Sum-of-squares Chordal Decomposition of Polynomial Matrix Inequalities

Yang Zheng
Assistant Professor, ECE, UC San Diego
(Joint work with Giovanni Fantuzzi at FAU Erlangen-Nürnberg)

UCSanDiego
JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

2023 INFORMS Annual Meeting, Phoenix, Arizona
October 16, 2023

Outline

Matrix decomposition and chordal graphs

Sum-of-squares chordal decompositions

Applications to robust semidefinite optimization

Conclusions

Matrix decomposition and chordal graphs

Matrix decomposition:

- A simple example

$$
A=\underbrace{\left[\begin{array}{lll}
3 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 3
\end{array}\right]}_{\succeq 0}=\underbrace{\left[\begin{array}{ccc}
3 & 1 & 0 \\
1 & 0.5 & 0 \\
0 & 0 & 0
\end{array}\right]}_{\succeq 0}+\underbrace{\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0.5 & 1 \\
0 & 1 & 3
\end{array}\right]}_{\succeq 0}
$$

Matrix decomposition and chordal graphs

Matrix decomposition:

- A simple example

$$
A=\underbrace{\left[\begin{array}{lll}
3 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 3
\end{array}\right]}_{\succeq 0}=\underbrace{\left[\begin{array}{ccc}
3 & 1 & 0 \\
1 & 0.5 & 0 \\
0 & 0 & 0
\end{array}\right]}_{\succeq 0}+\underbrace{\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0.5 & 1 \\
0 & 1 & 3
\end{array}\right]}_{\succeq 0}
$$

- This is true for any PSD matrix with such pattern, i.e., sparse cone decomposition

$$
\underbrace{\left[\begin{array}{ccc}
* & * & 0 \\
* & * & * \\
0 & * & *
\end{array}\right]}_{\succeq 0}=\underbrace{\left[\begin{array}{lll}
* & * & 0 \\
* & * & 0 \\
0 & 0 & 0
\end{array}\right]}_{\succeq 0}+\underbrace{\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & * & * \\
0 & * & *
\end{array}\right]}_{\succeq 0}
$$

where $*$ denotes a real scalar number (or block matrix).

Matrix decomposition and chordal graphs

Matrix decomposition:

- A simple example

$$
A=\underbrace{\left[\begin{array}{lll}
3 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 3
\end{array}\right]}_{\succeq 0}=\underbrace{\left[\begin{array}{ccc}
3 & 1 & 0 \\
1 & 0.5 & 0 \\
0 & 0 & 0
\end{array}\right]}_{\succeq 0}+\underbrace{\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0.5 & 1 \\
0 & 1 & 3
\end{array}\right]}_{\succeq 0}
$$

- This is true for any PSD matrix with such pattern, i.e., sparse cone decomposition

$$
\underbrace{\left[\begin{array}{ccc}
* & * & 0 \\
* & * & * \\
0 & * & *
\end{array}\right]}_{\succeq 0}=\underbrace{\left[\begin{array}{lll}
* & * & 0 \\
* & * & 0 \\
0 & 0 & 0
\end{array}\right]}_{\succeq 0}+\underbrace{\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & * & * \\
0 & * & *
\end{array}\right]}_{\succeq 0}
$$

where $*$ denotes a real scalar number (or block matrix).

Benefits:

- Reduce computational complexity, and thus improve efficiency! $(3 \times 3 \rightarrow 2 \times 2)$

Matrix decomposition and chordal graphs

Matrix decomposition:

- Many other patterns admit similar decompositions, e.g.

(a)

(d)

(b)

(e)

(c)

(f)
- They can be commonly characterized by chordal graphs.

Clique decomposition

Chordal graphs: An undirected graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$ is called chordal if every cycle of length greater than three has a chord.

(a)

(b)

Clique decomposition

Chordal graphs: An undirected graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$ is called chordal if every cycle of length greater than three has a chord.

(a)

(b)

- Cliques: A clique is a set of nodes that induces a complete subgraph

Clique decomposition

Chordal graphs: An undirected graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$ is called chordal if every cycle of length greater than three has a chord.

(a)

(b)

- Cliques: A clique is a set of nodes that induces a complete subgraph

Clique decomposition:

Sparse matrix decomposition

- Sparse positive semidefinite (PSD) matrices

$$
\begin{aligned}
\mathbb{S}^{n}(\mathcal{E}, 0) & =\left\{X \in \mathbb{S}^{n} \mid X_{i j}=X_{j i}=0, \forall(i, j) \notin \mathcal{E}\right\}, \\
\mathbb{S}_{+}^{n}(\mathcal{E}, 0) & =\left\{X \in \mathbb{S}^{n}(\mathcal{E}, 0) \mid X \succeq 0\right\} .
\end{aligned}
$$

Sparse matrix decomposition

- Sparse positive semidefinite (PSD) matrices

$$
\begin{aligned}
\mathbb{S}^{n}(\mathcal{E}, 0) & =\left\{X \in \mathbb{S}^{n} \mid X_{i j}=X_{j i}=0, \forall(i, j) \notin \mathcal{E}\right\} \\
\mathbb{S}_{+}^{n}(\mathcal{E}, 0) & =\left\{X \in \mathbb{S}^{n}(\mathcal{E}, 0) \mid X \succeq 0\right\}
\end{aligned}
$$

