Integrating Autonomy into Traffic Systems: Scalable Control and Optimization

Yang Zheng

Incoming Assistant Professor, ECE department at UCSD, starting in July 2021

HARVARD John A. Paulson School of Engineering and Applied Sciences

IEEE IV Workshop: IoT in ITS

30 Oct. 2020

Collaborators

Na Li Harvard University

Antonis Papachristodoulou University of Oxford

Luca Furieri ETH, Zurich

Maryam Kamgarpour ETH, Zurich

Keqiang Li Tsinghua University

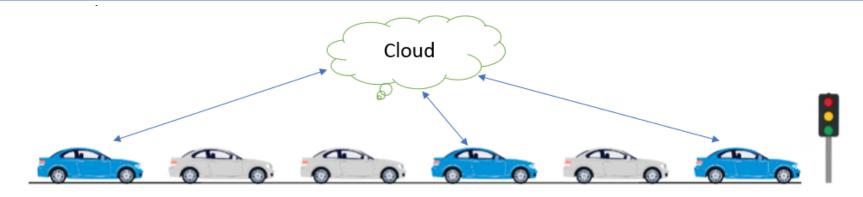


Jiawei Wang Tsinghua University

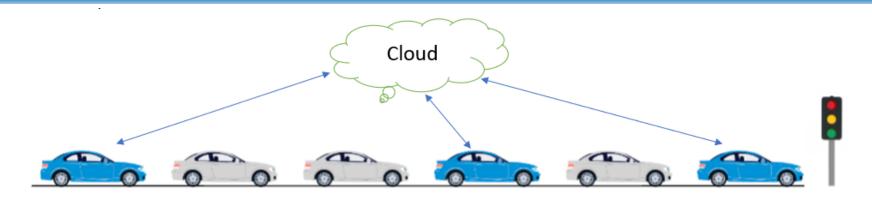
Autonomous Vehicles

Reduce traffic accidents

- 37,000 fatalities
- 41% deaths of young adults (ages 15-24)
- 94% of serious crashes caused by human error
- Ease traffic congestion
 - 6.9 billion hours wasted annually
 - Cost of traffic congestion is \$1740 per person annually in US/Europe.
- Improve energy efficiency
 - 28% of greenhouse gas emission is from transportation
- New mobility patterns: on-demand mobility, mobility as service etc.



U.S. Census Bureau, 2017.


Mix-Autonomy Mobility

Mixed-autonomy mobility: a traffic condition where both autonomous vehicles and human-driven vehicles co-exist.

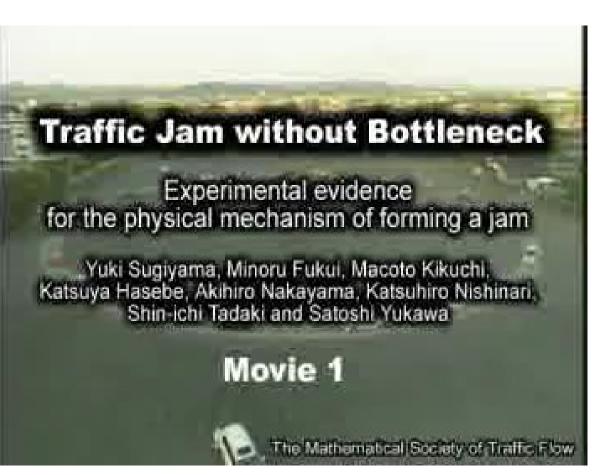
- **Q1:** How will a small scale of autonomous vehicles change traffic dynamics?
- Q2: How to integrate a small scale of autonomous vehicles to improve traffic performance?

Mix-Autonomy Mobility

- **Q1:** How will a small scale of autonomous vehicles change traffic dynamics?
- **Q2:** How to integrate a small scale of autonomous vehicles to improve traffic performance?

Theoretical evidence of the high potential of autonomous vehicles Practical design via distributed control and scalable optimization

Benchmark Ring Road Experiment


Setting:

22 human drivers Instructions: drive at 30 km/h /following its preceding vehicle

Environment

Single lane No traffic lights, No stop signs, No lane changes.

