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• Reduce traffic accidents
– 37,000 fatalities

– 41% deaths of young adults (ages 15-24)

– 94% of serious crashes caused by human error

Autonomous Vehicles

• Ease traffic congestion
– 6.9 billion hours wasted annually

– Cost of traffic congestion is $1740 per person annually in US/Europe.

• Improve energy efficiency
– 28% of greenhouse gas emission is from transportation

• New mobility patterns: on-demand mobility, mobility as service etc. 

U.S. Census Bureau, 2017.



Mix-Autonomy Mobility
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Mixed-autonomy mobility: a traffic condition where both 
autonomous vehicles and human-driven vehicles co-exist.

• Q1: How will a small scale of autonomous vehicles 
change traffic dynamics?

• Q2: How to integrate a small scale of autonomous 
vehicles to improve traffic performance?



Mix-Autonomy Mobility
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Theoretical evidence of 
the high potential of 
autonomous vehicles

Practical design via 
distributed control and 
scalable optimization

• Q1: How will a small scale of autonomous vehicles change traffic 
dynamics?

• Q2: How to integrate a small scale of autonomous vehicles to 
improve traffic performance?



6

Benchmark Ring Road Experiment

Setting: 
22 human drivers

Instructions: 
drive at 30 km/h 
/following its 
preceding vehicle

Environment
Single lane
No traffic lights, 
No stop signs,
No lane changes.

1955 2008

Sugiyama, et al.

>10,000 papers for traffic control

Traffic jams

2020

Video credits: NewScientist.com
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Benchmark Ring Road Experiment

Setting: 
21 human drivers
+ 1 AV

Instructions: 
drive at 30km/h 
/following its 
preceding vehicle

Environment
Single lane
No traffic lights, 
No stop signs,
No lane changes.

1955 2008

Sugiyama, et al.Traffic jams

20202018

Stern, et al.

>10,000 papers for traffic control



Theoretical Evidence in mixed traffic
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❑Theoretical Evidence & Controller 
design

• Why does it work?                              

• Does it work in other setups (e.g., different 
number of HDVs, different human-driver 
behavior, open straight road scenario)?

Sparse network 
control

Zheng, Wang, & Li, IEEE IoT, 2019; Wang, & Zheng, et al., IEEE TITS, 2020



Scalable Control & Optimization
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❑Theoretical Evidence & Controller 
design

➢ How to design distributed controllers with 
limited communication?

➢ How to scale up the computation efficiency?

• Furieri, L., Zheng, Y., Papachristodoulou, A., & Kamgarpour, M. (2020). Sparsity invariance for convex design of 
distributed controllers. IEEE Transactions on Control of Network Systems. (Best Student Paper Finalist, ECC 2019)

• Zheng, Y., Fantuzzi, G., Papachristodoulou, A., Goulart, P., & Wynn, A. (2020). Chordal decomposition in operator-splitting 
methods for sparse semidefinite programs. Mathematical Programming, 180(1), 489-532.



Today’s talk
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Part 1: Theoretic potential of autonomy in traffic

• Stabilizability of mixed traffic flow;

• Autonomous vehicles as mobile actuators in traffic 
networks;

• Leading Cruise Control (LCC)

Part 2: Practical design via control & optimization 

• Convex design of distributed control over traffic 
network;

• Scalable optimization for large-scale convex problems;

Integrating Autonomy into Traffic Systems



Mixed-autonomy ring road
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❑ System modeling

1. Human drivers → car-following dynamics

• : Velocity of vehicle 𝑖

• : Spacing between vehicle 𝑖 and 
vehicle 𝑖 − 1

Large spacing ↔ Large velocityDirk Helbing, 2001; Orosz, Wilson, and Stepan, 2010.



Mixed-autonomy ring road

12

❑ System modeling

2. Autonomous vehicle → direct control

3. Assuming an equilibrium traffic state    

where the system matrices have the following structure

A network system 
with only one 

controllable node



Mixed-autonomy ring road
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❑Theoretical evidence 1: Unstable
behavior

(Informal) The traffic system in a ring-road can 
be unstable if drivers’ sensitivity to speed and 
spacing errors is small (e.g. Cui et al., 2017)

Sensitivity to speed 
and spacing errors

Slow response to spacing; To 
catch up, it drives to a large 
velocity → Oscillation



Mixed-autonomy ring road
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❑Theoretical evidence 2: Fundamental 
change of dynamics

Theorem (zheng et al., 2019): The mixed traffic system in the ring-road 
setup is not controllable, but stabilizable.

Zheng, Wang, & Li, IEEE IoT, 2019

1. Independent of the number of human-driven 
vehicles 

2. Independent of car-following dynamics

3. Offer a strong control-theoretic support for 
the potential of autonomy in mixed traffic

Integrating autonomy is a fundamental change 
of traffic dynamics (more control freedom)! 



Mixed-autonomy ring road
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❑Theoretical evidence 3: Beyond 
stabilization/increase traffic speed

Theorem (zheng et al., 2019): The global traffic 
velocity can be increased to a larger value:

Zheng, Wang, & Li, IEEE IoT, 2019

 Physical interpretation

✓ The AV can change its own spacing to influence other 
HDVs’ spacing, and thus change traffic velocity      .



Numerical Experiments with Nonlinear Dynamics
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Stabilize the traffic flow Increase the traffic speed

Unstable traffic 
system

The existence of 5% AVs (1 out of 20) can bring 6% improvement on traffic velocity

OVM: Optimal Velocity Model



Integrating Autonomy: Multiple AVs
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Main question: How to coordinate multiple autonomous vehicles 
in traffic flow? Is platooning the optimal choice?