- Clique decomposition for PSD matrices (Agler, Helton, McCullough, \& Rodman, 1988; Griewank and Toint, 1984)

Theorem
Let $\mathcal{G}(\mathcal{V}, \mathcal{E})$ be a chordal graph with maximal cliques $\left\{\mathcal{C}_{1}, \mathcal{C}_{2}, \ldots, \mathcal{C}_{p}\right\}$. Then,

$$
Z \in \mathbb{S}_{+}^{n}(\mathcal{E}, 0) \Leftrightarrow Z=\sum_{k=1}^{p} E_{\mathcal{C}_{k}}^{\top} Z_{k} E_{\mathcal{C}_{k}}, Z_{k} \in \mathbb{S}_{+}^{\left|\mathcal{C}_{k}\right|}
$$

Sparse matrix decomposition

- Sparse positive semidefinite (PSD) matrices

$$
\begin{aligned}
\mathbb{S}^{n}(\mathcal{E}, 0) & =\left\{X \in \mathbb{S}^{n} \mid X_{i j}=X_{j i}=0, \forall(i, j) \notin \mathcal{E}\right\}, \\
\mathbb{S}_{+}^{n}(\mathcal{E}, 0) & =\left\{X \in \mathbb{S}^{n}(\mathcal{E}, 0) \mid X \succeq 0\right\} .
\end{aligned}
$$

- Clique decomposition for PSD matrices (Agler, Helton, McCullough, \& Rodman, 1988; Griewank and Toint, 1984)

Theorem

Let $\mathcal{G}(\mathcal{V}, \mathcal{E})$ be a chordal graph with maximal cliques $\left\{\mathcal{C}_{1}, \mathcal{C}_{2}, \ldots, \mathcal{C}_{p}\right\}$. Then,

$$
Z \in \mathbb{S}_{+}^{n}(\mathcal{E}, 0) \Leftrightarrow Z=\sum_{k=1}^{p} E_{\mathcal{C}_{k}}^{\top} Z_{k} E_{\mathcal{C}_{k}}, Z_{k} \in \mathbb{S}_{+}^{\mathcal{C}_{k} \mid}
$$

A growing number of applications

Control, machine learning, relaxation of QCQP, fluid dynamics, and beyond

Area	Topic	References
Control	Linear system analysis	Andersen et al. (2014b); Deroo et al. (2015); Mason \& Papachristodoulou (2014); Pakazad et al. (2017b); Zheng et al. (2018c)
	Decentralized control	Deroo et al. (2014); Heinke et al. (2020); Zheng et al. (2020); Zheng et al. (2018d)
	Nonlinear system analysis	Schlosser \& Korda (2020); Tacchi et al. (2019a); Zheng et al. (2019a); Mason (2015, Chapter 5)
	Model predictive control	Ahmadi et al. (2019); Hansson \& Pakazad (2018)
Machine learning	Verification of neural networks	Batten et al. (2021); Dvijotham et al. (2020); Newton \& Papachristodoulou (2021); Zhang (2020)
	Lipschitz constant estimation	Chen et al. (2020b); Latorre et al. (2020)
	Training of support vector machine	Andersen \& Vandenberghe (2010)
	Geometric perception \& coarsening	Chen et al. (2020a); Liu et al. (2019); Yang \& Carlone (2020)
	Covariance selection	Dahl et al. (2008); Zhang et al. (2018)
	Subspace clustering	Miller et al. (2019a)
Relaxation of QCQP and POPs	Sensor network locations	Jing et al. (2019); Kim et al. (2009); Nie (2009)
	Max-Cut problem	Andersen et al. (2010a); Garstka et al. (2019); Zheng et al. (2020)
	Optimal power flow (OPF)	Andersen et al. (2014a); Dall'Anese et al. (2013); Jabr (2011); Jiang (2017); Molzahn \& Hiskens (2014); Molzahn et al. (2013)
	State estimation in power systems	Weng et al. (2013); Zhang et al. (2017); Zhu \& Giannakis (2014)
Others	Fluid dynamics	Arslan et al. (2021); Fantuzzi et al. (2018)
	Partial differential equations	Mevissen (2010); Mevissen et al. (2008, 2011, 2009)
	Robust quadratic optimization	Andersen et al. (2010b)
	Binary signal recovery	Fosson \& Abuabiah (2019)
	Solving polynomial systems	Cifuentes \& Parrilo (2016, 2017); Li et al. (2021); Mou et al. (2021); Tacchi et al. (2019b)
	Other problems	Baltean-Lugojan et al. (2019); Jeyakumar et al. (2016); Madani et al. (2017b); Pakazad et al. (2017a); Yang \& Deng (2020)

- Zheng, Fantuzzi, \& Papachristodoulou, (2021). Chordal and factor-width decompositions for scalable semidefinite and polynomial optimization. Annual Reviews in Control, 52, 243-279.

