Benign Nonconvex Landscapes in Optimal and Robust Control

Yang Zheng

Assistant Professor, ECE Department, UC San Diego

2024 Information Theory and Applications Workshop

Feb 23, 2024

UC San Diego

JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering Scalable Optimization and Control (SOC) Lab

https://zhengy09.github.io/soclab.html

Acknowledgements

Chih-Fan (Rich) Pai University of California San Diego

Yujie Tang Peking University

- Zheng, Yang, Chih-Fan Pai, and Yujie Tang. "Benign Nonconvex Landscapes in Optimal and Robust Control, Part I: Global Optimality." preprint arXiv:2312.15332 (2023): <u>https://arxiv.org/abs/2312.15332</u>.
- Part II: Extended Convex Lifting will be out soon

Supported by NSF ECCS-2154650 NSF CMMI-2320697

Success of Data-driven Decision Making

- Data-driven decision-making for complex tasks in dynamical systems, e.g., game playing, robotic manipulation/ locomotion, networked systems, ChatGPT, etc.
- Reinforcement learning (RL) has served as one backbone of the recent successes of data-driven decision-making.
- **Policy optimization** as one of the major workhorses of modern RL.

Duan et al. 2016; Silver et al., 2017; Dean et al., 2019; Tu and Recht, 2019; Mania et al., 2019; Fazel et al., 2018; Recht, 2019; https://chat.openai.com/

Policy Optimization for Control

Why policy optimization is so popular

Opportunities

- Easy-to-implement
- Scalable to high-dimensional problems
- Enable **model-free search** with rich observations (e.g. images)

Challenges

- Nonconvex optimization
- Lack of principled algorithms for optimality (e.g., avoiding saddles/local minimizers)

 $J(\mathsf{K})$

 $\min_{\mathsf{K}\in\mathcal{C}}$

• Hard to obtain **theoretical guarantees** (e.g., robustness/stability, sample efficiency)

Convex LMIs vs Policy optimization

Historical background

- Since 1980s, convex LMIs become dominant due to global guarantees and efficient interior point methods
- Rely on **re-parameterizations** (does not optimize controller/policy parameters directly)

$$K = YX^{-1}$$

• Examples: State-feedback or full-order outputfeedback H2/H∞ control, and many others

□ Recent progress

- Favorable properties have been revealed for policy optimization in a range of benchmark control problems:
 - LQR [Fazel et al., 2018] [Malik et al., 2020]
 [Mohammad et al., 2022]
 [Fatkhullin & Polyak, 2021], etc.
 - ✓ LQG [Zheng, Tang & Li, 2021]
 [Mohammadi et al., 2021] [Zheng et al., 2022]
 [Ren et al., 2023] [Duan et al., 2023]
 - ✓ H∞ state-feedback/output-feedback
 [Guo & Hu, 2022] [Hu & Zheng, 2022]
 - \checkmark A recent survey paper:

Hu, B., Zhang, K., Li, N., Mesbahi, M., Fazel, M., & Başar, T. (2023). Toward a Theoretical Foundation of Policy Optimization for Learning Control Policies. Annual Review of Control, Robotics, and Autonomous Systems, 6, 123-158. 5

Our Focus

This talk: Benign Nonconvexity in Control via Extended Convex Lifting (ECL)

- Reconciles the gap between nonconvex policy optimization and convex reformulations.
- For a class of non-degenerate policies, all Clarke stationary points are globally optimal and there is no spurious local minimum in policy optimization.

