Sum-of-squares Chordal Decomposition of Polynomial Matrix Inequalities

Yang Zheng

Assistant Professor, ECE, UC San Diego

(Joint work with Giovanni Fantuzzi at FAU Erlangen-Nürnberg)

UC San Diego

JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering

2023 INFORMS Annual Meeting, Phoenix, Arizona October 16, 2023

Outline

Matrix decomposition and chordal graphs

Sum-of-squares chordal decompositions

Applications to robust semidefinite optimization

Conclusions

Matrix decomposition:

► A simple example

$$A = \underbrace{\begin{bmatrix} 3 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 3 \end{bmatrix}}_{\geq 0} = \underbrace{\begin{bmatrix} 3 & 1 & 0 \\ 1 & 0.5 & 0 \\ 0 & 0 & 0 \end{bmatrix}}_{\geq 0} + \underbrace{\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0.5 & 1 \\ 0 & 1 & 3 \end{bmatrix}}_{\geq 0}$$

Matrix decomposition:

► A simple example

$$A = \underbrace{\begin{bmatrix} 3 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 3 \end{bmatrix}}_{\succeq 0} = \underbrace{\begin{bmatrix} 3 & 1 & 0 \\ 1 & 0.5 & 0 \\ 0 & 0 & 0 \end{bmatrix}}_{\succeq 0} + \underbrace{\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0.5 & 1 \\ 0 & 1 & 3 \end{bmatrix}}_{\succeq 0}$$

This is true for any PSD matrix with such pattern, *i.e.*, sparse cone decomposition

$$\underbrace{\begin{bmatrix} * & * & 0 \\ * & * & * \\ 0 & * & * \end{bmatrix}}_{\geq 0} = \underbrace{\begin{bmatrix} * & * & 0 \\ * & * & 0 \\ 0 & 0 & 0 \end{bmatrix}}_{\geq 0} + \underbrace{\begin{bmatrix} 0 & 0 & 0 \\ 0 & * & * \\ 0 & * & * \end{bmatrix}}_{\geq 0}$$

where * denotes a real scalar number (or block matrix).

Matrix decomposition:

A simple example

$$A = \underbrace{\begin{bmatrix} 3 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 3 \end{bmatrix}}_{\succeq 0} = \underbrace{\begin{bmatrix} 3 & 1 & 0 \\ 1 & 0.5 & 0 \\ 0 & 0 & 0 \end{bmatrix}}_{\succeq 0} + \underbrace{\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0.5 & 1 \\ 0 & 1 & 3 \end{bmatrix}}_{\succeq 0}$$

This is true for any PSD matrix with such pattern, *i.e.*, sparse cone decomposition

$$\underbrace{\begin{bmatrix} * & * & 0 \\ * & * & * \\ 0 & * & * \end{bmatrix}}_{\geq 0} = \underbrace{\begin{bmatrix} * & * & 0 \\ * & * & 0 \\ 0 & 0 & 0 \end{bmatrix}}_{\geq 0} + \underbrace{\begin{bmatrix} 0 & 0 & 0 \\ 0 & * & * \\ 0 & * & * \end{bmatrix}}_{\geq 0}$$

where * denotes a real scalar number (or block matrix).

Benefits:

▶ Reduce computational complexity, and thus improve efficiency! $(3 \times 3 \rightarrow 2 \times 2)$

UC San Diego JACOBS SCHOOL OF ENGINEERING

Matrix decomposition:

Many other patterns admit similar decompositions, e.g.

> They can be commonly characterized by **chordal graphs**.

Clique decomposition

Chordal graphs: An undirected graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$ is called *chordal* if every cycle of length greater than three has a chord.

Clique decomposition

Chordal graphs: An undirected graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$ is called *chordal* if every cycle of length greater than three has a chord.

Cliques: A clique is a set of nodes that induces a complete subgraph

Clique decomposition

Chordal graphs: An undirected graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$ is called *chordal* if every cycle of length greater than three has a chord.

Cliques: A clique is a set of nodes that induces a complete subgraph Clique decomposition:

Sparse matrix decomposition

Sparse positive semidefinite (PSD) matrices

$$\mathbb{S}^{n}(\mathcal{E}, 0) = \{ X \in \mathbb{S}^{n} \mid X_{ij} = X_{ji} = 0, \forall (i, j) \notin \mathcal{E} \},\\ \mathbb{S}^{n}_{+}(\mathcal{E}, 0) = \{ X \in \mathbb{S}^{n}(\mathcal{E}, 0) \mid X \succeq 0 \}.$$

Sparse matrix decomposition

Sparse positive semidefinite (PSD) matrices

$$\mathbb{S}^{n}(\mathcal{E}, 0) = \{ X \in \mathbb{S}^{n} \mid X_{ij} = X_{ji} = 0, \forall (i, j) \notin \mathcal{E} \},\\ \mathbb{S}^{n}_{+}(\mathcal{E}, 0) = \{ X \in \mathbb{S}^{n}(\mathcal{E}, 0) \mid X \succeq 0 \}.$$

 Clique decomposition for PSD matrices (Agler, Helton, McCullough, & Rodman, 1988; Griewank and Toint, 1984)

Theorem Let $\mathcal{G}(\mathcal{V}, \mathcal{E})$ be a chordal graph with maximal cliques $\{\mathcal{C}_1, \mathcal{C}_2, \dots, \mathcal{C}_p\}$. Then,

$$Z \in \mathbb{S}^{n}_{+}(\mathcal{E}, 0) \Leftrightarrow Z = \sum_{k=1}^{p} E_{\mathcal{C}_{k}}^{\mathsf{T}} Z_{k} E_{\mathcal{C}_{k}}, \, Z_{k} \in \mathbb{S}^{|\mathcal{C}_{k}|}_{+}$$

Sparse matrix decomposition

Sparse positive semidefinite (PSD) matrices

$$\mathbb{S}^{n}(\mathcal{E},0) = \{ X \in \mathbb{S}^{n} \mid X_{ij} = X_{ji} = 0, \forall (i,j) \notin \mathcal{E} \},\\ \mathbb{S}^{n}_{+}(\mathcal{E},0) = \{ X \in \mathbb{S}^{n}(\mathcal{E},0) \mid X \succeq 0 \}.$$

 Clique decomposition for PSD matrices (Agler, Helton, McCullough, & Rodman, 1988; Griewank and Toint, 1984)