Outline

Matrix decomposition and chordal graphs

Sum-of-squares chordal decompositions

Applications to robust semidefinite optimization

Conclusions

Positive (semi)-definite polynomial matrices

- Recall the simple example

$$
A=\underbrace{\left[\begin{array}{lll}
3 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 3
\end{array}\right]}_{\succeq 0}=\underbrace{\left[\begin{array}{ccc}
3 & 1 & 0 \\
1 & 0.5 & 0 \\
0 & 0 & 0
\end{array}\right]}_{\succeq 0}+\underbrace{\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0.5 & 1 \\
0 & 1 & 3
\end{array}\right]}_{\succeq 0}
$$

Positive (semi)-definite polynomial matrices

- Recall the simple example

$$
A=\underbrace{\left[\begin{array}{lll}
3 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 3
\end{array}\right]}_{\succeq 0}=\underbrace{\left[\begin{array}{ccc}
3 & 1 & 0 \\
1 & 0.5 & 0 \\
0 & 0 & 0
\end{array}\right]}_{\succeq 0}+\underbrace{\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0.5 & 1 \\
0 & 1 & 3
\end{array}\right]}_{\succeq 0}
$$

- How about positive (semi)-definite polynomial matrices?
(1) $2(x)=\left[\begin{array}{ccc}p_{11}(x) & p_{12}(x) & 0 \\ p_{21}(x) & p_{22}(x) & p_{23}(x) \\ 0 & p_{32}(x) & p_{33}(x)\end{array}\right] \succeq 0, \quad \forall x \in \mathcal{K}$

$$
\mathcal{K}=\mathbb{R}^{n}, \text { or }, \mathcal{K}=\left\{x \in \mathbb{R}^{n} \mid g_{i}(x) \geq 0, i=1, \ldots, m\right\}
$$

Positive (semi)-definite polynomial matrices

- Recall the simple example

$$
A=\underbrace{\left[\begin{array}{lll}
3 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 3
\end{array}\right]}_{\succeq 0}=\underbrace{\left[\begin{array}{ccc}
3 & 1 & 0 \\
1 & 0.5 & 0 \\
0 & 0 & 0
\end{array}\right]}_{\succeq 0}+\underbrace{\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0.5 & 1 \\
0 & 1 & 3
\end{array}\right]}_{\succeq 0}
$$

- How about positive (semi)-definite polynomial matrices?

$$
\begin{aligned}
& P(x)=\left[\begin{array}{ccc}
p_{11}(x) & p_{12}(x) & 0 \\
p_{21}(x) & p_{22}(x) & p_{23}(x) \\
0 & p_{32}(x) & p_{33}(x)
\end{array}\right] \succeq 0, \quad \forall x \in \mathcal{K} \\
& \mathcal{K}=\mathbb{R}^{n}, \text { or, } \mathcal{K}=\left\{x \in \mathbb{R}^{n} \mid g_{i}(x) \geq 0, i=1, \ldots, m\right\}
\end{aligned}
$$

- Point-wise: the decomposition still holds,

$$
\underbrace{\left[\begin{array}{ccc}
* & * & 0 \\
* & * & * \\
0 & * & *
\end{array}\right]}_{\succeq 0}=\underbrace{\left[\begin{array}{ccc}
* & * & 0 \\
* & * & 0 \\
0 & 0 & 0
\end{array}\right]}_{\succeq 0}+\underbrace{\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & * & * \\
0 & * & *
\end{array}\right]}_{\succeq 0}, \quad \forall x \in \mathcal{K}
$$

Positive (semi)-definite polynomial matrices

- Recall the simple example

$$
A=\underbrace{\left[\begin{array}{lll}
3 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 3
\end{array}\right]}_{\succeq 0}=\underbrace{\left[\begin{array}{ccc}
3 & 1 & 0 \\
1 & 0.5 & 0 \\
0 & 0 & 0
\end{array}\right]}_{\succeq 0}+\underbrace{\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0.5 & 1 \\
0 & 1 & 3
\end{array}\right]}_{\succeq 0}
$$

- How about positive (semi)-definite polynomial matrices?

$$
\begin{aligned}
& P(x)=\left[\begin{array}{ccc}
p_{11}(x) & p_{12}(x) & 0 \\
p_{21}(x) & p_{22}(x) & p_{23}(x) \\
0 & p_{32}(x) & p_{33}(x)
\end{array}\right] \succeq 0, \quad \forall x \in \mathcal{K} \\
& \mathcal{K}=\mathbb{R}^{n}, \text { or, } \mathcal{K}=\left\{x \in \mathbb{R}^{n} \mid g_{i}(x) \geq 0, i=1, \ldots, m\right\}
\end{aligned}
$$

- Point-wise: the decomposition still holds, but can it be represented by polynomials or even better, by SOS matrices?

$$
\underbrace{\left[\begin{array}{ccc}
* & * & 0 \\
* & * & * \\
0 & * & *
\end{array}\right]}_{\succeq 0}=\underbrace{\left[\begin{array}{ccc}
* & * & 0 \\
* & * & 0 \\
0 & 0 & 0
\end{array}\right]}_{\succeq 0}+\underbrace{\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & * & * \\
0 & * & *
\end{array}\right]}_{\succeq 0}, \quad \forall x \in \mathcal{K}
$$

Naive extension does not work

Negative result

There exists a polynomial matrix $P(x)$ with chordal sparsity \mathcal{G} that is strictly positive definite for all $x \in \mathbb{R}^{n}$, but cannot be decomposed with positive semidefinite polynomial matrices $S_{k}(x)$.