Video credits: NewScientist.com

Benchmark Ring Road Experiment

Setting:

21 human drivers

+ 1 AV

Instructions:

drive at 30km/h /following its preceding vehicle

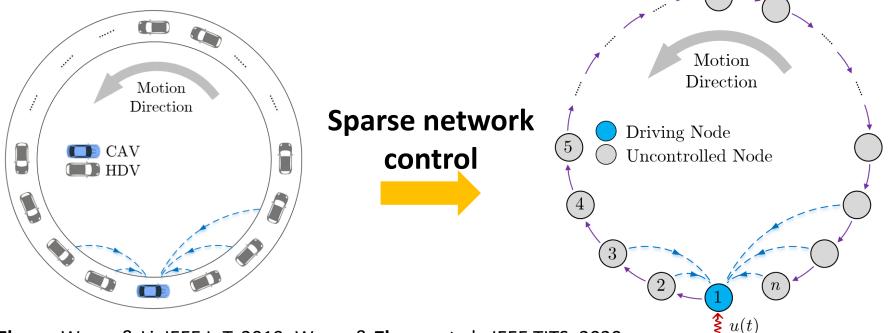
Environment

Single lane

No traffic lights,

- No stop signs,
- No lane changes.

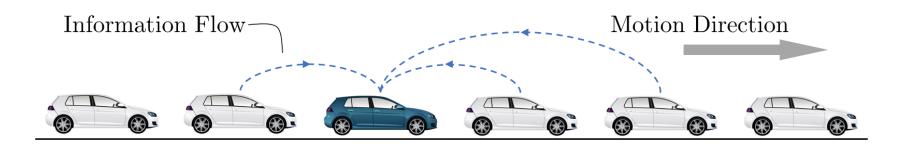
Dissipation of stop-and-go traffic waves via control of a single autonomous vehicle



Theoretical Evidence in mixed traffic

Theoretical Evidence & Controller design

- Why does it work?
- Does it work in other setups (e.g., different number of HDVs, different human-driver behavior, open straight road scenario)?


Zheng, Wang, & Li, IEEE IoT, 2019; Wang, & Zheng, et al., IEEE TITS, 2020

Scalable Control & Optimization

Theoretical Evidence & Controller design

- How to design distributed controllers with limited communication?
- How to scale up the computation efficiency?

- Furieri, L., **Zheng**, Y., Papachristodoulou, A., & Kamgarpour, M. (2020). Sparsity invariance for convex design of distributed controllers. IEEE Transactions on Control of Network Systems. (*Best Student Paper Finalist*, ECC 2019)
- Zheng, Y., Fantuzzi, G., Papachristodoulou, A., Goulart, P., & Wynn, A. (2020). Chordal decomposition in operator-splitting methods for sparse semidefinite programs. *Mathematical Programming*, *180*(1), 489-532.

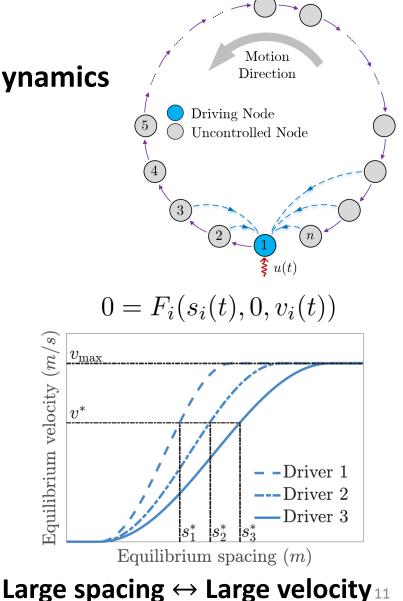
Today's talk

Integrating Autonomy into Traffic Systems

Part 1: Theoretic potential of autonomy in traffic

- Stabilizability of mixed traffic flow;
- Autonomous vehicles as mobile actuators in traffic networks;
- Leading Cruise Control (LCC)

