Error bounds, PL, and Quadratic Growth for Weakly Convex Functions, and Linear Convergences of Proximal Point Methods

Feng-Yi Liao¹, Lijun Ding², and Yang Zheng¹

 $^1 \rm Department$ of Electrical & Computer Engineering, UC San Diego $^2 \rm Department$ of Industrial & Systems Engineering at Texas A&M University

2024 INFORMS Optimization Society Conference March 24, 2024

Outline

Motivation: linear convergence of GD methods

EB, PL, and QG for weakly convex functions

Linear convergences of proximal point methods

Conclusions

Motivation

The success of many machine learning applications

(Sub)gradient-based methods and their variants are the workhorse algorithms

 Gradient descent (GD), stochastic GD, coordinate descent, quasi-Newton, etc.

For smooth and convex cases, their performances are most well-understood.

– For example, if f(x) is strongly convex and *L*-smooth, then the basic GD algorithm $x_{k+1} = x_k - t_k \nabla f(x_k)$ has linear convergence

$$f(x_{k+1}) - f^* \le \omega_1 \times (f(x_k) - f^*), \qquad 0 < \omega_1 < 1$$

$$\|x_{k+1} - x^*\| \le \omega_2 \times \|x_k - x^*\|, \qquad 0 < \omega_2 < 1$$

But strong convexity is a strong assumption; many machine learning models lack either convexity or smoothness or both.

UC San Diego

Linear convergence of gradient descent

Alternative regularity conditions (weaker than strong convexity)

One famous condition, introduced by Polyak [1963], is

$$\frac{1}{2} \|\nabla f(x)\|^2 \ge \beta \times (f(x) - f^*), \ \forall x \in \mathbb{R}^n,$$

where the suboptimality is upper bounded by the gradient norm.

Holds for strongly convex functions, and also non-convex functions like

- Many other problems like least squares, linear quadratic regulator (LQR) in control, conic optimization (SDPs), etc.
- It is a special case of the Łojasiewicz' inequality [1963] —
 Polyak-Łojasiewicz (PL) inequality (or gradient dominance)

UC San Diego JACOBS SCHOOL OF ENGINEERIN

Linear convergence of gradient descent

Simpler proof of linear convergence

▶ Consider an unconstrained smooth optimization $\min_{x \in \mathbb{R}^n} f(x)$, where f(x) satisfies the PL inequality and is *L*-smooth

$$f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} \|y - x\|^2.$$

• Applying one GD step: $x_{k+1} = x_k - t_k \nabla f(x_k)$, leads to

$$f(x_{k+1}) \le f(x_k) + \langle \nabla f(x_k), x_{k+1} - x_k \rangle + \frac{L}{2} ||x_{k+1} - x_k||^2$$

= $f(x_k) + \left(\frac{-2t_k + Lt_k^2}{2}\right) ||\nabla f(x_k)||^2.$

• If we choose $0 < t_k < 2/L$, then $Lt_k^2 - 2t_k < 0$.

Applying PL inequality, we have the following linear convergence

$$f(x_{k+1}) \le f(x_k) + (Lt_k^2 - 2t_k) \times \beta \times (f(x_k) - f^*)$$

$$\Rightarrow \quad f(x_{k+1}) - f^* \le \omega_1 \times (f(x_k) - f^*), \qquad 0 < \omega_1 < 1$$

Equivalence among regularity conditions

Relationship with many other conditions, including

- EB: error bounds [Luo and Tseng, 1993].
- QG: quadratic growth [Anitescu, 2000]
- ESC: essential strong convexity [Liu et al., 2013].
- RSI: restricted secant inequality [Zhang & Yin, 2013].
- a few others

A nice summary is given in a paper by Karimi et al., 2016

[Karimi et al., 2016, Theorem 2] For the class of L-smooth functions, we have

 $\mathsf{SC} \to \mathsf{RSI} \to \mathsf{EB} \equiv \mathsf{PL} \to \mathsf{QG}$

If f(x) is further convex, we have $RSI \equiv EB \equiv PL \equiv QG$.