Theorem Let $\mathcal{G}(\mathcal{V}, \mathcal{E})$ be a chordal graph with maximal cliques $\{\mathcal{C}_1, \mathcal{C}_2, \dots, \mathcal{C}_p\}$. Then,

$$Z \in \mathbb{S}^{n}_{+}(\mathcal{E}, 0) \Leftrightarrow Z = \sum_{k=1}^{p} E_{\mathcal{C}_{k}}^{\mathsf{T}} Z_{k} E_{\mathcal{C}_{k}}, \, Z_{k} \in \mathbb{S}^{|\mathcal{C}_{k}|}_{+}$$

A growing number of applications

Control, machine learning, relaxation of QCQP, fluid dynamics, and beyond

Area	Topic	References					
Control	Linear system analysis	Andersen et al. (2014b); Deroo et al. (2015); Mason & Pa- pachristodoulou (2014); Pakazad et al. (2017b); Zheng et al. (2018c) Deroo et al. (2014); Heinke et al. (2020); Zheng et al. (2020); Zheng et al. (2018d) Schlösser & Korda (2020); Tacchi et al. (2019a); Zheng et al. (2019a); Mason (2015, Chapter 5)					
	Decentralized control						
	Nonlinear system analysis						
	Model predictive control	Ahmadi et al. (2019); Hansson & Pakazad (2018)					
Machine learning	Verification of neural networks	Batten et al. (2021); Dvijotham et al. (2020); Newton & Pa- pachristodoulou (2021); Zhang (2020)					
	Lipschitz constant estimation	Chen et al. (2020b); Latorre et al. (2020)					
	Training of support vector machine	Andersen & Vandenberghe (2010) Chan et al. (2020a): Lin et al. (2010): Yang & Carleng (2020)					
	Covariance selection	Dahl et al. (20203) ; Ehu et al. (2019) ; Tang & Carlone (2020)					
	Subspace clustering	Miller et al. (2019a)					
Relaxation of QCQP and POPs	Sensor network locations Max-Cut problem Optimal power flow (OPF)	Jing et al. (2019); Kim et al. (2009); Nie (2009) Andersen et al. (2010a); Garstka et al. (2019); Zheng et al. (2020) Andersen et al. (2014a); Dall'Anese et al. (2013); Jabr (2011); Jiang (2017): Molzaho & Hickens (2014): Molzaho et al. (2013)					
	State estimation in power systems	Weng et al. (2013); Zhang et al. (2017); Zhu & Giannakis (2014)					
Others	Fluid dynamics Partial differential equations Robust quadratic optimization Binary signal recovery Solving polynomial systems	Arslan et al. (2021); Fantuzzi et al. (2018) Mevissen (2010); Mevissen et al. (2008, 2011, 2009) Andersen et al. (2010b) Fosson & Abuabiah (2019) Cifuentes & Parrilo (2016, 2017); Li et al. (2021); Mou et al. (2021); Tacchi et al. (2019b)					
	Other problems	Baltean-Lugojan et al. (2019); Jeyakumar et al. (2016); Madani et al. (2017b); Pakazad et al. (2017a); Yang & Deng (2020)					

Zheng, Fantuzzi, & Papachristodoulou, (2021). Chordal and factor-width decompositions for scalable semidefinite and polynomial optimization. Annual Reviews in Control, 52, 243-279.

UC San Diego

Outline

Matrix decomposition and chordal graphs

Sum-of-squares chordal decompositions

Applications to robust semidefinite optimization

Conclusions

Recall the simple example

Recall the simple example

$$A = \underbrace{\begin{bmatrix} 3 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 3 \end{bmatrix}}_{\succeq 0} = \underbrace{\begin{bmatrix} 3 & 1 & 0 \\ 1 & 0.5 & 0 \\ 0 & 0 & 0 \end{bmatrix}}_{\succeq 0} + \underbrace{\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0.5 & 1 \\ 0 & 1 & 3 \end{bmatrix}}_{\succeq 0}$$

How about positive (semi)-definite polynomial matrices?

$$P(x) = \begin{bmatrix} p_{11}(x) & p_{12}(x) & 0\\ p_{21}(x) & p_{22}(x) & p_{23}(x)\\ 0 & p_{32}(x) & p_{33}(x) \end{bmatrix} \succeq 0, \quad \forall x \in \mathcal{K}$$
$$\mathcal{K} = \mathbb{R}^n, \text{ or }, \mathcal{K} = \{x \in \mathbb{R}^n \mid g_i(x) \ge 0, i = 1, \dots, m\}$$

Recall the simple example

$$A = \underbrace{\begin{bmatrix} 3 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 3 \end{bmatrix}}_{\succeq 0} = \underbrace{\begin{bmatrix} 3 & 1 & 0 \\ 1 & 0.5 & 0 \\ 0 & 0 & 0 \end{bmatrix}}_{\succeq 0} + \underbrace{\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0.5 & 1 \\ 0 & 1 & 3 \end{bmatrix}}_{\succeq 0}$$

How about positive (semi)-definite polynomial matrices?

$$P(x) = \begin{bmatrix} p_{11}(x) & p_{12}(x) & 0\\ p_{21}(x) & p_{22}(x) & p_{23}(x)\\ 0 & p_{32}(x) & p_{33}(x) \end{bmatrix} \succeq 0, \quad \forall x \in \mathcal{K}$$
$$\mathcal{K} = \mathbb{R}^n, \text{ or }, \mathcal{K} = \{x \in \mathbb{R}^n \mid g_i(x) \ge 0, i = 1, \dots, m\}$$

Point-wise: the decomposition still holds,

$$\underbrace{\begin{bmatrix} * & * & 0 \\ * & * & * \\ 0 & * & * \end{bmatrix}}_{\succeq 0} = \underbrace{\begin{bmatrix} * & * & 0 \\ * & * & 0 \\ 0 & 0 & 0 \end{bmatrix}}_{\succeq 0} + \underbrace{\begin{bmatrix} 0 & 0 & 0 \\ 0 & * & * \\ 0 & * & * \end{bmatrix}}_{\succeq 0}, \qquad \forall x \in \mathcal{K}$$

UC San Diego

Recall the simple example

$$A = \underbrace{\begin{bmatrix} 3 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 3 \end{bmatrix}}_{\succeq 0} = \underbrace{\begin{bmatrix} 3 & 1 & 0 \\ 1 & 0.5 & 0 \\ 0 & 0 & 0 \end{bmatrix}}_{\succeq 0} + \underbrace{\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0.5 & 1 \\ 0 & 1 & 3 \end{bmatrix}}_{\succeq 0}$$