Part 2: Practical design via control & optimization

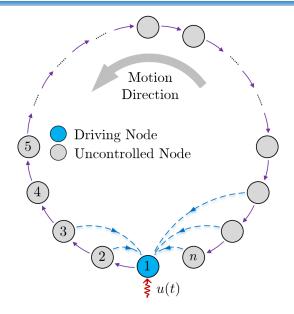

- Convex design of distributed control over traffic network;
- Scalable optimization for large-scale convex problems;

System modeling 1. Human drivers \rightarrow car-following dynamics Motion Direction $s_i(t), \dot{s}_i(t)$ Vehicle i - 1Vehicle iInteraction Direction $\dot{v}_{i}(t) = F_{i}(s_{i}(t), \dot{s}_{i}(t), v_{i}(t))$

$$U_i(t) = T_i(S_i(t), S_i(t), U_i(t))$$

- $v_i(t)$: Velocity of vehicle i
- $s_i(t)$: Spacing between vehicle i and vehicle i 1

Dirk Helbing, 2001; Orosz, Wilson, and Stepan, 2010.


System modeling

2. Autonomous vehicle \rightarrow direct control

$$\begin{cases} \dot{s}_1(t) &= v_n(t) - v_1(t) \\ \dot{v}_1(t) &= u_1(t) \end{cases}$$

3. Assuming an equilibrium traffic state $v^*(t)$

$$\dot{x}(t) = Ax(t) + Bu(t),$$

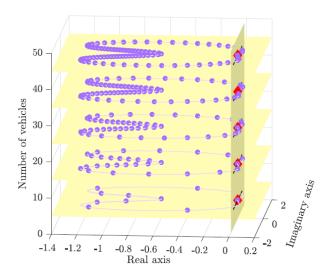
where the system matrices have the following structure

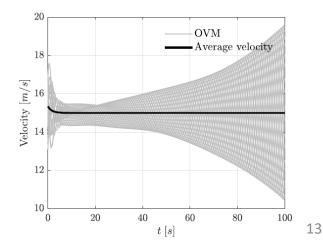
$$A = \begin{bmatrix} C_1 & 0 & \dots & \dots & 0 & C_2 \\ A_2 & A_1 & 0 & \dots & \dots & 0 \\ 0 & A_2 & A_1 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & A_2 & A_1 & 0 \\ 0 & \dots & \dots & 0 & A_2 & A_1 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix},$$

A network system with only one controllable node

Theoretical evidence 1: Unstable behavior

 $\dot{x}(t) = \hat{A}x(t)$


(Informal) The traffic system in a ring-road can be unstable if drivers' sensitivity to speed and spacing errors is small (e.g. Cui et al., 2017)

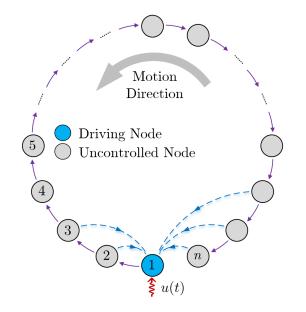

 $\alpha + 2\beta < \text{Constant}$

The Mathematical Society of Traffic Flow

Slow response to spacing; To catch up, it drives to a large velocity \rightarrow **Oscillation**

Sensitivity to speed and spacing errors

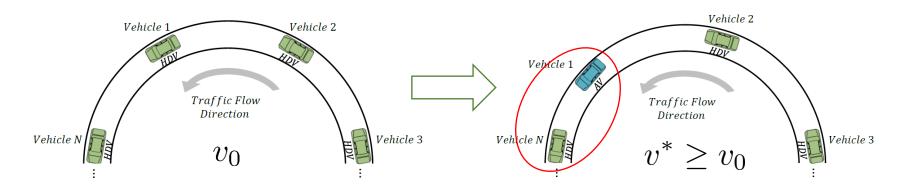
Theoretical evidence 2: Fundamental change of dynamics


$$\dot{x}(t) = \hat{A}x(t)$$

Theorem (zheng *et al.*, 2019): **The mixed traffic system in the ring-road setup is not controllable, but stabilizable.**

- 1. Independent of the number of human-driven vehicles
- 2. Independent of car-following dynamics
- 3. Offer a strong control-theoretic support for the potential of autonomy in mixed traffic

