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Success of Data-driven Decision Making
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❑ Data-driven decision-making for complex tasks in dynamical systems, e.g., game 

playing, robotic manipulation/ locomotion, networked systems, ChatGPT, etc.

❑ Reinforcement learning (RL) has served as one backbone of the recent successes of 

data-driven decision-making. 

❑ Policy optimization as one of the major workhorses of modern RL.

Duan et al. 2016; Silver et al., 2017; Dean et al., 2019; Tu and Recht, 2019; Mania et al., 2019; Fazel et al., 2018; Recht, 2019; https://chat.openai.com/ 

https://chat.openai.com/


Policy Optimization for Control
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❑  Why policy optimization is so popular

Apply a control 

strategy

Accumulate 

observed data

Refine the 

control strategy

• Easy-to-implement

• Scalable to high-dimensional problems

• Enable model-free search with rich 

observations (e.g. images)

Opportunities Challenges

• Nonconvex optimization

• Lack of principled algorithms for optimality 

(e.g., avoiding saddles/local minimizers)

• Hard to obtain theoretical guarantees (e.g., 

robustness/stability, sample efficiency)



Convex LMIs vs Policy optimization
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❑ Historical background ❑ Recent  progress 

• Since 1980s, convex LMIs become dominant 

due to global guarantees and efficient interior 

point methods

• Rely on re-parameterizations (does not optimize 

controller/policy parameters directly)

• Favorable properties have been revealed 

for policy optimization in a range of 

benchmark control problems: 

✓ LQR [Fazel et al., 2018] [Malik et al., 2020] 

[Mohammad et al., 2022] 

[Fatkhullin & Polyak, 2021], etc.

✓ H∞ state-feedback/output-feedback

[Guo & Hu, 2022] [Hu & Zheng, 2022]

✓ LQG [Zheng, Tang & Li, 2021]

[Ren et al., 2023] [Duan et al., 2023]

[Mohammadi et al., 2021] [Zheng et al., 2022]

• Examples: State-feedback or full-order output-

feedback H2/H∞ control, and many others ✓ A recent survey paper: 
Hu, B., Zhang, K., Li, N., Mesbahi, M., Fazel, M., & Başar, T. (2023). Toward a 
Theoretical Foundation of Policy Optimization for Learning Control Policies. Annual 
Review of Control, Robotics, and Autonomous Systems, 6, 123-158.



Our Focus

6

This talk: Benign Nonconvexity in Control via 

Extended Convex Lifting (ECL)

❖ Reconciles the gap between nonconvex policy optimization and convex 

reformulations.

❖ For a class of non-degenerate policies, all Clarke stationary points are globally 

optimal and there is no spurious local minimum in policy optimization. 

Invertible Map

Nonconvex Policy 

Optimization
Convex LMIs



Outline

❑ Problem Setup and Simple Examples

❑ Benign Nonconvexity via Extended Convex Lifting (ECL)

❑ ECLs for Optimal and Robust Control

❑ Conclusions
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Policy Optimization in Control
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❑  Optimal and Robust Control

y(t)u(t)

w(t) z(t)

disturbance regulated output

measured

output

control 

input

Dynamical System

Feedback 
Policy • Consider the class of linear dynamic 

feedback policies of the form

• Parametrize by K = (AK, BK, CK, DK)

• LQR, LQG, H2, Hinf robust control

Policy 

parametrization

Non-convex 

Optimization 

problem

System 

Dynamics



Nonconvexity in Policy Optimization
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❑ The set of (dynamic) stabilizing policies is 

nonconvex and even might be not 

connected. [Tang, Zheng, Li, 2023]

❑ LQR/LQG costs are smooth but nonconvex; 

Hinf cost are non-smooth and nonconvex

Local Stationarity
Structural 

Information

Global Optimality 

Certificate

Any (non-degenerate) Clarke stationary 

points are globally optimal!

Policy 

parametrization

Non-convex 

Optimization 

problem



Example 1
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❑ Nonconvex and Smooth function

Its global minimizer is

Define an invertible map



Example 2
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❑ Nonconvex and Non-smooth function

Its global minimizer is

Define an invertible map



Example 3

12

❑ Linear Quadratic Regulator (LQR)

• Not easy to see whether it is convex in the current form

• This cost function comes from an LQR instance

• There exists an invertible mapping

• We get a convex function in terms of the new variable y



A Useful Fact
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❑ Global Optimality (Informal)

• Consider a continuous function                          . 