- This result only focuses on the class of L-smooth functions (the key proof is based on gradient curves)
- > Many interesting nonsmooth cases, e.g., |x| or indicator functions of cones

$$f(y) = -b^{\mathsf{T}}y + \delta_{\mathbb{S}^n_+}(c - A^{\mathsf{T}}y)$$

UC San Diego

This talk

The class of weakly convex functions

 \blacktriangleright A function $f:\mathbb{R}^n\to\bar{\mathbb{R}}$ is called $\rho\text{-weakly convex}$ if the following function

$$f(x) + \frac{\rho}{2} \|x\|^2$$

is convex

- A much broader class of functions:
 - any convex (potentially nonsmooth) functions, like |x|
 - any L-smooth (potentially nonconvex) functions, like $-x^2 + \sin^2(x)$
 - many cost functions in modern machine learning applications (Drusvyatskiy and Davis, 2020; Atenas et al. 2023)

Message 1: For the class of ρ weakly-convex functions, we have

$$(SC) \rightarrow (RSI) \rightarrow (EB) \equiv (PL) \rightarrow (QG)$$

If f(x) is further convex (might be nonsmooth) or the QG coefficient satisfies $\mu_q > \rho/2$, we have (RSI) \equiv (EB) \equiv (PL) \equiv (QG).

Message 2: Exact or inexact PPM will enjoy linear convergence under PL/EB/QG for convex optimization.

UC San Diego IACOBS SCHOOL OF ENGINEERING

Outline

Motivation: linear convergence of GD methods

EB, PL, and QG for weakly convex functions

Linear convergences of proximal point methods

Conclusions

SC, EB, PL, and QG

For a p-weakly convex function, its Fréchet subdifferential is well-defined

$$\partial f(x) = \left\{ s \in \mathbb{R}^n \mid \liminf_{y \to x} \frac{f(y) - f(x) - \langle s, y - x \rangle}{\|y - x\|} \ge 0 \right\}.$$

Let $S := \arg \min f(x)$ be the set of optimal solutions. Suppose $S \neq \emptyset$.

1. Strong Convexity (SC): there exists a positive constant $\mu_s > 0$ such that

$$f(x) + \langle g, y - x \rangle + \mu_{s} \cdot ||y - x||^{2} \le f(y), \quad \forall g \in \partial f(x).$$
 (SC)

2. Polyak-Łojasiewic (PL) inequality: there exists a constant $\mu_p > 0$ such that

$$\mu_{\mathbf{p}} \cdot (f(x) - f^{\star}) \le \operatorname{dist}^2(0, \partial f(x)) \tag{PL}$$

3. Error bound (EB): there exists a constant $\mu_{e} > 0$ such that

$$\operatorname{dist}(x,S) \le \mu_{\mathbf{e}} \cdot \operatorname{dist}(0,\partial f(x))$$
 (EB)

4. Quadratic Growth (QG): there exists a constant $\mu_q > 0$ such that

$$\mu_{\mathbf{q}} \cdot \operatorname{dist}^{2}(x, S) \leq f(x) - f^{\star} \tag{QG}$$

Examples

In principle, these properties are all generalizations of quadratic functions to non-quadratic, nonconvex, and even nonsmooth cases

- which still maintain favourable "quadratic-like" properties.
- **Example 1:** $f(x) = x^2$. Naturally, all properties hold.

UC San Diego

Example 2: $f(x) = x^2$ if $|x| \le 1$; otherwise $f(x) = \frac{1}{2}(x^4 + 1)$; All properties hold, but it is not *L*-smooth globally.

Example 3: $f_1(x) = x^2 + 2\sin^2(x)$ (left) and $f_2(x) = x^2 + 6\sin^2(x)$ (right)

Both of them satisfy (QG), but the right one does not satisfy (PL) or (EB).