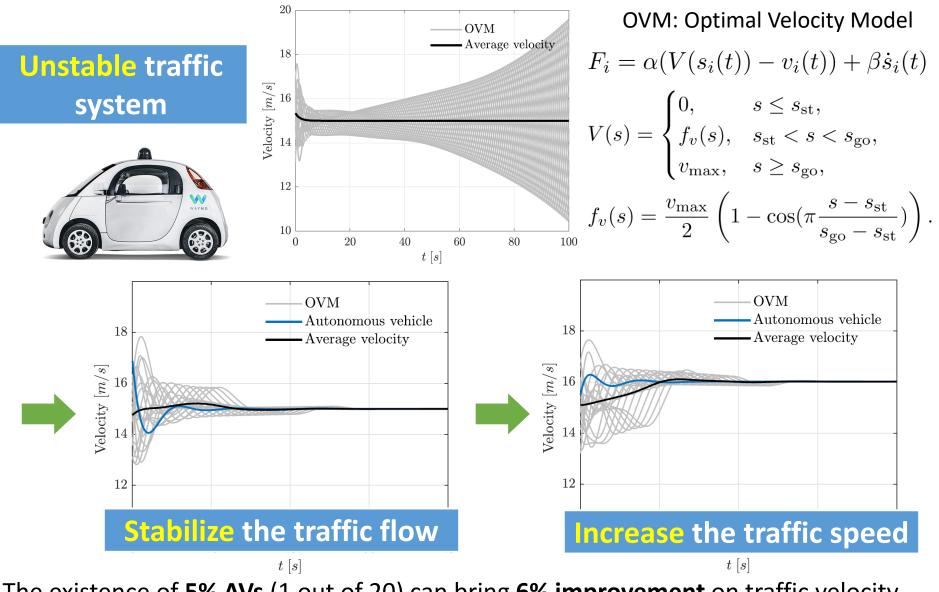
Integrating autonomy is a fundamental change of traffic dynamics (more control freedom)!



Theoretical evidence 3: Beyond stabilization/increase traffic speed

Theorem (zheng *et al.*, 2019): The global traffic velocity can be increased to a larger value:

 $0 \le v^* < v_{\max}$

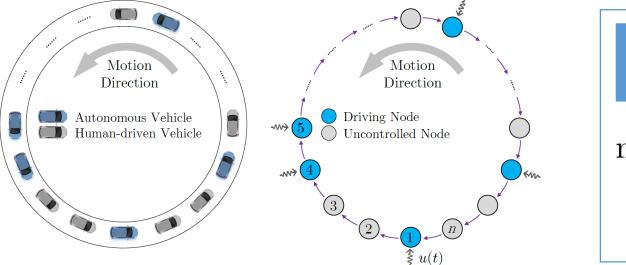


Physical interpretation

✓ The AV can change its own spacing to influence other HDVs' spacing, and thus change traffic velocity v^* .

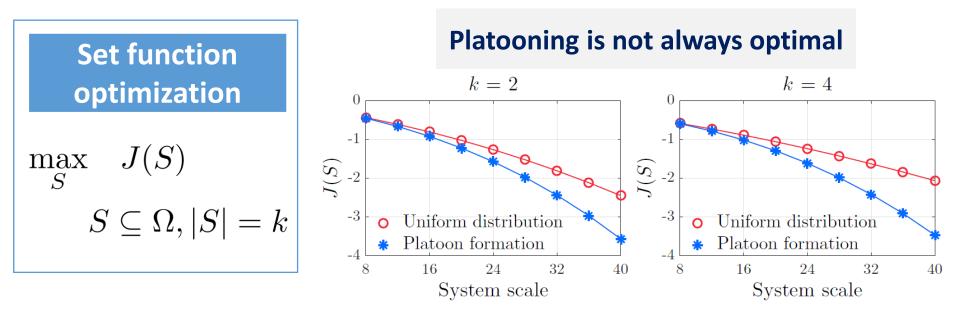
Zheng, Wang, & Li, IEEE IoT, 2019 15

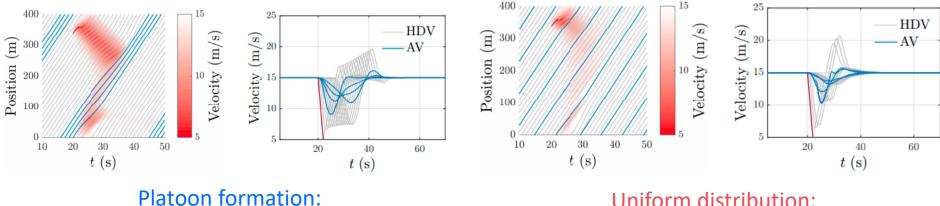
Numerical Experiments with Nonlinear Dynamics