Naive extension does not work

Negative result

There exists a polynomial matrix $P(x)$ with chordal sparsity \mathcal{G} that is strictly positive definite for all $x \in \mathbb{R}^{n}$, but cannot be decomposed with positive semidefinite polynomial matrices $S_{k}(x)$.

- Example:

$$
P(x)=\left[\begin{array}{ccc}
k+1+x^{2} & x+x^{2} & 0 \\
x+x^{2} & k+2 x^{2} & x-x^{2} \\
0 & x-x^{2} & k+1+x^{2}
\end{array}\right]=\left[\begin{array}{cc}
x & 1 \\
x & x \\
1 & -x
\end{array}\right]\left[\begin{array}{ccc}
x & x & 1 \\
1 & x & -x
\end{array}\right]+k I_{3}
$$

Naive extension does not work

Negative result

There exists a polynomial matrix $P(x)$ with chordal sparsity \mathcal{G} that is strictly positive definite for all $x \in \mathbb{R}^{n}$, but cannot be decomposed with positive semidefinite polynomial matrices $S_{k}(x)$.

- Example:

$$
P(x)=\left[\begin{array}{ccc}
k+1+x^{2} & x+x^{2} & 0 \\
x+x^{2} & k+2 x^{2} & x-x^{2} \\
0 & x-x^{2} & k+1+x^{2}
\end{array}\right]=\left[\begin{array}{cc}
x & 1 \\
x & x \\
1 & -x
\end{array}\right]\left[\begin{array}{ccc}
x & x & 1 \\
1 & x & -x
\end{array}\right]+k I_{3}
$$

- It is not difficult to show that

$$
P(x)=\underbrace{\left[\begin{array}{ccc}
a(x) & b(x) & 0 \\
b(x) & c(x) & 0 \\
0 & 0 & 0
\end{array}\right]}_{\succeq 0}+\underbrace{\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & d(x) & e(x) \\
0 & e(x) & f(x)
\end{array}\right]}_{\succeq 0}
$$

fails to exist when $0 \leq k<2$.

Naive extension does not work

Negative result

There exists a polynomial matrix $P(x)$ with chordal sparsity \mathcal{G} that is strictly positive definite for all $x \in \mathbb{R}^{n}$, but cannot be decomposed with positive semidefinite polynomial matrices $S_{k}(x)$.

- Example:

$$
P(x)=\left[\begin{array}{ccc}
k+1+x^{2} & x+x^{2} & 0 \\
x+x^{2} & k+2 x^{2} & x-x^{2} \\
0 & x-x^{2} & k+1+x^{2}
\end{array}\right]=\left[\begin{array}{cc}
x & 1 \\
x & x \\
1 & -x
\end{array}\right]\left[\begin{array}{ccc}
x & x & 1 \\
1 & x & -x
\end{array}\right]+k I_{3}
$$

- It is not difficult to show that

$$
P(x)=\underbrace{\left[\begin{array}{ccc}
a(x) & b(x) & 0 \\
b(x) & c(x) & 0 \\
0 & 0 & 0
\end{array}\right]}_{\succeq 0}+\underbrace{\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & d(x) & e(x) \\
0 & e(x) & f(x)
\end{array}\right]}_{\succeq 0}
$$

fails to exist when $0 \leq k<2$.

- $P(x)$ is strictly positive definite if $0<k<2$.

Sum-of-squares (SOS) matrices

- Consider a symmetric matrix-valued polynomial

$$
P(x)=\left[\begin{array}{cccc}
p_{11}(x) & p_{12}(x) & \ldots & p_{1 r}(x) \\
p_{21}(x) & p_{22}(x) & \ldots & p_{2 r}(x) \\
\vdots & \vdots & \ddots & \vdots \\
p_{r 1}(x) & p_{r 2}(x) & \ldots & p_{r r}(x)
\end{array}\right] \succeq 0, \forall x \in \mathbb{R}^{n}
$$

- The problem of checking whether $P(x)$ is positive semidefinite is NP-hard in general (even with $r=1, d=4$).