Relationship and equivalency

Theorem Let f be a proper closed ρ -weakly convex function. We have

 $(\mathsf{SC}) \to (\mathsf{RSI}) \to (\mathsf{EB}) \equiv (\mathsf{PL}) \to (\mathsf{QG}).$

Furthermore, if 1) f(x) is convex (i.e., $\rho = 0$), or 2) the (QG) coefficient satisfies $\mu_q > \frac{\rho}{2}$, then the following equivalence holds

$$(\mathsf{RSI}) \equiv (\mathsf{EB}) \equiv (\mathsf{PL}) \equiv (\mathsf{QG}).$$

An example of nonconvex function with $\mu_q > \frac{\rho}{2}$, satisfying PL/EB/QG

EB, PL, and QG for weakly convex functions

0

-0.5

Literature and Proof techniques

An extensive list of literature [an incomplete summary below]

Smooth case: a nice summary appears in [Karimi et al. 2016, Theorem 2], which is a special case of ρ-weakly convex functions.

Nonsmooth but convex case:

- Equivalence between (EB) and (QG): [Drusvyatskiy and Lewis, 2018, Theorem 3.3] and [Artacho and Geoffroy, 2008, Theorem 3.3]
- Equivalence between (PL) and (QG): [Bolte et al., 2017, Theorem 5]
- (PL), (EB), (QG) are equivalent: [Ye et al., 2021, Proposition 2], [Zhu et al. (2023)]
- Nonsmooth and nonconvex case: The most closely related work is Drusvyatskiy et al. (2021) on nonsmooth optimization using taylor-like models.
- Our proof from (PL) → (EB) relies on a notion of *slop techniques* in Drusvyatskiy et al., 2021.

Proof sketches

Let f be a proper closed $\rho\text{-weakly convex function}. We have$

$$(SC) \rightarrow (RSI) \rightarrow (EB) \equiv (PL) \rightarrow (QG).$$

▶ The proof: (SC) \rightarrow (RSI) \rightarrow (EB) \rightarrow (PL) \rightarrow (QG) are relatively simple.

▶ Take (EB) \rightarrow (PL) for example. A function is ρ weakly convex iff

$$f(y) \ge f(x) + \langle v, y - x \rangle - \frac{\rho}{2} \|y - x\|^2, \quad \forall x, y \in \mathbb{R}^n, v \in \partial f(x).$$
(1)

– We would like to prove (EB)
$$ightarrow$$
 (PL), i.e.,

 $\operatorname{dist}(x,S) \le \mu_{\mathbf{e}} \cdot \operatorname{dist}(0,\partial f(x)) \quad \Rightarrow \quad \mu_{\mathbf{p}}(f(x) - f^*) \le \operatorname{dist}^2(0,\partial f(x))$

distance to the solution set \rightarrow suboptimality gap of the cost

- Fix $x \in \mathbb{R}^n$ and take $y = \prod_S(x)$; from the quadratic lower bound (1),

$$f^{\star} \ge f(x) + \langle v, \Pi_S(x) - x \rangle - \frac{\rho}{2} ||\Pi_S(x) - x||^2, \quad \forall v \in \partial f(x)$$

Proof sketches

Let f be a proper closed $\rho\text{-weakly convex function}.$ We have $(\mathsf{SC})\to(\mathsf{RSI})\to(\mathsf{EB})\equiv(\mathsf{PL})\to(\mathsf{QG}).$

UC San Diego

Fix $x \in \mathbb{R}^n$ and take $y = \prod_S(x)$; from the quadratic lower bound (1),

$$f^* \ge f(x) + \langle v, \Pi_S(x) - x \rangle - \frac{\rho}{2} ||\Pi_S(x) - x||^2, \quad \forall v \in \partial f(x)$$

• Choose v as the minimal norm element in $\partial f(x)$, completing (EB) \rightarrow (PL)