The existence of **5% AVs** (1 out of 20) can bring **6% improvement** on traffic velocity 16

Integrating Autonomy: Multiple AVs

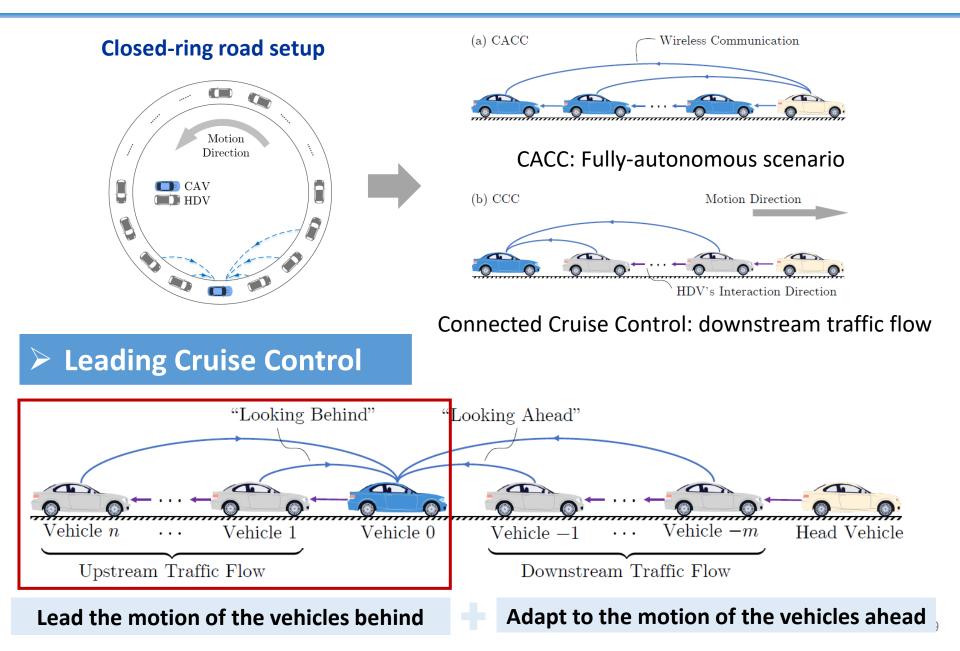

Main question: How to coordinate multiple autonomous vehicles in traffic flow? Is platooning the optimal choice?


 $\Omega = \{1, 2, \dots, n\}: \text{ all the vehicles}$ $S = \{i_1, \dots, i_k\} \subseteq \Omega: k \text{ autonomous vehicles}$ $\begin{array}{l} & {\displaystyle \begin{array}{c} {\rm Set \ function} \\ {\displaystyle \begin{array}{c} {\rm optimization} \end{array}} \end{array}} \\ & {\displaystyle \begin{array}{c} {\displaystyle \begin{array}{c} {\displaystyle \end{array}} \\ {\displaystyle \end{array}} \\ {\displaystyle \end{array}} \\ S & {\displaystyle \end{array}} & J(S) \\ & {\displaystyle \begin{array}{c} {\displaystyle \end{array}} \\ S & {\displaystyle \subseteq \ \Omega}, \left|S\right| = k \end{array} \end{array}} \end{array}}$