Sum-of-squares (SOS) matrices

- Consider a symmetric matrix-valued polynomial

$$
P(x)=\left[\begin{array}{cccc}
p_{11}(x) & p_{12}(x) & \ldots & p_{1 r}(x) \\
p_{21}(x) & p_{22}(x) & \ldots & p_{2 r}(x) \\
\vdots & \vdots & \ddots & \vdots \\
p_{r 1}(x) & p_{r 2}(x) & \ldots & p_{r r}(x)
\end{array}\right] \succeq 0, \forall x \in \mathbb{R}^{n}
$$

- The problem of checking whether $P(x)$ is positive semidefinite is NP-hard in general (even with $r=1, d=4$).
- SOS representation: We call $P(x)$ is an SOS matrix if

$$
p(x, y)=y^{\top} P(x) y \text { is } \mathrm{SOS} \text { in }[x ; y]
$$

A polynomial $q(x)$ is SOS if it can be written as $q(x)=\sum_{i=1}^{m} f_{i}(x)^{2}$.

Sum-of-squares (SOS) matrices

- Consider a symmetric matrix-valued polynomial

$$
P(x)=\left[\begin{array}{cccc}
p_{11}(x) & p_{12}(x) & \ldots & p_{1 r}(x) \\
p_{21}(x) & p_{22}(x) & \ldots & p_{2 r}(x) \\
\vdots & \vdots & \ddots & \vdots \\
p_{r 1}(x) & p_{r 2}(x) & \ldots & p_{r r}(x)
\end{array}\right] \succeq 0, \forall x \in \mathbb{R}^{n}
$$

- The problem of checking whether $P(x)$ is positive semidefinite is NP-hard in general (even with $r=1, d=4$).
- SOS representation: We call $P(x)$ is an SOS matrix if

$$
p(x, y)=y^{\top} P(x) y \text { is SOS in }[x ; y]
$$

A polynomial $q(x)$ is SOS if it can be written as $q(x)=\sum_{i=1}^{m} f_{i}(x)^{2}$.

- SDP characterization (Parrilo et al.): $P(x)$ is an SOS matrix if and only if there exists $Q \succeq 0$, such that

$$
P(x)=\left(I_{r} \otimes v_{d}(x)\right)^{\top} Q\left(I_{r} \otimes v_{d}(x)\right)
$$

where Q is called the Gram matrix, $v_{d}(x)$ is the standard monomial basis.

Hilbert-Artin theorem

Sparse matrix version of the Hilbert-Artin theorem

Let $P(x)$ be an $m \times m$ positive semidefinite polynomial matrix whose sparsity graph is chordal and has maximal cliques $\mathcal{C}_{1}, \ldots, \mathcal{C}_{t}$. There exist an SOS polynomial $\sigma(x)$ and SOS matrices $S_{k}(x)$ of size $\left|\mathcal{C}_{k}\right| \times\left|\mathcal{C}_{k}\right|$ such that

$$
\sigma(x) P(x)=\sum_{k=1}^{t} E_{\mathcal{C}_{k}}^{\top} S_{k}(x) E_{\mathcal{C}_{k}}
$$

Hilbert-Artin theorem

Sparse matrix version of the Hilbert-Artin theorem

Let $P(x)$ be an $m \times m$ positive semidefinite polynomial matrix whose sparsity graph is chordal and has maximal cliques $\mathcal{C}_{1}, \ldots, \mathcal{C}_{t}$. There exist an SOS polynomial $\sigma(x)$ and SOS matrices $S_{k}(x)$ of size $\left|\mathcal{C}_{k}\right| \times\left|\mathcal{C}_{k}\right|$ such that

$$
\sigma(x) P(x)=\sum_{k=1}^{t} E_{\mathcal{C}_{k}}^{\top} S_{k}(x) E_{\mathcal{C}_{k}}
$$

- Example: $\sigma(x)=1+k+x^{2}$ suffices for the previous example

$$
\begin{aligned}
P(x)= & {\left[\begin{array}{ccc}
k+1+x^{2} & x+x^{2} & 0 \\
x+x^{2} & \frac{(1+x)^{2} x^{2}}{1+k+x^{2}} & 0 \\
0 & 0 & 0
\end{array}\right] } \\
& +\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & \frac{k^{2}+k+3 k x^{2}+(1-x)^{2} x^{2}}{1+k+x^{2}} & x-x^{2} \\
0 & x-x^{2} & k+1+x^{2}
\end{array}\right]
\end{aligned}
$$

- PSD polynomial matrices are equivalent to SOS matrices when $n=1$.

Reznick's Positivstellensatz

Sparse matrix version of Reznick's Positivstellensatz

Let $P(x)$ be an $m \times m$ homogeneous polynomial matrix whose sparsity graph is chordal and has maximal cliques $\mathcal{C}_{1}, \ldots, \mathcal{C}_{t}$. If P is strictly positive definite on $\mathbb{R}^{n} \backslash\{0\}$, there exist an integer $\nu \geq 0$ and homogeneous SOS matrices $S_{k}(x)$ of size $\left|\mathcal{C}_{k}\right| \times\left|\mathcal{C}_{k}\right|$ such that

$$
\|x\|^{2 \nu} P(x)=\sum_{k=1}^{t} E_{\mathcal{C}_{k}}^{\top} S_{k}(x) E_{\mathcal{C}_{k}}
$$