Outline

Problem Setup and Simple Examples

Benign Nonconvexity via Extended Convex Lifting (ECL)

ECLs for Optimal and Robust Control

Conclusions

Policy Optimization in Control

System
Dynamics
$$\begin{aligned} \frac{dx(t)}{dt} &= Ax(t) + B_1w(t) + B_2u(t) \\ z(t) &= C_1x(t) + D_{11}w(t) + D_{12}u(t) \end{aligned}$$

 $y(t) = C_2 x(t) + D_{21} w(t)$

Non-convex Optimization problem

 Consider the class of linear dynamic feedback policies of the form

$$\frac{d\xi(t)}{dt} = A_{\mathsf{K}}\xi(t) + B_{\mathsf{K}}y(t)$$
$$u(t) = C_{\mathsf{K}}\xi(t) + D_{\mathsf{K}}y(t)$$

- Parametrize by $K = (A_K, B_K, C_K, D_K)$
- LQR, LQG, H2, Hinf robust control

Nonconvexity in Policy Optimization

Policy parametrization

 $J(\mathsf{K})$ min Non-convex **Optimization** problem s.t. $K \in C$

□ The set of (dynamic) stabilizing policies is nonconvex and even might be not connected. [Tang, Zheng, Li, 2023]

Κ

□ LQR/LQG costs are **smooth but nonconvex**; Hinf cost are **non-smooth and nonconvex**

Any (non-degenerate) Clarke stationary points are globally optimal!

Example 1

Nonconvex and Smooth function

 $h_1(y) := f_1(g^{-1}(y)) = (y_1 - 2)^2 + (y_2 - 1)^2, \quad \forall y_1 > 0, y_2 > 0.$

Example 2

Nonconvex and Non-smooth function

 $h_2(y) := f_2(g^{-1}(y)) = |y_1 - 2| + |y_2 - 1|, \quad \forall y_1 > 0, y_2 > 0,$

Example 3

□ Linear Quadratic Regulator (LQR)

$$J(k_1, k_2) = \frac{1 - 2k_2 + 3k_2^2 - 2k_2^3 - 2k_1^2k_2}{k_2^2 - 1},$$

$$\forall k_1 \in \mathbb{R}, k_2 < -1.$$

- Not easy to see whether it is convex in the current form
- This cost function comes from an LQR instance

$$A = \begin{bmatrix} -2 & 0 \\ 0 & 1 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, Q = I_2, R = 1$$

• There exists an invertible mapping

$$g(k) := \left(\frac{k_1}{1 - k_2}, \frac{2k_2 - k_1^2 - 2k_2^2}{k_2^2 - 1}\right) \qquad \forall k_1 \in \mathbb{R}, k_2 < -1.$$

• We get a **convex function** in terms of the new variable y

$$h(y) := J(g^{-1}(y)) = -y_2 - 1 + y^{\mathsf{T}} \begin{bmatrix} 1 & y_1 \\ y_1 & -y_2 - 2 \end{bmatrix}^{-1} y, \qquad \forall \begin{bmatrix} 1 & y_1 \\ y_1 & -y_2 - 2 \end{bmatrix} \succ 0.$$
 12

A Useful Fact

Global Optimality (Informal)

• Consider a continuous function $f(x): \mathcal{D} \to \mathbb{R}$. Denote its epigraph as

 $\operatorname{epi}_{\geq}(f) := \{(x, \gamma) \in \mathcal{D} \times \mathbb{R} \mid \gamma \ge f(x)\}.$

- Suppose there exists a smooth and invertible map Φ between

 $\operatorname{epi}_{\geq}(f)$ and a convex set $\mathcal{F}_{\operatorname{cvx}}$

• and we further have $(y, \gamma) = \Phi(x, \gamma), \ \forall (x, \gamma) \in \operatorname{epi}_{\geq}(f)$

<u>Guarantee 1</u>: Optimization over f(x) is equivalent to a convex problem

$$\inf_{x \in \mathcal{D}} f(x) = \inf_{(y,\gamma) \in \mathcal{F}_{\mathrm{cvx}}} \gamma.$$

<u>Guarantee 2</u>: Any stationary point to f(x) is globally optimal

 $0\in\partial f(x^*)$ implies globally optimality

Outline

Problem Setup and Simple Examples

Benign Nonconvexity via Extended Convex Lifting (ECL)

ECLs for Optimal and Robust Control

Conclusions

Lifting for Convexity

□ For many control problems, a **direct convexification is not possible!**

□ A lifting procedure corresponding to Lyapunov variables is necessary.