How about positive (semi)-definite polynomial matrices?

$$P(x) = \begin{bmatrix} p_{11}(x) & p_{12}(x) & 0\\ p_{21}(x) & p_{22}(x) & p_{23}(x)\\ 0 & p_{32}(x) & p_{33}(x) \end{bmatrix} \succeq 0, \quad \forall x \in \mathcal{K}$$
$$\mathcal{K} = \mathbb{R}^n, \text{ or }, \mathcal{K} = \{x \in \mathbb{R}^n \mid g_i(x) \ge 0, i = 1, \dots, m\}$$

Point-wise: the decomposition still holds, but can it be represented by polynomials or even better, by SOS matrices?

$$\underbrace{\begin{bmatrix} * & * & 0 \\ * & * & * \\ 0 & * & * \end{bmatrix}}_{\succeq 0} = \underbrace{\begin{bmatrix} * & * & 0 \\ * & * & 0 \\ 0 & 0 & 0 \end{bmatrix}}_{\succeq 0} + \underbrace{\begin{bmatrix} 0 & 0 & 0 \\ 0 & * & * \\ 0 & * & * \end{bmatrix}}_{\succeq 0}, \qquad \forall x \in \mathcal{K}$$

UC San Diego JACOBS SCHOOL OF ENGINEERING

Naive extension does not work

Negative result

There exists a polynomial matrix P(x) with chordal sparsity \mathcal{G} that is strictly positive definite for all $x \in \mathbb{R}^n$, but cannot be decomposed with positive semidefinite polynomial matrices $S_k(x)$.

Naive extension does not work

Negative result

There exists a polynomial matrix P(x) with chordal sparsity \mathcal{G} that is strictly positive definite for all $x \in \mathbb{R}^n$, but cannot be decomposed with positive semidefinite polynomial matrices $S_k(x)$.

Example:

$$P(x) = \begin{bmatrix} k+1+x^2 & x+x^2 & 0\\ x+x^2 & k+2x^2 & x-x^2\\ 0 & x-x^2 & k+1+x^2 \end{bmatrix} = \begin{bmatrix} x & 1\\ x & x\\ 1 & -x \end{bmatrix} \begin{bmatrix} x & x & 1\\ 1 & x & -x \end{bmatrix} + kI_3$$

Negative result

There exists a polynomial matrix P(x) with chordal sparsity \mathcal{G} that is strictly positive definite for all $x \in \mathbb{R}^n$, but cannot be decomposed with positive semidefinite polynomial matrices $S_k(x)$.

Example:

$$P(x) = \begin{bmatrix} k+1+x^2 & x+x^2 & 0\\ x+x^2 & k+2x^2 & x-x^2\\ 0 & x-x^2 & k+1+x^2 \end{bmatrix} = \begin{bmatrix} x & 1\\ x & x\\ 1 & -x \end{bmatrix} \begin{bmatrix} x & x & 1\\ 1 & x & -x \end{bmatrix} + kI_3$$

It is not difficult to show that

$$P(x) = \underbrace{\begin{bmatrix} a(x) & b(x) & 0\\ b(x) & c(x) & 0\\ 0 & 0 & 0 \end{bmatrix}}_{\succeq 0} + \underbrace{\begin{bmatrix} 0 & 0 & 0\\ 0 & d(x) & e(x)\\ 0 & e(x) & f(x) \end{bmatrix}}_{\succeq 0},$$

fails to exist when $0 \leq k < 2$.

Negative result

There exists a polynomial matrix P(x) with chordal sparsity \mathcal{G} that is strictly positive definite for all $x \in \mathbb{R}^n$, but cannot be decomposed with positive semidefinite polynomial matrices $S_k(x)$.

Example:

$$P(x) = \begin{bmatrix} k+1+x^2 & x+x^2 & 0\\ x+x^2 & k+2x^2 & x-x^2\\ 0 & x-x^2 & k+1+x^2 \end{bmatrix} = \begin{bmatrix} x & 1\\ x & x\\ 1 & -x \end{bmatrix} \begin{bmatrix} x & x & 1\\ 1 & x & -x \end{bmatrix} + kI_3$$

It is not difficult to show that

$$P(x) = \underbrace{\begin{bmatrix} a(x) & b(x) & 0\\ b(x) & c(x) & 0\\ 0 & 0 & 0 \end{bmatrix}}_{\succeq 0} + \underbrace{\begin{bmatrix} 0 & 0 & 0\\ 0 & d(x) & e(x)\\ 0 & e(x) & f(x) \end{bmatrix}}_{\succeq 0},$$

fails to exist when $0 \leq k < 2$.

• P(x) is strictly positive definite if 0 < k < 2.

UC San Diego

Sum-of-squares (SOS) matrices

Consider a symmetric matrix-valued polynomial

$$P(x) = \begin{bmatrix} p_{11}(x) & p_{12}(x) & \dots & p_{1r}(x) \\ p_{21}(x) & p_{22}(x) & \dots & p_{2r}(x) \\ \vdots & \vdots & \ddots & \vdots \\ p_{r1}(x) & p_{r2}(x) & \dots & p_{rr}(x) \end{bmatrix} \succeq 0, \forall x \in \mathbb{R}^n.$$

The problem of checking whether P(x) is positive semidefinite is NP-hard in general (even with r = 1, d = 4).

Sum-of-squares (SOS) matrices

Consider a symmetric matrix-valued polynomial

$$P(x) = \begin{bmatrix} p_{11}(x) & p_{12}(x) & \dots & p_{1r}(x) \\ p_{21}(x) & p_{22}(x) & \dots & p_{2r}(x) \\ \vdots & \vdots & \ddots & \vdots \\ p_{r1}(x) & p_{r2}(x) & \dots & p_{rr}(x) \end{bmatrix} \succeq 0, \forall x \in \mathbb{R}^n.$$

- The problem of checking whether P(x) is positive semidefinite is NP-hard in general (even with r = 1, d = 4).
- **SOS representation:** We call P(x) is an SOS matrix if

$$p(x,y) = y^{\mathsf{T}} P(x) y$$
 is SOS in $[x;y]$

A polynomial q(x) is SOS if it can be written as $q(x) = \sum_{i=1}^{m} f_i(x)^2$.