Reznick's Positivstellensatz

Sparse matrix version of Reznick's Positivstellensatz

Let $P(x)$ be an $m \times m$ homogeneous polynomial matrix whose sparsity graph is chordal and has maximal cliques $\mathcal{C}_{1}, \ldots, \mathcal{C}_{t}$. If P is strictly positive definite on $\mathbb{R}^{n} \backslash\{0\}$, there exist an integer $\nu \geq 0$ and homogeneous SOS matrices $S_{k}(x)$ of size $\left|\mathcal{C}_{k}\right| \times\left|\mathcal{C}_{k}\right|$ such that

$$
\|x\|^{2 \nu} P(x)=\sum_{k=1}^{t} E_{\mathcal{C}_{k}}^{\top} S_{k}(x) E_{\mathcal{C}_{k}}
$$

- De-homogenization: If P is strictly positive definite on \mathbb{R}^{n} and its highest-degree homogeneous part $\sum_{|\alpha|=2 d} P_{\alpha} x^{\alpha}$ is strictly positive definite on $\mathbb{R}^{n} \backslash\{0\}$, then, we have

$$
\left(1+\|x\|^{2}\right)^{\nu} P(x)=\sum_{k=1}^{t} E_{\mathcal{C}_{k}}^{\top} S_{k}(x) E_{\mathcal{C}_{k}}
$$

where $\nu \geq 0$ is an integer and $S_{k}(x)$ are SOS matrices of size $\left|\mathcal{C}_{k}\right| \times\left|\mathcal{C}_{k}\right|$.

Reznick's Positivstellensatz

- Non-trivial example: Let $q(x)=x_{1}^{2} x_{2}^{4}+x_{1}^{4} x_{2}^{2}-3 x_{1}^{2} x_{2}^{2}+1$ be the Motzkin polynomial, and

$$
P(x)=\left[\begin{array}{ccc}
0.01\left(1+x_{1}^{6}+x_{2}^{6}\right)+q(x) & -0.01 x_{1} & 0 \\
-0.01 x_{1} & x_{1}^{6}+x_{2}^{6}+1 & -x_{2} \\
0 & -x_{2} & x_{1}^{6}+x_{2}^{6}+1
\end{array}\right]
$$

Reznick's Positivstellensatz

- Non-trivial example: Let $q(x)=x_{1}^{2} x_{2}^{4}+x_{1}^{4} x_{2}^{2}-3 x_{1}^{2} x_{2}^{2}+1$ be the Motzkin polynomial, and

$$
P(x)=\left[\begin{array}{ccc}
0.01\left(1+x_{1}^{6}+x_{2}^{6}\right)+q(x) & -0.01 x_{1} & 0 \\
-0.01 x_{1} & x_{1}^{6}+x_{2}^{6}+1 & -x_{2} \\
0 & -x_{2} & x_{1}^{6}+x_{2}^{6}+1
\end{array}\right]
$$

- $P(x)$ is is strictly positive definite on \mathbb{R}^{2}, but is not $\operatorname{SOS}\left(\varepsilon\left(1+x_{1}^{6}+x_{2}^{6}\right)\right.$ $+q(x)$ is not SOS unless $\varepsilon \gtrsim 0.01006$ [Laurent 2009, Example 6.25]).

Reznick's Positivstellensatz

- Non-trivial example: Let $q(x)=x_{1}^{2} x_{2}^{4}+x_{1}^{4} x_{2}^{2}-3 x_{1}^{2} x_{2}^{2}+1$ be the Motzkin polynomial, and

$$
P(x)=\left[\begin{array}{ccc}
0.01\left(1+x_{1}^{6}+x_{2}^{6}\right)+q(x) & -0.01 x_{1} & 0 \\
-0.01 x_{1} & x_{1}^{6}+x_{2}^{6}+1 & -x_{2} \\
0 & -x_{2} & x_{1}^{6}+x_{2}^{6}+1
\end{array}\right]
$$

- $P(x)$ is is strictly positive definite on \mathbb{R}^{2}, but is not $\operatorname{SOS}\left(\varepsilon\left(1+x_{1}^{6}+x_{2}^{6}\right)\right.$ $+q(x)$ is not SOS unless $\varepsilon \gtrsim 0.01006$ [Laurent 2009, Example 6.25]).
- Our theorem guarantees the following decomposition exists

$$
\left(1+\|x\|^{2}\right)^{\nu} P(x)=E_{\mathcal{C}_{1}}^{\top} S_{1}(x) E_{\mathcal{C}_{1}}+E_{\mathcal{C}_{2}}^{\top} S_{2}(x) E_{\mathcal{C}_{2}}
$$

Reznick's Positivstellensatz

- Non-trivial example: Let $q(x)=x_{1}^{2} x_{2}^{4}+x_{1}^{4} x_{2}^{2}-3 x_{1}^{2} x_{2}^{2}+1$ be the Motzkin polynomial, and

$$
P(x)=\left[\begin{array}{ccc}
0.01\left(1+x_{1}^{6}+x_{2}^{6}\right)+q(x) & -0.01 x_{1} & 0 \\
-0.01 x_{1} & x_{1}^{6}+x_{2}^{6}+1 & -x_{2} \\
0 & -x_{2} & x_{1}^{6}+x_{2}^{6}+1
\end{array}\right]
$$