- $$\begin{split} f(x) f^{\star} &\leq \operatorname{dist}(0, \partial f(x)) \operatorname{dist}(x, S) + \frac{\rho}{2} \operatorname{dist}^{2}(x, S) \qquad \text{Cauchy-Schwartz} \\ &\leq \mu_{e} \cdot \operatorname{dist}^{2}(0, \partial f(x)) + \frac{\rho \mu_{e}^{2}}{2} \operatorname{dist}^{2}(0, \partial f(x)) \quad \text{Applying (EB)} \\ &= \left((2\mu_{e} + \rho \mu_{e}^{2})/2 \right) \operatorname{dist}^{2}(0, \partial f(x)). \end{split}$$
- The proof from (PL) → (EB) is much more involved: the slope technique [Drusvyatskiy et al., 2021], and Ekeland's variational principle [Ekeland, 1974].

Proof sketches

Let f be a proper closed ρ -weakly convex function. if 1) f(x) is convex (i.e., $\rho = 0$), or 2) the (QG) coefficient satisfies $\mu_q > \frac{\rho}{2} \ge 0$, then

 $(\mathsf{RSI}) \equiv (\mathsf{EB}) \equiv (\mathsf{PL}) \equiv (\mathsf{QG}).$

▶ We only need to prove (QG) \rightarrow (EB) when $\mu_{\rm q} > \frac{\rho}{2} \ge 0$

Indeed, we have

$$\mu_{\mathbf{q}} \cdot \operatorname{dist}^{2}(x, S) \leq f(x) - f^{\star} \leq \langle g, x - \Pi_{S}(x) \rangle + \frac{\rho}{2} \operatorname{dist}^{2}(x, S).$$

Choosing g as the minimal norm element, yields

$$\begin{split} \left(\mu_{\mathbf{q}} - \frac{\rho}{2}\right) \cdot \operatorname{dist}^{2}(x, S) &\leq \langle g, x - \Pi_{S}(x) \rangle \\ &\leq \operatorname{dist}(0, \partial f(x)) \times \operatorname{dist}(x, S). \quad \mathsf{Cauchy-Schwartz} \end{split}$$

Cancelling a factor, we have (EB)

$$(\mu_{\mathbf{q}} - \rho/2) \cdot \operatorname{dist}(x, S) \leq \operatorname{dist}(0, \partial f(x)).$$

Outline

Motivation: linear convergence of GD methods

EB, PL, and QG for weakly convex functions

Linear convergences of proximal point methods

Conclusions

Linear convergences of proximal point methods

Proximal point method

Consider the optimization problem

$$f^{\star} = \min_{x} f(x),$$

where $f:\mathbb{R}^n\to\overline{\mathbb{R}}$ is a proper closed convex function.

Define the proximal mapping

$$\operatorname{prox}_{\alpha,f}(x) := \operatorname{argmin}_{x \in \mathbb{R}^n} f(x) + \frac{1}{2\alpha} \|x - x_k\|^2,$$

The PPM generates iterates by

$$x_{k+1} = \operatorname{prox}_{c_k, f}(x_k), \quad k = 0, 1, 2, \dots$$

where $\{c_k\}_{k\geq 0}$ is a sequence of positive real numbers.

- Conceptually very simple algorithm; historically used for guiding the design/analysis of other algorithms
 - Proximal bundle methods (Lemarechal et al., 1981), augmented Lagrangian methods (Rockafellar, 1976a).
 - Increasing applications in modern machine learning (Drusvyatskiy, 2017)

Linear convergences

- The convergence of PPM for (nonsmooth) convex optimization has been studied since 1970s (Rockafellar, 1976b).
- ▶ The sublinear convergence of cost gaps is relatively easy to establish,
- Different assumptions exist for linear convergences: [Rockafellar, 1976b] [Luque, 1984] [Leventhal, 2009] [Cui et al. 2016] [Drusvyatskiy and Lewis, 2018].
 - The classical result by Rockafellar, 1976b requires that $(\partial f)^{-1}$ is locally Lipschitz at 0 (implying a unique solution).