Sum-of-squares (SOS) matrices

Consider a symmetric matrix-valued polynomial

$$P(x) = \begin{bmatrix} p_{11}(x) & p_{12}(x) & \dots & p_{1r}(x) \\ p_{21}(x) & p_{22}(x) & \dots & p_{2r}(x) \\ \vdots & \vdots & \ddots & \vdots \\ p_{r1}(x) & p_{r2}(x) & \dots & p_{rr}(x) \end{bmatrix} \succeq 0, \forall x \in \mathbb{R}^n.$$

- The problem of checking whether P(x) is positive semidefinite is NP-hard in general (even with r = 1, d = 4).
- **SOS representation:** We call P(x) is an SOS matrix if

$$p(x,y) = y^{\mathsf{T}} P(x) y$$
 is SOS in $[x;y]$

A polynomial q(x) is SOS if it can be written as $q(x) = \sum_{i=1}^{m} f_i(x)^2$.

SDP characterization (Parrilo et al.): P(x) is an SOS matrix if and only if there exists Q ≥ 0, such that

$$P(x) = (I_r \otimes v_d(x))^{\mathsf{T}} Q(I_r \otimes v_d(x)).$$

where Q is called the Gram matrix, $v_d(x)$ is the standard monomial basis.

UC San Diego JACOBS SCHOOL OF ENGINEERING

Hilbert-Artin theorem

Sparse matrix version of the Hilbert-Artin theorem

Let P(x) be an $m \times m$ positive semidefinite polynomial matrix whose sparsity graph is chordal and has maximal cliques C_1, \ldots, C_t . There exist an SOS polynomial $\sigma(x)$ and SOS matrices $S_k(x)$ of size $|\mathcal{C}_k| \times |\mathcal{C}_k|$ such that

$$\sigma(x)P(x) = \sum_{k=1}^{t} E_{\mathcal{C}_k}^{\mathsf{T}} S_k(x) E_{\mathcal{C}_k}.$$

Hilbert-Artin theorem

Sparse matrix version of the Hilbert-Artin theorem

Let P(x) be an $m \times m$ positive semidefinite polynomial matrix whose sparsity graph is chordal and has maximal cliques C_1, \ldots, C_t . There exist an SOS polynomial $\sigma(x)$ and SOS matrices $S_k(x)$ of size $|\mathcal{C}_k| \times |\mathcal{C}_k|$ such that

$$\sigma(x)P(x) = \sum_{k=1}^{t} E_{\mathcal{C}_k}^{\mathsf{T}} S_k(x) E_{\mathcal{C}_k}.$$

Example: $\sigma(x) = 1 + k + x^2$ suffices for the previous example

$$P(x) = \begin{bmatrix} k+1+x^2 & x+x^2 & 0\\ x+x^2 & \frac{(1+x)^2x^2}{1+k+x^2} & 0\\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0\\ 0 & \frac{k^2+k+3kx^2+(1-x)^2x^2}{1+k+x^2} & x-x^2\\ 0 & x-x^2 & k+1+x^2 \end{bmatrix}$$

▶ PSD polynomial matrices are equivalent to SOS matrices when n = 1.

UC San Diego MCOBS SCHOOL OF ENGINEERING

Sparse matrix version of Reznick's Positivstellensatz

Let P(x) be an $m \times m$ homogeneous polynomial matrix whose sparsity graph is chordal and has maximal cliques C_1, \ldots, C_t . If P is strictly positive definite on $\mathbb{R}^n \setminus \{0\}$, there exist an integer $\nu \geq 0$ and homogeneous SOS matrices $S_k(x)$ of size $|\mathcal{C}_k| \times |\mathcal{C}_k|$ such that

$$||x||^{2\nu} P(x) = \sum_{k=1}^{t} E_{\mathcal{C}_k}^{\mathsf{T}} S_k(x) E_{\mathcal{C}_k}.$$

Sparse matrix version of Reznick's Positivstellensatz

Let P(x) be an $m \times m$ homogeneous polynomial matrix whose sparsity graph is chordal and has maximal cliques C_1, \ldots, C_t . If P is strictly positive definite on $\mathbb{R}^n \setminus \{0\}$, there exist an integer $\nu \ge 0$ and homogeneous SOS matrices $S_k(x)$ of size $|\mathcal{C}_k| \times |\mathcal{C}_k|$ such that

$$||x||^{2\nu} P(x) = \sum_{k=1}^{t} E_{\mathcal{C}_k}^{\mathsf{T}} S_k(x) E_{\mathcal{C}_k}.$$

De-homogenization: If P is strictly positive definite on ℝⁿ and its highest-degree homogeneous part Σ_{|α|=2d} P_αx^α is strictly positive definite on ℝⁿ \ {0}, then, we have

$$(1 + ||x||^2)^{\nu} P(x) = \sum_{k=1}^{t} E_{\mathcal{C}_k}^{\mathsf{T}} S_k(x) E_{\mathcal{C}_k}.$$

where $\nu \geq 0$ is an integer and $S_k(x)$ are SOS matrices of size $|\mathcal{C}_k| \times |\mathcal{C}_k|$.

▶ Non-trivial example: Let $q(x) = x_1^2 x_2^4 + x_1^4 x_2^2 - 3x_1^2 x_2^2 + 1$ be the Motzkin polynomial, and

$$P(x) = \begin{bmatrix} 0.01(1+x_1^6+x_2^6)+q(x) & -0.01x_1 & 0\\ -0.01x_1 & x_1^6+x_2^6+1 & -x_2\\ 0 & -x_2 & x_1^6+x_2^6+1 \end{bmatrix}.$$

▶ Non-trivial example: Let $q(x) = x_1^2 x_2^4 + x_1^4 x_2^2 - 3x_1^2 x_2^2 + 1$ be the Motzkin polynomial, and

$$P(x) = \begin{bmatrix} 0.01(1+x_1^6+x_2^6)+q(x) & -0.01x_1 & 0\\ -0.01x_1 & x_1^6+x_2^6+1 & -x_2\\ 0 & -x_2 & x_1^6+x_2^6+1 \end{bmatrix}$$

▶ P(x) is strictly positive definite on \mathbb{R}^2 , but is not SOS ($\varepsilon(1 + x_1^6 + x_2^6) + q(x)$ is not SOS unless $\varepsilon \gtrsim 0.01006$ [Laurent 2009, Example 6.25]).