- $P(x)$ is is strictly positive definite on \mathbb{R}^{2}, but is not $\operatorname{SOS}\left(\varepsilon\left(1+x_{1}^{6}+x_{2}^{6}\right)\right.$ $+q(x)$ is not SOS unless $\varepsilon \gtrsim 0.01006$ [Laurent 2009, Example 6.25]).
- Our theorem guarantees the following decomposition exists

$$
\left(1+\|x\|^{2}\right)^{\nu} P(x)=E_{\mathcal{C}_{1}}^{\top} S_{1}(x) E_{\mathcal{C}_{1}}+E_{\mathcal{C}_{2}}^{\top} S_{2}(x) E_{\mathcal{C}_{2}}
$$

- It suffices to use $\nu=1$ and SOS matrices

$$
\begin{aligned}
& S_{1}(x)=\left[\begin{array}{cc}
\left(1+\|x\|^{2}\right) q(x) & 0 \\
0 & 0
\end{array}\right]+\frac{1+\|x\|^{2}}{100}\left[\begin{array}{cc}
1+x_{1}^{6}+x_{2}^{6} & -x_{1} \\
-x_{1} & 100 x_{1}^{2}
\end{array}\right] \\
& S_{2}(x)=\left(1+\|x\|^{2}\right)\left[\begin{array}{cc}
1-x_{1}^{2}+x_{1}^{6}+x_{2}^{6} & -x_{2} \\
-x_{2} & 1+x_{1}^{6}+x_{2}^{6}
\end{array}\right]
\end{aligned}
$$

Putinar's Positivstellensatz

Consider $P(x) \succ 0, \forall x \in \mathcal{K}$ with $\mathcal{K}=\left\{x \in \mathbb{R}^{n} \mid g_{i}(x) \geq 0, i=1, \ldots, m\right\}$, and

$$
\sigma_{0}(x)+g_{1}(x) \sigma_{1}(x)+\cdots+g_{q}(x) \sigma_{q}(x)=r^{2}-\|x\|^{2}
$$

Putinar's Positivstellensatz

Consider $P(x) \succ 0, \forall x \in \mathcal{K}$ with $\mathcal{K}=\left\{x \in \mathbb{R}^{n} \mid g_{i}(x) \geq 0, i=1, \ldots, m\right\}$, and

$$
\sigma_{0}(x)+g_{1}(x) \sigma_{1}(x)+\cdots+g_{q}(x) \sigma_{q}(x)=r^{2}-\|x\|^{2}
$$

Sparse matrix version of Putinar's Positivstellensatz

Let $P(x)$ be a polynomial matrix whose sparsity graph is chordal and has maximal cliques $\mathcal{C}_{1}, \ldots, \mathcal{C}_{t}$. If P is strictly positive definite on \mathcal{K}, there exist SOS matrices $S_{j, k}(x)$ of size $\left|\mathcal{C}_{k}\right| \times\left|\mathcal{C}_{k}\right|$ such that

$$
P(x)=\sum_{k=1}^{t} E_{\mathcal{C}_{k}}^{\top}\left(S_{0, k}(x)+\sum_{j=1}^{q} g_{j}(x) S_{j, k}(x)\right) E_{\mathcal{C}_{k}}
$$

Putinar's Positivstellensatz

Consider $P(x) \succ 0, \forall x \in \mathcal{K}$ with $\mathcal{K}=\left\{x \in \mathbb{R}^{n} \mid g_{i}(x) \geq 0, i=1, \ldots, m\right\}$, and

$$
\sigma_{0}(x)+g_{1}(x) \sigma_{1}(x)+\cdots+g_{q}(x) \sigma_{q}(x)=r^{2}-\|x\|^{2}
$$

Sparse matrix version of Putinar's Positivstellensatz

Let $P(x)$ be a polynomial matrix whose sparsity graph is chordal and has maximal cliques $\mathcal{C}_{1}, \ldots, \mathcal{C}_{t}$. If P is strictly positive definite on \mathcal{K}, there exist SOS matrices $S_{j, k}(x)$ of size $\left|\mathcal{C}_{k}\right| \times\left|\mathcal{C}_{k}\right|$ such that

$$
P(x)=\sum_{k=1}^{t} E_{\mathcal{C}_{k}}^{\top}\left(S_{0, k}(x)+\sum_{j=1}^{q} g_{j}(x) S_{j, k}(x)\right) E_{\mathcal{C}_{k}}
$$