Set function 
optimization

Li, Wang, & Zheng, (2020), IEEE TITS,
under review



Integrating Autonomy: Multiple AVs

18

Set function 
optimization

Platooning is not always optimal 

Platoon formation: Uniform distribution:

Simulation with Nonlinear Car-following Dynamics

Li, Wang, & Zheng, (2020), IEEE
TITS, under review



Integrating Autonomy in Open-straight road

19

CACC: Fully-autonomous scenario

Connected Cruise Control: downstream traffic flow

Adapt to the motion of the vehicles aheadLead the motion of the vehicles behind

➢ Leading Cruise Control

Closed-ring road setup



Leading Cruise Control (LCC)
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No control

FD-LCC (monitor one vehicle behind)

Special case 1: car-following LCC

Special case 2: free driving LCC

Reduce velocity perturbations by 35%

CF-LCC (monitor one vehicle behind)

Reduce velocity perturbations by 28%

No control

Wang, J., Zheng, Y., Chen, C., Xu, Q., & Li, K. (2020). Leading Cruise Control in Mixed Traffic Flow. arXiv:2007.11753.

1. The motion after AV is controllable 
(leading motion behind)

2. String stability can be improved 
(attenuating perturbation ahead)



Today’s talk
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Part 1: Theoretic potential of autonomy in traffic

• Stabilizability of mixed traffic flow;

• Autonomous vehicles as mobile actuators in traffic 
networks;

• Leading Cruise Control (LCC)

Part 2: Practical design via control & optimization 

• Convex design of distributed control over traffic 
network;

• Scalable optimization for large-scale convex problems;

Integrating Autonomy into Traffic Systems



General Procedure
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Control Problem 
Formulation

Convex reformulation 
as LMI or SDP

Numerical solution

Challenge 1: How to handle 
info. constraints (recover 

convexity) 

Challenge 2: How to deal with 
large-scale problems (Scalability) 



Problem formulation: distributed controller
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System performance 
(e.g., speed oscillation)

Stable controller

Distributed controller

• This is a non-convex optimization problem

• The presence of the sparsity constraint makes the problem challenging

(NP-hard in general).
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❑ 90’s: Feasibility & Stabilization
1) Structural controllability: Glover & Silverman, TAC 1976; Wang & Davison, TAC 1973; Davison, 

Automatica 1977; Mayeda and Yamada, SICON 1979, etc.

2) Decentralized/distributed fixed mode: Anderson & Clements, TAC 1981; Sezer & Šiljak, SCL 
1981; Davison & Özgüner, Automatica 1983; etc.

3) Decentralized stabilization & pole placement: Davison & Chang, TAC 1995; Ravi et al, TAC
1995

4) Early survey paper: Sandell, Varaiya, Athans & Safonov, TAC 1978.

❑ Late 90’s- Now: Performance enhancement via optimization
1) Exact solutions for special classes of systems: Quadratic Invariance (Rotkowitz & Lall, TAC

2005); Partially ordered sets (Shah & Parrilo, TAC 2013);

2) Tractable convex approximation: Dvijotham et al, TCNS 2015; Fazelnia et al, TAC 2016; 

3) Suboptimal solutions using iterative algorithms: Fu, Fardad, & Jovanovic, TAC 2011;

4) Structure regularization and system-level synthesis: Jovanović & Dhingra, 2016; Wang et 
al., TAC 2019; 

A new framework based on Sparsity Invariance 
for convex design of distributed control

Recover 

Convexity

Previous work on distributed control
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Unified framework for distributed control

Sparsity invariance (SI)

Static feedback
• Strictly better than the widely used diagonal approximation strategy

(Geromel et al., 1994; Conte et al.,2012; Rubio et al., 2013; Han et al., 2017)

Dynamic feedback (past information + memory)

• Guaranteed to be optimal when a notion of Quadratic Invariance (QI)

holds (Rotkowitz & Martins, 2012)

• Best known performance for non-QI cases

Furieri, Zheng, Karmgarpour & Papachristodoulou IEEE TCNS, 2020.

A new framework based on Sparsity Invariance 
for convex design of distributed control

Recover 

Convexity



General Procedure
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Control Problem 
Formulation

Convex reformulation 
as LMI or SDP

Numerical solution

Challenge 1: How to recover 
convexity 

Challenge 2: How to deal large-
scale problems (Scalability) 

Sparsity Structure
Matters

Sparsity Invariance



Sparsity Structure
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Sparsity structure appears in many places of real cyber-
physical systems

❑ System dynamics data

❑ Sparse communication



Graph Decomposition
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• This allows for the decomposition of a big positive semidefinite constraint

• Exploiting this decomposition → a new scalable algorithm for sparse SDP
(Zheng et al. Math. Prog., 2020)

Vandenberghe & Andersen (2015).

Chordal graph decomposition



Conclusion
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Two main takeaways

Theoretic potential of autonomy in traffic

• Mixed traffic systems is always stabilizable;

• Autonomous vehicles can not only smooth traffic wave, but also 
guide traffic velocity to a higher value;

• Autonomous vehicles can change traffic dynamics fundamentally 
(Leading Cruise Control)

Integrating Autonomy via Control and 

Optimization

• Convexity of distributed control: a new framework based on 
sparsity invariance

• Scalability of convex optimization: Sparsity-exploiting methods 
based on graph decomposition

30
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Thank you for your attention!

More information; visit https://zhengy09.github.io/

https://zhengy09.github.io/