▶ Non-trivial example: Let $q(x) = x_1^2 x_2^4 + x_1^4 x_2^2 - 3x_1^2 x_2^2 + 1$ be the Motzkin polynomial, and

$$P(x) = \begin{bmatrix} 0.01(1+x_1^6+x_2^6)+q(x) & -0.01x_1 & 0\\ -0.01x_1 & x_1^6+x_2^6+1 & -x_2\\ 0 & -x_2 & x_1^6+x_2^6+1 \end{bmatrix}$$

- ▶ P(x) is strictly positive definite on \mathbb{R}^2 , but is not SOS ($\varepsilon(1 + x_1^6 + x_2^6) + q(x)$ is not SOS unless $\varepsilon \gtrsim 0.01006$ [Laurent 2009, Example 6.25]).
- Our theorem guarantees the following decomposition exists

$$(1 + ||x||^2)^{\nu} P(x) = E_{\mathcal{C}_1}^{\mathsf{T}} S_1(x) E_{\mathcal{C}_1} + E_{\mathcal{C}_2}^{\mathsf{T}} S_2(x) E_{\mathcal{C}_2}.$$

▶ Non-trivial example: Let $q(x) = x_1^2 x_2^4 + x_1^4 x_2^2 - 3x_1^2 x_2^2 + 1$ be the Motzkin polynomial, and

$$P(x) = \begin{bmatrix} 0.01(1+x_1^6+x_2^6)+q(x) & -0.01x_1 & 0\\ -0.01x_1 & x_1^6+x_2^6+1 & -x_2\\ 0 & -x_2 & x_1^6+x_2^6+1 \end{bmatrix}$$

- ▶ P(x) is strictly positive definite on \mathbb{R}^2 , but is not SOS ($\varepsilon(1 + x_1^6 + x_2^6) + q(x)$ is not SOS unless $\varepsilon \gtrsim 0.01006$ [Laurent 2009, Example 6.25]).
- Our theorem guarantees the following decomposition exists

$$(1 + ||x||^2)^{\nu} P(x) = E_{\mathcal{C}_1}^{\mathsf{T}} S_1(x) E_{\mathcal{C}_1} + E_{\mathcal{C}_2}^{\mathsf{T}} S_2(x) E_{\mathcal{C}_2}.$$

• It suffices to use $\nu = 1$ and SOS matrices

UC San Diego

MCORE SCHOOL OF ENGINEERING

$$S_{1}(x) = \begin{bmatrix} (1+\|x\|^{2})q(x) & 0\\ 0 & 0 \end{bmatrix} + \frac{1+\|x\|^{2}}{100} \begin{bmatrix} 1+x_{1}^{6}+x_{2}^{6} & -x_{1}\\ -x_{1} & 100x_{1}^{2} \end{bmatrix},$$

$$S_{2}(x) = (1+\|x\|^{2}) \begin{bmatrix} 1-x_{1}^{2}+x_{1}^{6}+x_{2}^{6} & -x_{2}\\ -x_{2} & 1+x_{1}^{6}+x_{2}^{6} \end{bmatrix}.$$

Consider $P(x) \succ 0, \forall x \in \mathcal{K}$ with $\mathcal{K} = \{x \in \mathbb{R}^n \mid g_i(x) \ge 0, i = 1, \dots, m\}$, and $\sigma_0(x) + g_1(x)\sigma_1(x) + \dots + g_q(x)\sigma_q(x) = r^2 - \|x\|^2$.

Consider $P(x) \succ 0, \forall x \in \mathcal{K}$ with $\mathcal{K} = \{x \in \mathbb{R}^n \mid g_i(x) \ge 0, i = 1, \dots, m\}$, and $\sigma_0(x) + g_1(x)\sigma_1(x) + \dots + g_q(x)\sigma_q(x) = r^2 - ||x||^2$.

Sparse matrix version of Putinar's Positivstellensatz

Let P(x) be a polynomial matrix whose sparsity graph is chordal and has maximal cliques C_1, \ldots, C_t . If P is strictly positive definite on \mathcal{K} , there exist SOS matrices $S_{j,k}(x)$ of size $|\mathcal{C}_k| \times |\mathcal{C}_k|$ such that

$$P(x) = \sum_{k=1}^{t} E_{\mathcal{C}_{k}}^{\mathsf{T}} \left(S_{0,k}(x) + \sum_{j=1}^{q} g_{j}(x) S_{j,k}(x) \right) E_{\mathcal{C}_{k}}.$$

Consider $P(x) \succ 0, \forall x \in \mathcal{K}$ with $\mathcal{K} = \{x \in \mathbb{R}^n \mid g_i(x) \ge 0, i = 1, \dots, m\}$, and $\sigma_0(x) + g_1(x)\sigma_1(x) + \dots + g_q(x)\sigma_q(x) = r^2 - ||x||^2$.

Sparse matrix version of Putinar's Positivstellensatz

Let P(x) be a polynomial matrix whose sparsity graph is chordal and has maximal cliques C_1, \ldots, C_t . If P is strictly positive definite on \mathcal{K} , there exist SOS matrices $S_{j,k}(x)$ of size $|\mathcal{C}_k| \times |\mathcal{C}_k|$ such that

$$P(x) = \sum_{k=1}^{t} E_{\mathcal{C}_{k}}^{\mathsf{T}} \left(S_{0,k}(x) + \sum_{j=1}^{q} g_{j}(x) S_{j,k}(x) \right) E_{\mathcal{C}_{k}}.$$

• Example: Let $\mathcal{K} = \{x \in \mathbb{R}^2 : g_1(x) := 1 - x_1^2 \ge 0, g_2(x) := x_1^2 - x_2^2 \ge 0\}$, and

$$P(x) := \begin{bmatrix} 1+2x_1^2-x_1^4 & x_1+x_1x_2-x_1^3 & 0\\ x_1+x_1x_2-x_1^3 & 3+4x_1^2-3x_2^2 & 2x_1^2x_2-x_1x_2-2x_2^3\\ 0 & 2x_1^2x_2-x_1x_2-2x_2^3 & 1+x_2^2+x_1^2x_2^2-x_2^4 \end{bmatrix}$$

▶ It guarantees the decomposition below holds for SOS matrices $S_{i,j}(x)$

$$P(x) = \sum_{k=1}^{2} E_{\mathcal{C}_{k}}^{\mathsf{T}} \left[S_{0,k}(x) + g_{1}(x) S_{1,k}(x) + g_{2}(x) S_{2,k}(x) \right] E_{\mathcal{C}_{k}}$$

lt guarantees the decomposition below holds for SOS matrices $S_{i,j}(x)$

$$P(x) = \sum_{k=1}^{2} E_{\mathcal{C}_{k}}^{\mathsf{T}} \left[S_{0,k}(x) + g_{1}(x) S_{1,k}(x) + g_{2}(x) S_{2,k}(x) \right] E_{\mathcal{C}_{k}}$$