• Suppose there exists a smooth and invertible map     between 

and a convex set

• and we further have

Guarantee 1:  Optimization over f(x) is equivalent 

to a convex problem

Guarantee 2:  Any stationary point to f(x) is 

globally optimal

implies 

globally optimality

Denote its epigraph as 



Outline

❑ Problem Setup and Simple Examples

❑ Benign Nonconvexity via Extended Convex Lifting (ECL)

❑ ECLs for Optimal and Robust Control

❑ Conclusions
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Lifting for Convexity
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Non-convex 

Optimization 

problem

❑ For many control problems, a direct convexification is not possible!

❑ A lifting procedure corresponding to Lyapunov variables is necessary. 

Does Not 

Exist!

K

γ

epigraph

lifted 
set

convex set of invertible 
matrices

Global 

optimality

diffeomorphism



Extended Convex Lifting (ECL)

Applications Sparse structures
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• Consider a continuous function                        where             . Denote its strict and non-strict 

epigraph as  

K

γ

epigraph

lifted 
set

convex

diffeomorphism

Extended Convex Lifting (ECL)

We say a tuple                                 is an ECL of f(x) if   

• Condition 1:                                  is a lifted set 

such that its canonical projection satisfies

• Condition 2:     is a diffeomorphism between 

and

convex Auxiliary set

• Condition 3: does not change γ

Auxiliary 

set



Extended Convex Lifting (ECL)

Applications Sparse structures
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Guarantee 1:  Optimization over f(x) is equivalent 

to a convex problem

• If a continuous function                        where              admits an ECL

Guarantee 2: If f(x) is subdifferentially regular,  

any non-degenerate Clarke stationary point is 

globally optimal

• Subdifferentially regular functions are a very class of functions, including all cost functions 

in LQR, LQG, Hinf robust control, etc. 

• Non-degenerate points: covered by the lifted set.           such that 

✓ If we have                                        then all feasible points are non-degenerate 



Outline

❑ Simple Examples

❑ Benign Nonconvexity via Extended Convex Lifting (ECL)

❑ ECLs for Optimal and Robust Control

❑ Conclusions

18



Global Optimality in Control
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❑  Optimal and Robust Control

y(t)u(t)

w(t) z(t)

disturbance regulated output

measured

output

control 

input

Dynamical System

Feedback 
Policy

Policy 

parametrization
Non-convex 

Optimization 

problem

Main Results (informal):

1. Static state feedback: Any (Clarke) stationary points in LQR or Hinf control 

are globally optimal ([Fazel et al., 2018]; [Guo & Hu, 2022]);

2. Dynamic output feedback: Any non-degenerate (Clarke) stationary points 

in LQG or Hinf dynamic output control are globally optimal. 



LQR
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❑  Problem setup

Dynamics:

Static policies:

Stability:

Performance:

❑  Building an ECL

Step 1: Lifting

Step 2: Convex set

Step 3: Diffeomorphism 



Hinf Robust Control
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❑  Problem setup

Dynamics:

Static policies:

Stability:

Performance:

❑  Building an ECL

Step 1: Lifting

From the KYP lemma, we can show that 



Hinf Robust Control
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❑  Building an ECL

Step 1: Lifting

Step 2: Convex set

Step 3: Diffeomorphism

Any Clarke stationary points                    are globally optimal!



Nonconvexity in Policy Optimization
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❑ The set of (dynamic) stabilizing policies is 

nonconvex and even might be not 

connected.

❑ LQR/LQG costs are smooth but nonconvex; 

Hinf cost are non-smooth and nonconvex

Local Stationarity
Structural 

Information

Global Optimality 

Certificate

❑ An ECL confirms that any (non-degenerate) 

Clarke stationary points are globally optimal



Outline

❑ Simple Examples

❑ Benign Nonconvexity via Extended Convex Lifting (ECL)

❑ ECLs for Optimal and Robust Control

❑ Conclusions

24



Nonconvex Policy Optimization for control
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Invertible Map

❑ Policy optimization in control can be nonconvex and non-smooth.

❑ Extended Convex Lifting (ECL) reveals benign nonconvexity.

Local Stationarity
Structural 

Information

Global Optimality 

Certificate

❑ Global Optimality



Ongoing and Future work
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❑ How to design efficient local search algorithms? 

❑ How to establish convergence conditions and speeds?

❑ How to deal with degenerate points in local policy 

search? Avoiding saddle points?

Control 

Theory

Reinforcement 

Learning

(Non)convex 

Optimization



Thank you for your attention!

Q & A

Benign Nonconvex Landscapes in Optimal and 

Robust Control

• Zheng, Yang, Chih-Fan Pai, and Yujie Tang. "Benign Nonconvex Landscapes in Optimal 
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• Part II: Extended Convex Lifting will be out soon

https://arxiv.org/abs/2312.15332
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