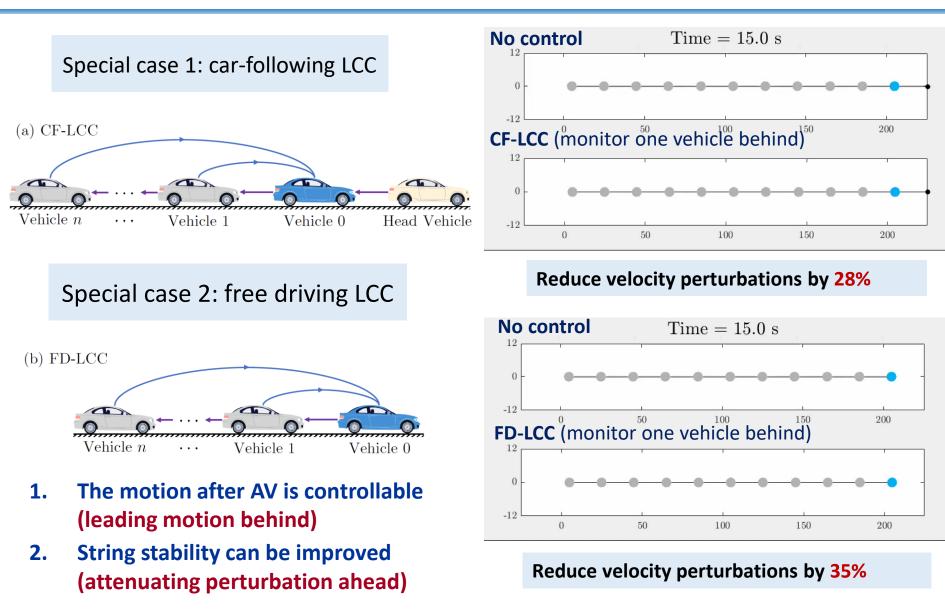
Li, Wang, & **Zheng**, (2020), IEEE TITS, under review

Integrating Autonomy: Multiple AVs

Simulation with Nonlinear Car-following Dynamics



 $S = \{9, 10, 11, 12\}$


Li, Wang, & **Zheng,** (2020), IEEE TITS, under review Uniform distribution: $S = \{3, 8, 13, 18\}$

18

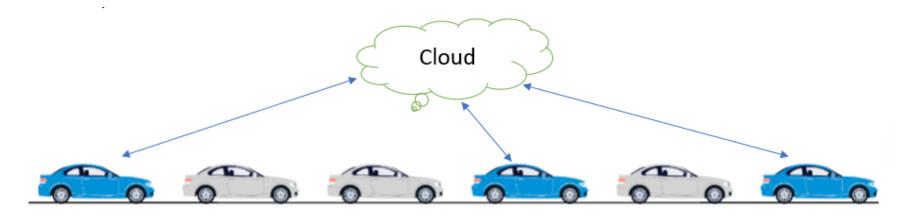
Integrating Autonomy in Open-straight road

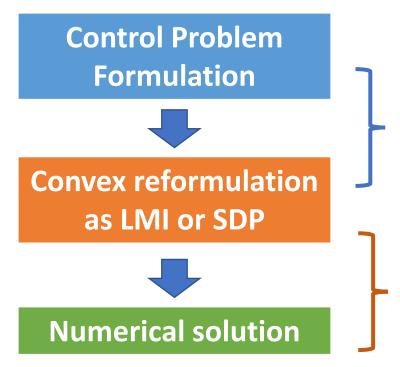
Leading Cruise Control (LCC)

Wang, J., Zheng, Y., Chen, C., Xu, Q., & Li, K. (2020). Leading Cruise Control in Mixed Traffic Flow. arXiv:2007.11753.