Possible choices are

$$S_{0,1}(x) = I_2 + \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \begin{bmatrix} x_1 & x_2 \end{bmatrix} \qquad S_{1,1}(x) = \begin{bmatrix} x_1 \\ 1 \end{bmatrix} \begin{bmatrix} x_1 & 1 \end{bmatrix}$$
$$S_{0,2}(x) = I_2 + \begin{bmatrix} x_1 \\ -x_2 \end{bmatrix} \begin{bmatrix} x_1 & -x_2 \end{bmatrix} \qquad S_{2,2}(x) = \begin{bmatrix} 2 \\ x_2 \end{bmatrix} \begin{bmatrix} 2 & x_2 \end{bmatrix}.$$

UC San Diego

Outline

Matrix decomposition and chordal graphs

Sum-of-squares chordal decompositions

Applications to robust semidefinite optimization

Conclusions

Consider a robust SDP program

$$\begin{split} B^* &:= \inf_{\lambda \in \mathbb{R}^{\ell}} \quad b^{\mathsf{T}} \lambda \\ \text{subject to} \quad P(x,\lambda) &:= P_0(x) - \sum_{i=1}^{\ell} P_i(x) \lambda_i \succeq 0 \quad \forall x \in \mathcal{K}, \end{split}$$

Consider a robust SDP program

$$\begin{split} B^* &:= \inf_{\lambda \in \mathbb{R}^{\ell}} \quad b^{\mathsf{T}}\lambda \\ &\text{subject to} \quad P(x,\lambda) := P_0(x) - \sum_{i=1}^{\ell} P_i(x)\lambda_i \succeq 0 \quad \forall x \in \mathcal{K}, \\ B^*_{d,\nu} &:= \inf_{\lambda, S_{j,k}} \quad b^{\mathsf{T}}\lambda \\ &\text{subject to} \quad \sigma(x)^{\nu} P(x,\lambda) = \sum_{k=1}^{t} E^{\mathsf{T}}_{\mathcal{C}_k} \left(S_{0,k}(x) + \sum_{j=1}^{m} g_j(x) S_{j,k}(x) \right) E_{\mathcal{C}_k}, \\ &\quad S_{j,k} \in \Sigma^{|\mathcal{C}_k|}_{2d_j} \quad \forall j = 0, \dots, q, \; \forall k = 1, \dots, t, \end{split}$$

Consider a robust SDP program

$$\begin{split} B^* &:= \inf_{\lambda \in \mathbb{R}^{\ell}} \quad b^{\mathsf{T}} \lambda \\ \text{subject to} \quad P(x, \lambda) &:= P_0(x) - \sum_{i=1}^{\ell} P_i(x) \lambda_i \succeq 0 \quad \forall x \in \mathcal{K}, \end{split}$$

$$\begin{split} B^*_{d,\nu} &:= \inf_{\lambda,\,S_{j,k}} \quad b^\mathsf{T}\lambda\\ \text{subject to} \quad \sigma(x)^\nu P(x,\lambda) = \sum_{k=1}^t E^\mathsf{T}_{\mathcal{C}_k} \left(S_{0,k}(x) + \sum_{j=1}^m g_j(x) S_{j,k}(x) \right) E_{\mathcal{C}_k},\\ S_{j,k} &\in \Sigma_{2d_j}^{|\mathcal{C}_k|} \quad \forall j = 0, \dots, q, \; \forall k = 1, \dots, t, \end{split}$$

Convergence guarantees

► \mathcal{K} is compact and satisfies the Archimedean condition, under some technical conditions, we fix $\sigma(x) = 1$ and $B_{d,0}^* \to B^*$ from above as $d \to \infty$.

Consider a robust SDP program

$$\begin{split} B^* &:= \inf_{\lambda \in \mathbb{R}^{\ell}} \quad b^{\mathsf{T}} \lambda \\ \text{subject to} \quad P(x, \lambda) &:= P_0(x) - \sum_{i=1}^{\ell} P_i(x) \lambda_i \succeq 0 \quad \forall x \in \mathcal{K}, \end{split}$$

$$\begin{split} B_{d,\nu}^* &:= \inf_{\lambda, S_{j,k}} \quad b^\mathsf{T}\lambda\\ \text{subject to} \quad \sigma(x)^\nu P(x,\lambda) = \sum_{k=1}^t E_{\mathcal{C}_k}^\mathsf{T} \left(S_{0,k}(x) + \sum_{j=1}^m g_j(x) S_{j,k}(x) \right) E_{\mathcal{C}_k},\\ S_{j,k} \in \Sigma_{2d_j}^{|\mathcal{C}_k|} \quad \forall j = 0, \dots, q, \; \forall k = 1, \dots, t, \end{split}$$

Convergence guarantees

- ► \mathcal{K} is compact and satisfies the Archimedean condition, under some technical conditions, we fix $\sigma(x) = 1$ and $B_{d,0}^* \to B^*$ from above as $d \to \infty$.
- $\mathcal{K} \equiv \mathbb{R}^n$: under some technical conditions, we fix $\sigma(x) = 1 + ||x||^2$ and $B^*_{d,\nu} \to B^*$ from above as $\nu \to \infty$.

UC San Diego

Define a set

$$\mathcal{F}_{\omega} = \{ \lambda \in \mathbb{R}^2 : P_{\omega}(x, \lambda) \succeq 0 \quad \forall x \in \mathbb{R}^3 \}.$$

 $\begin{aligned} \mathcal{P}_{\omega}(x,\lambda) &= \begin{cases} \lambda \in \mathbb{R}^2: \ P_{\omega}(x,\lambda) \succeq 0 \quad \forall x \in \mathbb{R}^3 \}. \\ & \mathcal{F}_{\omega} = \{\lambda \in \mathbb{R}^2: \ P_{\omega}(x,\lambda) \succeq 0 \quad \forall x \in \mathbb{R}^3 \}. \end{cases} \\ P_{\omega}(x,\lambda) &= \begin{bmatrix} \lambda_2 x_1^4 + x_2^4 & \lambda_1 x_1^2 x_2^2 \\ & \lambda_1 x_1^2 x_2^2 & \lambda_2 x_2^4 + x_3^4 & \lambda_1 x_1^2 x_3^2 \\ & & \lambda_2 x_2^2 x_3^2 & \lambda_2 x_3^4 + x_1^4 & \lambda_1 x_1^2 x_3^2 \\ & & & \lambda_1 x_1^2 x_3^2 & \lambda_2 x_1^4 + x_2^4 & \lambda_2 x_1^2 x_2^2 \\ & & & & \lambda_2 x_1^2 x_2^2 & \lambda_2 x_2^4 + x_3^4 & \ddots \\ & & & & & \ddots & & \lambda_i x_2^2 x_3^2 \\ & & & & \lambda_i x_2^2 x_3^2 & \lambda_2 x_3^4 + x_1^4 \end{bmatrix}, \end{aligned}$