Extended Convex Lifting (ECL)

Consider a continuous function f(x) : D → R where D ⊆ R^d. Denote its strict and non-strict epigraph as
 epi_>(f) := {(x, γ) ∈ D × R | γ > f(x)},

 $\operatorname{epi}_{\geq}(f) := \{ (x, \gamma) \in \mathcal{D} \times \mathbb{R} \mid \gamma \geq f(x) \}.$

Auxiliary set

Extended Convex Lifting (ECL)

We say a tuple $(\mathcal{L}_{lft}, \mathcal{F}_{cvx}, \mathcal{G}_{aux}, \Phi)~~\text{is an ECL of f(x) if}$

- Condition 1: $\mathcal{L}_{\mathrm{lft}} \subseteq \mathbb{R}^d \times \mathbb{R} \times \mathbb{R}^{d_{\xi}}$ is a lifted set such that its canonical projection satisfies $\mathrm{epi}_{>}(f) \subseteq \pi_{x,\gamma}(\mathcal{L}_{\mathrm{lft}}) \subseteq \mathrm{cl\,epi}_{>}(f).$
- Condition 2: Φ is a diffeomorphism between

 $\mathcal{L}_{\mathrm{lft}}$ and $\mathcal{F}_{\mathrm{cvx}} imes \mathcal{G}_{\mathrm{aux}}$

Condition 3: Φ does not change γ

•

convex

 $\Phi(x, \boldsymbol{\gamma}, \boldsymbol{\xi}) = (\boldsymbol{\gamma}, \zeta_1, \zeta_2), \quad \forall (x, \boldsymbol{\gamma}, \boldsymbol{\xi}) \in \mathcal{L}_{lft}$

Extended Convex Lifting (ECL)

• If a continuous function $f(x) : \mathcal{D} \to \mathbb{R}$ where $\mathcal{D} \subseteq \mathbb{R}^d$ admits an ECL $(\mathcal{L}_{lft}, \mathcal{F}_{cvx}, \mathcal{G}_{aux}, \Phi)$

- Subdifferentially regular functions are a very class of functions, including all cost functions in LQR, LQG, Hinf robust control, etc.
- Non-degenerate points: covered by the lifted set. $x \in \mathcal{D}$ such that $(x, f(x)) \in \pi_{x,\gamma} \mathcal{L}_{lft})$.

✓ If we have $\pi_{x,\gamma}(\mathcal{L}_{lft}) = epi_{\geq}(f)$, then all feasible points are non-degenerate

Outline

□ Simple Examples

Benign Nonconvexity via Extended Convex Lifting (ECL)

ECLs for Optimal and Robust Control

Conclusions

Global Optimality in Control

Optimal and Robust Control

Main Results (informal):

- Static state feedback: Any (Clarke) stationary points in LQR or Hinf control are globally optimal ([Fazel et al., 2018]; [Guo & Hu, 2022]);
- Dynamic output feedback: Any non-degenerate (Clarke) stationary points in LQG or Hinf dynamic output control are globally optimal.

LQR

Step 1: Lifting

$$\mathcal{L}_{LQR} := \left\{ (K, \gamma, \boldsymbol{X}) : \boldsymbol{X} \succ \boldsymbol{0}, (A + BK)\boldsymbol{X} + \boldsymbol{X}(A + BK)^{\mathsf{T}} + W = \boldsymbol{0}, \gamma \ge \mathrm{Tr}\left[(Q + K^{\mathsf{T}}RK)\boldsymbol{X} \right] \right\}.$$

Step 2: Convex set

 $\mathcal{F}_{LQR} := \left\{ (\gamma, Y, X) : X \succ 0, AX + BY + XA^{\mathsf{T}} + Y^{\mathsf{T}}B^{\mathsf{T}} + W = 0, \gamma \ge \operatorname{Tr} \left(QX + X^{-1}Y^{\mathsf{T}}RY \right) \right\},\$