Today's talk

Integrating Autonomy into Traffic Systems

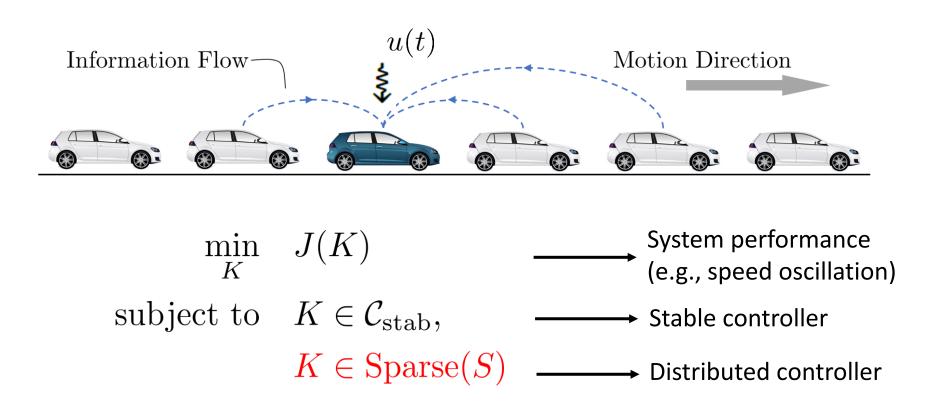

Part 1: Theoretic potential of autonomy in traffic


- Stabilizability of mixed traffic flow;
- Autonomous vehicles as mobile actuators in traffic networks;
- Leading Cruise Control (LCC)

Part 2: Practical design via control & optimization

- Convex design of distributed control over traffic network;
- Scalable optimization for large-scale convex problems;

General Procedure



Challenge 1: How to handle info. constraints (recover convexity)

Challenge 2: How to deal with large-scale problems (Scalability)

Problem formulation: distributed controller

- This is a non-convex optimization problem
- The presence of the sparsity constraint makes the problem challenging (NP-hard in general).

Previous work on distributed control

90's: Feasibility & Stabilization

- 1) Structural controllability: Glover & Silverman, TAC 1976; Wang & Davison, TAC 1973; Davison, Automatica 1977; Mayeda and Yamada, SICON 1979, etc.
- 2) Decentralized/distributed fixed mode: Anderson & Clements, TAC 1981; Sezer & Šiljak, SCL 1981; Davison & Özgüner, Automatica 1983; etc.
- **3)** Decentralized stabilization & pole placement: Davison & Chang, TAC 1995; Ravi et al, TAC 1995
- 4) Early survey paper: Sandell, Varaiya, Athans & Safonov, TAC 1978.

Late 90's- Now: Performance enhancement via optimization

- 1) Exact solutions for special classes of systems: Quadratic Invariance (Rotkowitz & Lall, TAC 2005); Partially ordered sets (Shah & Parrilo, TAC 2013);
- 2) Tractable convex approximation: Dvijotham et al, TCNS 2015; Fazelnia et al, TAC 2016;
- 3) Suboptimal solutions using iterative algorithms: Fu, Fardad, & Jovanovic, TAC 2011;
- **4)** Structure regularization and system-level synthesis: Jovanović & Dhingra, 2016; Wang et al., TAC 2019;

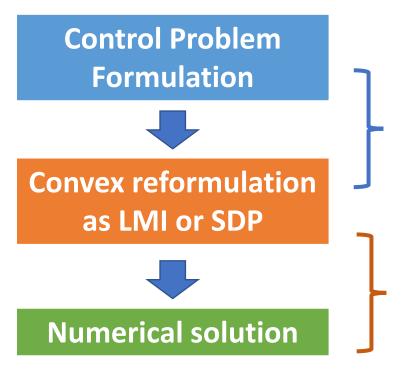
Recover Convexity A new framework based on Sparsity Invariance for convex design of distributed control

Unified framework for distributed control

 $\begin{array}{ll} X \in \operatorname{Sparse}(R), \ Y \in \operatorname{Sparse}(T) \\ \Rightarrow \\ K = YX^{-1} \in \operatorname{Sparse}(S) \end{array}$

Recover Convexity A new framework based on Sparsity Invariance for convex design of distributed control

Static feedback


• Strictly better than the widely used **diagonal approximation strategy** (Geromel et al., 1994; Conte et al., 2012; Rubio et al., 2013; Han et al., 2017)

Dynamic feedback (past information + memory)

- Guaranteed to be optimal when a notion of **Quadratic Invariance (QI)** holds (Rotkowitz & Martins, 2012)
- Best known performance for non-QI cases

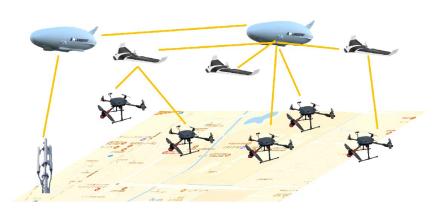
Furieri, Zheng, Karmgarpour & Papachristodoulou IEEE TCNS, 2020.