 $\begin{aligned} \mathcal{D}\text{efine a set} & \mathcal{F}_{\omega} = \{\lambda \in \mathbb{R}^{2}: \ P_{\omega}(x,\lambda) \succeq 0 \quad \forall x \in \mathbb{R}^{3} \}. \\ \mathcal{F}_{\omega}(x,\lambda) = \begin{bmatrix} \lambda_{2}x_{1}^{4} + x_{2}^{4} & \lambda_{1}x_{1}^{2}x_{2}^{2} \\ \lambda_{1}x_{1}^{2}x_{2}^{2} & \lambda_{2}x_{2}^{4} + x_{3}^{4} & \lambda_{2}x_{2}^{2}x_{3}^{2} \\ \lambda_{2}x_{2}^{2}x_{3}^{2} & \lambda_{2}x_{3}^{4} + x_{1}^{4} & \lambda_{1}x_{1}^{2}x_{3}^{2} \\ \lambda_{1}x_{1}^{2}x_{3}^{2} & \lambda_{2}x_{1}^{4} + x_{2}^{4} & \lambda_{2}x_{1}^{2}x_{2}^{2} \\ & \lambda_{2}x_{1}^{2}x_{2}^{2} & \lambda_{2}x_{2}^{4} + x_{3}^{4} \\ & & \lambda_{2}x_{1}^{2}x_{2}^{2} & \lambda_{2}x_{2}^{4} + x_{3}^{4} \\ & & & \lambda_{i}x_{2}^{2}x_{3}^{2} & \lambda_{2}x_{3}^{4} + x_{1}^{4} \end{bmatrix}, \end{aligned}$

• Define two hierarchies of subsets of \mathcal{F}_{ω} , indexed by an integer ν , as

$$\mathcal{D}_{\omega,\nu} := \left\{ \lambda \in \mathbb{R}^2 : \|x\|^{2\nu} P_{\omega}(x,\lambda) \text{ is SOS} \right\},$$
$$\mathcal{S}_{\omega,\nu} := \left\{ \lambda \in \mathbb{R}^2 : \|x\|^{2\nu} P_{\omega}(x,\lambda) = \sum_{k=1}^{3\omega-1} E_{\mathcal{C}_k}^{\mathsf{T}} S_k(x) E_{\mathcal{C}_k}, S_k(x) \text{ is SOS} \right\}.$$

 $\begin{aligned} \mathcal{D}\text{efine a set} & \mathcal{F}_{\omega} = \{\lambda \in \mathbb{R}^{2}: \ P_{\omega}(x,\lambda) \succeq 0 \quad \forall x \in \mathbb{R}^{3} \}. \\ \mathcal{F}_{\omega}(x,\lambda) = \begin{bmatrix} \lambda_{2}x_{1}^{4} + x_{2}^{4} & \lambda_{1}x_{1}^{2}x_{2}^{2} \\ \lambda_{1}x_{1}^{2}x_{2}^{2} & \lambda_{2}x_{2}^{4} + x_{3}^{4} & \lambda_{2}x_{2}^{2}x_{3}^{2} \\ \lambda_{2}x_{2}^{2}x_{3}^{2} & \lambda_{2}x_{3}^{4} + x_{1}^{4} & \lambda_{1}x_{1}^{2}x_{3}^{2} \\ \lambda_{1}x_{1}^{2}x_{3}^{2} & \lambda_{2}x_{1}^{4} + x_{2}^{4} & \lambda_{2}x_{1}^{2}x_{2}^{2} \\ & \lambda_{2}x_{1}^{2}x_{2}^{2} & \lambda_{2}x_{2}^{4} + x_{3}^{4} \\ & & \lambda_{2}x_{1}^{2}x_{2}^{2} & \lambda_{2}x_{2}^{4} + x_{3}^{4} \\ & & & \lambda_{i}x_{2}^{2}x_{3}^{2} & \lambda_{2}x_{3}^{4} + x_{1}^{4} \end{bmatrix}, \end{aligned}$

• Define two hierarchies of subsets of \mathcal{F}_{ω} , indexed by an integer ν , as

$$\mathcal{D}_{\omega,\nu} := \left\{ \lambda \in \mathbb{R}^2 : \|x\|^{2\nu} P_{\omega}(x,\lambda) \text{ is SOS} \right\},$$
$$\mathcal{S}_{\omega,\nu} := \left\{ \lambda \in \mathbb{R}^2 : \|x\|^{2\nu} P_{\omega}(x,\lambda) = \sum_{k=1}^{3\omega-1} E_{\mathcal{C}_k}^{\mathsf{T}} S_k(x) E_{\mathcal{C}_k}, S_k(x) \text{ is SOS} \right\}.$$

We always have

$$\mathcal{S}_{\omega,\nu}\subseteq \mathcal{D}_{\omega,\nu}\subseteq \mathcal{F}_{\omega}$$

UC San Diego JACOBS SCHOOL OF ENGINEERING

We consider

$$B^* := \inf_{\lambda} \quad \lambda_2 - 10\lambda_1$$

subject to $\lambda \in \mathcal{F}_{\omega}$

We consider

 $B^* := \inf_{\lambda} \quad \lambda_2 - 10\lambda_1$
subject to $\quad \lambda \in \mathcal{F}_{\omega}$

Table: Upper bounds $B_{d,\nu}$ on the optimal value B^* and time (seconds) by MOSEK