Step 3: Diffeomorphism $\Phi(K, \gamma, X) = (\gamma, KX, X), \quad \forall (K, \gamma, X) \in \mathcal{L}_{LQR}.$

Hinf Robust Control

Step 1: Lifting

$$\mathcal{L}_{\infty} := \left\{ (K, \gamma, \mathbf{P}) : \mathbf{P} \succ \mathbf{0}, \begin{bmatrix} (A + BK)^{\mathsf{T}} \mathbf{P} + \mathbf{P}(A + BK) & \mathbf{P}B_{w} & C^{\mathsf{T}} \\ B_{w}^{\mathsf{T}} \mathbf{P} & -\gamma I & \mathbf{0} \\ C & \mathbf{0} & -\gamma I \end{bmatrix} \preceq \mathbf{0} \right\},\$$

From the KYP lemma, we can show that $\pi_{K,\gamma}(\mathcal{L}_{\infty}) = epi_{\geq}(J_{\infty})$

Hinf Robust Control

Building an ECL

Step 1: Lifting

$$\mathcal{L}_{\infty} := \left\{ (K, \gamma, \mathbf{P}) : \mathbf{P} \succ \mathbf{0}, \begin{bmatrix} (A + BK)^{\mathsf{T}} \mathbf{P} + \mathbf{P}(A + BK) & \mathbf{P}B_{w} & C^{\mathsf{T}} \\ B_{w}^{\mathsf{T}} \mathbf{P} & -\gamma I & \mathbf{0} \\ C & \mathbf{0} & -\gamma I \end{bmatrix} \preceq \mathbf{0} \right\},\$$

Step 2: Convex set

$$\mathcal{F}_{\infty} = \left\{ (\gamma, Y, X) \middle| \begin{array}{ccc} X \succ 0, \\ Y \in \mathbb{R}^{m \times n}, \end{array} \left[\begin{array}{cccc} AX + XA^{\mathsf{T}} + BY + Y^{\mathsf{T}}B^{\mathsf{T}} & B_w & XQ^{1/2} & Y^{\mathsf{T}}R^{1/2} \\ B_w^{\mathsf{T}} & -\gamma I & 0 & 0 \\ Q^{1/2}X & 0 & -\gamma I & 0 \\ R^{1/2}Y & 0 & 0 & -\gamma I \end{array} \right] \preceq 0 \right\},$$

Step 3: Diffeomorphism $\Phi(K, \gamma, P) = (\gamma, KP^{-1}, P^{-1}), \quad \forall (K, \gamma, P) \in \mathcal{L}_{\infty}.$

Any Clarke stationary points $0 \in \partial J_{\infty}(K)$ are globally optimal!

Nonconvexity in Policy Optimization

- The set of (dynamic) stabilizing policies is nonconvex and even might be not connected.
- LQR/LQG costs are smooth but nonconvex; Hinf cost are non-smooth and nonconvex
- An ECL confirms that any (non-degenerate)
 Clarke stationary points are globally optimal

Outline

- **Gimple Examples**
- Benign Nonconvexity via Extended Convex Lifting (ECL)
- **ECLs for Optimal and Robust Control**

□ Conclusions

Nonconvex Policy Optimization for control

- □ Policy optimization in control can be **nonconvex and non-smooth.**
- **Extended Convex Lifting (ECL)** reveals benign nonconvexity.

Ongoing and Future work

- □ How to design efficient local search algorithms?
- □ How to establish convergence conditions and speeds?
- How to deal with degenerate points in local policy search? Avoiding saddle points?

Benign Nonconvex Landscapes in Optimal and Robust Control

Thank you for your attention!

Q & A

- Zheng, Yang, Chih-Fan Pai, and Yujie Tang. "Benign Nonconvex Landscapes in Optimal and Robust Control, Part I: Global Optimality." preprint arXiv:2312.15332 (2023): <u>https://arxiv.org/abs/2312.15332</u>.
- Part II: Extended Convex Lifting will be out soon