General Procedure

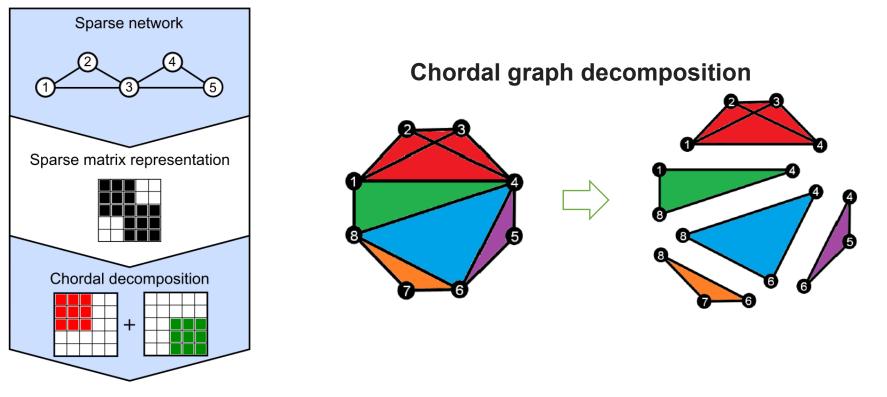
Challenge 1: How to recover convexity Sparsity Invariance Challenge 2: How to deal largescale problems (Scalability)

> Sparsity Structure Matters

Sparsity Structure


Sparsity structure appears in many places of real cyberphysical systems

System dynamics data



Sparse communication

Graph Decomposition

Vandenberghe & Andersen (2015).

- This allows for the decomposition of a big positive semidefinite constraint
- Exploiting this decomposition → a new scalable algorithm for sparse SDP (Zheng et al. Math. Prog., 2020)

Conclusion

Two main takeaways

Theoretic potential of autonomy in traffic

- Mixed traffic systems is always **stabilizable**;
- Autonomous vehicles can not only **smooth traffic wave**, but also guide traffic velocity to **a higher value**;
- Autonomous vehicles can change traffic dynamics fundamentally (Leading Cruise Control)

Integrating Autonomy via Control and Optimization

- **Convexity** of distributed control: a new framework based on sparsity invariance
- **Scalability** of convex optimization: Sparsity-exploiting methods based on graph decomposition

References

Autonomous Vehicles in Mixed Traffic Flow

- 1. Zheng, Y., Wang, J., & Li, K. (2019). Smoothing traffic flow via control of autonomous vehicles. *IEEE Internet of Things Journal*, to appear, 1-15.
- 2. Li, K., Wang, J., & **Zheng, Y.** (2020). Cooperative Formation of Autonomous Vehicles in Mixed Traffic Flow: Beyond Platooning. arXiv preprint arXiv:2009.04254.
- 3. Wang, J., **Zheng, Y.**, Xu, Q., Wang, J., & Li, K. (2020). Controllability Analysis and Optimal Control of Mixed Traffic Flow with Human-driven and Autonomous Vehicles. arXiv preprint arXiv:2002.02099.
- 4. Wang, J., **Zheng, Y.**, Chen, C., Xu, Q., & Li, K. (2020). Leading Cruise Control in Mixed Traffic Flow. arXiv preprint arXiv:2007.11753.

Controller Design & Scalability

- Furieri, L., Zheng, Y., Papachristodoulou, A., & Kamgarpour, M. (2019). Sparsity Invariance for Convex Design of Distributed Controllers. *IEEE Transactions on Control of Network Systems, conditionally accepted.* 1-11. (Best Student Paper Award Finalist, conference version)
- 2. Zheng, Y., Fantuzzi, G., Papachristodoulou, A., Goulart, P., & Wynn, A. (2020). Chordal decomposition in operator-splitting methods for sparse semidefinite programs. *Mathematical Programming*, 1-44.

Thank you for your attention!

More information; visit https://zhengy09.github.io/