x) − x∥2, ∀v ∈ ∂f(x)
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Proof sketches

Let f be a proper closed ρ-weakly convex function. We have

(SC) → (RSI) → (EB) ≡ (PL) → (QG).

▶ Fix x ∈ Rn and take y = ΠS(x); from the quadratic lower bound (1),

f⋆ ≥ f(x) + ⟨v, ΠS(x) − x⟩ − ρ

2 ∥ΠS(x) − x∥2, ∀v ∈ ∂f(x)

▶ Choose v as the minimal norm element in ∂f(x), completing (EB) → (PL)

f(x) − f⋆ ≤ dist(0, ∂f(x))dist(x, S) + ρ

2 dist2(x, S) Cauchy-Schwartz

≤ µe · dist2(0, ∂f(x)) + ρµ2
e

2 dist2(0, ∂f(x)) Applying (EB)

=
(
(2µe + ρµ2

e)/2
)

dist2(0, ∂f(x)).

▶ The proof from (PL) → (EB) is much more involved: the slope technique
[Drusvyatskiy et al., 2021], and Ekeland’s variational principle [Ekeland, 1974].
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Proof sketches

Let f be a proper closed ρ-weakly convex function. if 1) f(x) is convex (i.e.,
ρ = 0), or 2) the (QG) coefficient satisfies µq > ρ

2 ≥ 0, then

(RSI) ≡ (EB) ≡ (PL) ≡ (QG).

▶ We only need to prove (QG) → (EB) when µq > ρ
2 ≥ 0

▶ Indeed, we have

µq · dist2(x, S) ≤ f(x) − f⋆ ≤ ⟨g, x − ΠS(x)⟩ + ρ

2 dist2(x, S).

Choosing g as the minimal norm element, yields(
µq − ρ

2

)
· dist2(x, S) ≤ ⟨g, x − ΠS(x)⟩

≤ dist(0, ∂f(x)) × dist(x, S). Cauchy-Schwartz

▶ Cancelling a factor, we have (EB)

(µq − ρ/2) · dist(x, S) ≤ dist(0, ∂f(x)).
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Proximal point method

Consider the optimization problem

f⋆ = min
x

f(x),

where f : Rn → R is a proper closed convex function.
▶ Define the proximal mapping

proxα,f (x) := argmin
x∈Rn

f(x) + 1
2α

∥x − xk∥2 ,

▶ The PPM generates iterates by

xk+1 = proxck,f (xk), k = 0, 1, 2, . . .

where {ck}k≥0 is a sequence of positive real numbers.
▶ Conceptually very simple algorithm; historically used for guiding the

design/analysis of other algorithms
– Proximal bundle methods (Lemarechal et al., 1981), augmented

Lagrangian methods (Rockafellar, 1976a).
– Increasing applications in modern machine learning (Drusvyatskiy, 2017)
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Linear convergences

▶ The convergence of PPM for (nonsmooth) convex optimization has been
studied since 1970s (Rockafellar, 1976b).

▶ The sublinear convergence of cost gaps is relatively easy to establish,
▶ Different assumptions exist for linear convergences: [Rockafellar, 1976b]

[Luque, 1984] [Leventhal, 2009] [Cui et al. 2016] [Drusvyatskiy and Lewis, 2018].
– The classical result by Rockafellar, 1976b requires that (∂f)−1 is locally

Lipschitz at 0 (implying a unique solution).

Theorem (Linear convergence)
Let f :Rn →R be a proper closed convex function, and S ̸= ∅. Suppose f satisfies
(PL) (or (EB), (QG)) over the sublevel set [f ≤ f⋆ + ν]. Then, the PPM iterates
enjoy linear convergence rates, i.e.,

f(xk+1) − f⋆ ≤ ωk · (f(xk) − f⋆),
dist(xk+1, S) ≤ θk · dist(xk, S),

for all k ≥ k0, where ωk = 2/(2 + µpck) < 1, 0 < θk < 1.
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Inexact PPM and Linear convergences

▶ Inexact PPM: consider an inexact update

xk+1 ≈ proxck,f (xk).

▶ Two classical criteria in Rockafellar’s seminal work [Rockafellar, 1976b]

∥xk+1 − proxck,f (xk)∥ ≤ ϵk,
∑∞

k=0 ϵk < ∞, (A)
∥xk+1 − proxck,f (xk)∥ ≤ δk∥xk+1 − xk∥,

∑∞
k=0 δk < ∞. (B)

Theorem (Linear convergence of inexact PPM)
Let f :Rn →R be a proper closed convex function, and S ̸= ∅. Suppose f satisfies
(EB) (or (QG), (PL)) over the sublevel set [f ≤ f⋆ + ν]. Let {xk} be any
sequence generated by inexact PPM; There exists a nonnegative θk < 1 and a
large k̄ > 0 such that for all k ≥ k̄, we have

dist(xk+1, S) ≤ θ̂kdist(xk, S), where θ̂k = θk + 2δk

1 − δk
and lim

k→∞
θ̂k = θk < 1.
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Numerical examples

Machine Learning instances
▶ Linear support vector machine (SVM) (Zhang and Lin (2015)),
▶ Lasso (Tibshirani (1996)),
▶ Elastic-net (Zou and Hastie (2005))
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Figure: Linear convergences of cost value gaps for linear SVM (left), lasso
(middle), and elastic-net (right).
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Summary

▶ Relationship and equivalency for ρ-weakly convex functions:

Let f be a proper closed ρ-weakly convex function. We have

(SC) → (RSI) → (EB) ≡ (PL) → (QG).

Furthermore, if 1) f(x) is convex (i.e., ρ = 0), or 2) the (QG) coefficient satisfies
µq > ρ

2 , then we have (RSI) ≡ (EB) ≡ (PL) ≡ (QG).

▶ Linear convergences of PPM and inexact PPM under (EB), (PL), (QG).
▶ Ongoing work: Applications in conic optimizations using the augmented

Lagrangian method.

Conclusions 22/23



Thank you for your attention!
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Restricted Secant Inequality

Restricted Secant Inequality (RSI): there exists a positive constant µr > 0 such
that

µr · dist2(x, S) ≤ ⟨g, x − ΠS(x)⟩, ∀g ∈ ∂f(x). (RSI)

1. Strong Convexity (SC): there exists a positive constant µs > 0 such that

f(x) + ⟨g, y − x⟩ + µs · ∥y − x∥2 ≤ f(y), ∀g ∈ ∂f(x). (SC)

2. Polyak- Lojasiewic (PL) inequality: there exists a constant µp > 0 such that

µp · (f(x) − f⋆) ≤ dist2(0, ∂f(x)) (PL)

3. Error bound (EB): there exists a constant µe > 0 such that

dist(x, S) ≤ µe · dist(0, ∂f(x)) (EB)

4. Quadratic Growth (QG): there exists a constant µq > 0 such that

µq · dist2(x, S) ≤ f(x) − f⋆ (QG)
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