	Standard SOS						Sparse SOS					
	$\nu = 1$		$\nu = 2$		$\nu = 3$		$\nu = 2$		$\nu = 3$		$\nu = 4$	
ω	t	$B_{d,\nu}$	t	$B_{d,\nu}$	t	$B_{d,\nu}$	t	$B_{d,\nu}$	t	$B_{d,\nu}$	t	$B_{d,\nu}$
5	12	-8.68	25	-9.36	69	-9.36	0.58	-8.97	0.72	-9.36	1.29	-9.36
10	407	-8.33	886	-9.09	2910	-9.09	1.65	-8.72	0.82	-9.09	2.08	-9.09
15	2090	-8.26	OOM	OOM	OOM	OOM	2.76	-8.68	1.13	-9.04	2.79	-9.04
20	OOM	OOM	OOM	OOM	OOM	OOM	3.24	-8.66	1.54	-9.02	4.70	-9.02
25	OOM	OOM	OOM	OOM	OOM	OOM	2.85	-8.66	1.94	-9.02	4.59	-9.02
30	OOM	OOM	OOM	OOM	OOM	OOM	2.38	-8.65	2.40	-9.01	5.50	-9.01
35	OOM	OOM	OOM	OOM	OOM	OOM	2.66	-8.65	3.25	-9.01	6.17	-9.01
40	OOM	OOM	OOM	OOM	OOM	OOM	3.07	-8.65	3.14	-9.01	8.48	-9.01

Outline

Matrix decomposition and chordal graphs

Sum-of-squares chordal decompositions

Applications to robust semidefinite optimization

Conclusions

Summary

Clique decomposition:

It offers a decomposition for sparse positive semidefinite matrices

$$Z \in \mathbb{S}^{n}_{+}(\mathcal{E}, 0) \Leftrightarrow Z = \sum_{k=1}^{p} E^{\mathsf{T}}_{\mathcal{C}_{k}} Z_{k} E_{\mathcal{C}_{k}}, \, Z_{k} \in \mathbb{S}^{|\mathcal{C}_{k}|}_{+}$$

- We present extensions to polynomial matrices: sparsity-exploiting versions of the Hilbert-Artin, Reznick, Putinar Positivstellensätze.
- Applications to robust semidefinite optimization with sparsity!

Summary

Clique decomposition:

It offers a decomposition for sparse positive semidefinite matrices

$$Z \in \mathbb{S}^{n}_{+}(\mathcal{E}, 0) \Leftrightarrow Z = \sum_{k=1}^{p} E^{\mathsf{T}}_{\mathcal{C}_{k}} Z_{k} E_{\mathcal{C}_{k}}, \, Z_{k} \in \mathbb{S}^{|\mathcal{C}_{k}|}_{+}$$

- We present extensions to polynomial matrices: sparsity-exploiting versions of the Hilbert-Artin, Reznick, Putinar Positivstellensätze.
- Applications to robust semidefinite optimization with sparsity!

Future work

- Polynomial matrix completion;
- Moment interpretations of the decomposition and completion results.

Conclusions

Thank you for your attention!

Q & A

- Zheng, Y., Fantuzzi, G., & Papachristodoulou, A. (2021). Chordal and factor-width decompositions for scalable semidefinite and polynomial optimization. Annual Reviews in Control, 52, 243-279.
- Zheng, Y., & Fantuzzi, G. (2023). Sum-of-squares chordal decomposition of polynomial matrix inequalities. Mathematical Programming, 197(1), 71-108.

Extra slides

Proof ideas: Hilbert-Artin theorem

Diagonalization with no fill-ins

If P(x) is an $m \times m$ symmetric polynomial matrix with chordal sparsity graph, there exist an $m \times m$ permutation matrix T, an invertible $m \times m$ lower-triangular polynomial matrix L(x), and polynomials b(x), $d_1(x)$, ..., $d_m(x)$ such that

$$b^{4}(x) TP(x)T^{\mathsf{T}} = L(x)\mathsf{Diag}(d_{1}(x), \ldots, d_{m}(x)) L(x)^{\mathsf{T}}.$$

Moreover, L has no fill-in in the sense that $L + L^{\mathsf{T}}$ has the same sparsity as TPT^{T} .

Proof ideas: Hilbert-Artin theorem

Diagonalization with no fill-ins

If P(x) is an $m \times m$ symmetric polynomial matrix with chordal sparsity graph, there exist an $m \times m$ permutation matrix T, an invertible $m \times m$ lower-triangular polynomial matrix L(x), and polynomials b(x), $d_1(x)$, ..., $d_m(x)$ such that

$$b^{4}(x) TP(x)T^{\mathsf{T}} = L(x)\mathsf{Diag}(d_{1}(x), \ldots, d_{m}(x)) L(x)^{\mathsf{T}}.$$

Moreover, L has no fill-in in the sense that $L + L^{\mathsf{T}}$ has the same sparsity as TPT^{T} .

Figure: Decomposition follows by combining columns.

Figure from Prof. Lieven Vandenberghe's talk.

Proof ideas: Putinar's theorem

Scherer and Ho, 2006

Let \mathcal{K} be a compact semialgebraic set that satisfies the Archimedean condition. If an $m \times m$ symmetric polynomial matrix P(x) is strictly positive definite on \mathcal{K} , there exist $m \times m$ SOS matrices S_0, \ldots, S_q such that

$$P(x) = S_0(x) + \sum_{i=1}^{q} S_i(x)g_i(x).$$

Proof ideas: Putinar's theorem

Scherer and Ho, 2006

Let \mathcal{K} be a compact semialgebraic set that satisfies the Archimedean condition. If an $m \times m$ symmetric polynomial matrix P(x) is strictly positive definite on \mathcal{K} , there exist $m \times m$ SOS matrices S_0, \ldots, S_q such that

$$P(x) = S_0(x) + \sum_{i=1}^{q} S_i(x)g_i(x).$$

 Weierstrass polynomial approximation theorem + the above version of Putinar's Positivstellensatz

$$P(x) = \begin{bmatrix} a(x) & b(x)^{\mathsf{T}} & 0\\ b(x) & U(x) & V(x)\\ 0 & V(x) & W(x) \end{bmatrix}$$
$$= \underbrace{\begin{bmatrix} a(x) & b(x)^{\mathsf{T}} & 0\\ b(x) & H(x) + 2\varepsilon I & 0\\ 0 & 0 & 0 \end{bmatrix}}_{\succeq 0, \forall x \in \mathcal{K}} + \underbrace{\begin{bmatrix} 0 & 0 & 0\\ 0 & U(x) - H(x) - 2\varepsilon I & V(x)\\ 0 & V(x)^{\mathsf{T}} & W(x) \end{bmatrix}}_{\succeq 0, \forall x \in \mathcal{K}}.$$