Theorem (Linear convergence)

Let $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ be a proper closed convex function, and $S \neq \emptyset$. Suppose f satisfies (PL) (or (EB), (QG)) over the sublevel set $[f \leq f^* + \nu]$. Then, the PPM iterates enjoy linear convergence rates, i.e.,

$$f(x_{k+1}) - f^* \le \omega_k \cdot (f(x_k) - f^*),$$

$$\operatorname{dist}(x_{k+1}, S) \le \theta_k \cdot \operatorname{dist}(x_k, S),$$

for all $k\geq k_0,$ where $\omega_k=2/(2+\mu_{\rm p}c_k)<1, 0<\theta_k<1.$

Inexact PPM and Linear convergences

Inexact PPM: consider an inexact update

 $x_{k+1} \approx \operatorname{prox}_{c_k, f}(x_k).$

▶ Two classical criteria in Rockafellar's seminal work [Rockafellar, 1976b]

$$\|x_{k+1} - \mathsf{prox}_{c_k, f}(x_k)\| \le \epsilon_k, \quad \sum_{k=0}^{\infty} \epsilon_k < \infty, \tag{A}$$

$$||x_{k+1} - \mathsf{prox}_{c_k, f}(x_k)|| \le \delta_k ||x_{k+1} - x_k||, \quad \sum_{k=0}^{\infty} \delta_k < \infty.$$
 (B)

Theorem (Linear convergence of inexact PPM)

Let $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ be a proper closed convex function, and $S \neq \emptyset$. Suppose f satisfies (EB) (or (QG), (PL)) over the sublevel set $[f \leq f^* + \nu]$. Let $\{x_k\}$ be any sequence generated by inexact PPM; There exists a nonnegative $\theta_k < 1$ and a large $\overline{k} > 0$ such that for all $k \geq \overline{k}$, we have

$$\operatorname{dist}(x_{k+1}, S) \leq \hat{\theta}_k \operatorname{dist}(x_k, S), \text{ where } \hat{\theta}_k = \frac{\theta_k + 2\delta_k}{1 - \delta_k} \text{ and } \lim_{k \to \infty} \hat{\theta}_k = \theta_k < 1.$$

Numerical examples

Machine Learning instances

- Linear support vector machine (SVM) (Zhang and Lin (2015)),
- Lasso (Tibshirani (1996)),
- Elastic-net (Zou and Hastie (2005))

Figure: Linear convergences of cost value gaps for linear SVM (left), lasso (middle), and elastic-net (right).

Outline

Motivation: linear convergence of GD methods

EB, PL, and QG for weakly convex functions

Linear convergences of proximal point methods

Conclusions

Summary

Relationship and equivalency for *ρ*-weakly convex functions:

Let f be a proper closed ρ -weakly convex function. We have

$$(SC) \rightarrow (RSI) \rightarrow (EB) \equiv (PL) \rightarrow (QG).$$

Furthermore, if 1) f(x) is convex (i.e., $\rho = 0$), or 2) the (QG) coefficient satisfies $\mu_q > \frac{\rho}{2}$, then we have (RSI) \equiv (EB) \equiv (PL) \equiv (QG).

▶ Linear convergences of PPM and inexact PPM under (EB), (PL), (QG).

 Ongoing work: Applications in conic optimizations using the augmented Lagrangian method.

Conclusions

Thank you for your attention! Q & A

Liao, Feng-Yi, Lijun Ding, and Yang Zheng. "Error bounds, PL condition, and quadratic growth for weakly convex functions, and linear convergences of proximal point methods." arXiv preprint arXiv:2312.16775 (2023).

Supported by NSF ECCS-2154650; NSF CMMI-2320697

References

- Boris T Polyak. Gradient methods for the minimisation of functionals. USSR Computational Mathematics and Mathematical Physics, 3(4):864–878, 1963.
- Luo, Zhi-Quan, and Paul Tseng. "Error bounds and convergence analysis of feasible descent methods: a general approach." Annals of Operations Research 46.1 (1993): 157-178.
- Hui Zhang and Wotao Yin. Gradient methods for convex minimization: better rates under weaker conditions. arXiv preprint arXiv:1303.4645, 2013.
- Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximalgradient methods under the polyak-łojasiewicz condition. In Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2016, Riva del Garda, Italy, September 19-23, 2016, Proceedings, Part I 16, pages 795–811. Springer, 2016.
- Dmitriy Drusvyatskiy and Adrian S Lewis. Error bounds, quadratic growth, and linear convergence of proximal methods. Mathematics of Operations Research, 43(3):919–948, 2018.
- FJ Aragon Artacho and Michel H Geoffroy. Characterization of metric regularity of subdifferentials. Journal of Convex Analysis, 15(2):365, 2008.
- Jerome Bolte, Trong Phong Nguyen, Juan Peypouquet, and Bruce W Suter. From error bounds to the complexity of first-order descent methods for convex functions. Mathematical Programming, 165:471–507, 2017
- Jane J Ye, Xiaoming Yuan, Shangzhi Zeng, and Jin Zhang. Variational analysis perspective on linear convergence of some first order methods for nonsmooth convex optimization problems. Set-Valued and Variational Analysis, pages 1–35, 2021.

References

- Daoli Zhu, Lei Zhao, and Shuzhong Zhang. A unified analysis for the subgradient methods minimizing composite nonconvex, nonsmooth and non-lipschitz functions. arXiv preprint arXiv:2308.16362, 2023.
- Dmitriy Drusvyatskiy, Alexander D loffe, and Adrian S Lewis. Nonsmooth optimization using taylor-like models: error bounds, convergence, and termination criteria. Mathematical Programming, 185:357–383, 2021.
- R Tyrrell Rockafellar. Augmented lagrangians and applications of the proximal point algorithm in convex programming. Mathematics of operations research, 1(2):97–116, 1976a.
- R Tyrrell Rockafellar. Monotone operators and the proximal point algorithm. SIAM journal on control and optimization, 14(5):877–898, 1976b.
- Dmitriy Drusvyatskiy. The proximal point method revisited. arXiv preprint arXiv:1712.06038, 2017.
- Fernando Javier Luque. Asymptotic convergence analysis of the proximal point algorithm. SIAM Journal on Control and Optimization, 22(2):277–293, 1984
- Ying Cui, Defeng Sun, and Kim-Chuan Toh. On the asymptotic superlinear convergence of the augmented lagrangian method for semidefinite programming with multiple solutions. arXiv preprint arXiv:1610.00875, 2016.

Extra slides

Restricted Secant Inequality

Restricted Secant Inequality (RSI): there exists a positive constant $\mu_r > 0$ such that

$$\mu_{\mathbf{r}} \cdot \operatorname{dist}^2(x, S) \le \langle g, x - \Pi_S(x) \rangle, \quad \forall g \in \partial f(x).$$
 (RSI)

1. Strong Convexity (SC): there exists a positive constant $\mu_{\rm s}>0$ such that

$$f(x) + \langle g, y - x \rangle + \mu_{s} \cdot ||y - x||^{2} \le f(y), \quad \forall g \in \partial f(x).$$
 (SC)

2. Polyak-Łojasiewic (PL) inequality: there exists a constant $\mu_p > 0$ such that

$$\mu_{\mathbf{p}} \cdot (f(x) - f^{\star}) \le \operatorname{dist}^2(0, \partial f(x)) \tag{PL}$$

3. Error bound (EB): there exists a constant $\mu_{\rm e} > 0$ such that

$$\operatorname{dist}(x,S) \le \mu_{\mathbf{e}} \cdot \operatorname{dist}(0,\partial f(x))$$
 (EB)

4. Quadratic Growth (QG): there exists a constant $\mu_q > 0$ such that

$$\mu_{q} \cdot \operatorname{dist}^{2}(x, S) \leq f(x) - f^{\star} \tag{QG}$$