- Example: Let $\mathcal{K}=\left\{x \in \mathbb{R}^{2}: g_{1}(x):=1-x_{1}^{2} \geq 0, g_{2}(x):=x_{1}^{2}-x_{2}^{2} \geq 0\right\}$, and

$$
P(x):=\left[\begin{array}{ccc}
1+2 x_{1}^{2}-x_{1}^{4} & x_{1}+x_{1} x_{2}-x_{1}^{3} & 0 \\
x_{1}+x_{1} x_{2}-x_{1}^{3} & 3+4 x_{1}^{2}-3 x_{2}^{2} & 2 x_{1}^{2} x_{2}-x_{1} x_{2}-2 x_{2}^{3} \\
0 & 2 x_{1}^{2} x_{2}-x_{1} x_{2}-2 x_{2}^{3} & 1+x_{2}^{2}+x_{1}^{2} x_{2}^{2}-x_{2}^{4}
\end{array}\right]
$$

Putinar's Positivstellensatz

Putinar's Positivstellensatz

- It guarantees the decomposition below holds for SOS matrices $S_{i, j}(x)$

$$
P(x)=\sum_{k=1}^{2} E_{\mathcal{C}_{k}}^{\top}\left[S_{0, k}(x)+g_{1}(x) S_{1, k}(x)+g_{2}(x) S_{2, k}(x)\right] E_{\mathcal{C}_{k}}
$$

Putinar's Positivstellensatz

- It guarantees the decomposition below holds for SOS matrices $S_{i, j}(x)$

$$
P(x)=\sum_{k=1}^{2} E_{\mathcal{C}_{k}}^{\top}\left[S_{0, k}(x)+g_{1}(x) S_{1, k}(x)+g_{2}(x) S_{2, k}(x)\right] E_{\mathcal{C}_{k}}
$$

- Possible choices are

$$
\begin{array}{ll}
S_{0,1}(x)=I_{2}+\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right] & S_{1,1}(x)=\left[\begin{array}{c}
x_{1} \\
1
\end{array}\right]\left[\begin{array}{ll}
x_{1} & 1
\end{array}\right] \\
S_{0,2}(x)=I_{2}+\left[\begin{array}{c}
x_{1} \\
-x_{2}
\end{array}\right]\left[\begin{array}{ll}
x_{1} & -x_{2}
\end{array}\right] & S_{2,2}(x)=\left[\begin{array}{c}
2 \\
x_{2}
\end{array}\right]\left[\begin{array}{ll}
2 & x_{2}
\end{array}\right] .
\end{array}
$$

Outline

Matrix decomposition and chordal graphs

Sum-of-squares chordal decompositions

Applications to robust semidefinite optimization

Conclusions

Robust semidefinite optimization

Consider a robust SDP program

$$
\begin{aligned}
& B^{*}:=\inf _{\lambda \in \mathbb{R}^{\ell}} b^{\top} \lambda \\
& \text { subject to } P(x, \lambda):=P_{0}(x)-\sum_{i=1}^{\ell} P_{i}(x) \lambda_{i} \succeq 0 \quad \forall x \in \mathcal{K},
\end{aligned}
$$

Robust semidefinite optimization

Consider a robust SDP program

$$
B^{*}:=\inf _{\lambda \in \mathbb{R}^{\ell}} b^{\top} \lambda
$$

$$
\text { subject to } \quad P(x, \lambda):=P_{0}(x)-\sum_{i=1}^{\ell} P_{i}(x) \lambda_{i} \succeq 0 \quad \forall x \in \mathcal{K},
$$

$$
B_{d, \nu}^{*}:=\inf _{\lambda, S_{j, k}} b^{\top} \lambda
$$

$$
\text { subject to } \quad \sigma(x)^{\nu} P(x, \lambda)=\sum_{k=1}^{t} E_{\mathcal{C}_{k}}^{\top}\left(S_{0, k}(x)+\sum_{j=1}^{m} g_{j}(x) S_{j, k}(x)\right) E_{\mathcal{C}_{k}}
$$

$$
S_{j, k} \in \Sigma_{2 d_{j}}^{\left|\mathcal{C}_{k}\right|} \quad \forall j=0, \ldots, q, \forall k=1, \ldots, t
$$

Robust semidefinite optimization

Consider a robust SDP program

$$
\begin{aligned}
& B^{*}:=\inf _{\lambda \in \mathbb{R}^{\ell}} b^{\top} \lambda \\
& \text { subject to } P(x, \lambda):=P_{0}(x)-\sum_{i=1}^{\ell} P_{i}(x) \lambda_{i} \succeq 0 \quad \forall x \in \mathcal{K},
\end{aligned}
$$

$$
B_{d, \nu}^{*}:=\inf _{\lambda, S_{j, k}} b^{\top} \lambda
$$

$$
\begin{array}{ll}
\text { subject to } & \sigma(x)^{\nu} P(x, \lambda)=\sum_{k=1}^{t} E_{\mathcal{C}_{k}}^{\top}\left(S_{0, k}(x)+\sum_{j=1}^{m} g_{j}(x) S_{j, k}(x)\right) E_{\mathcal{C}_{k}}, \\
& S_{j, k} \in \Sigma_{2 d_{j}}^{\left|\mathcal{C}_{k}\right|} \quad \forall j=0, \ldots, q, \forall k=1, \ldots, t
\end{array}
$$

Convergence guarantees

- \mathcal{K} is compact and satisfies the Archimedean condition, under some technical conditions, we fix $\sigma(x)=1$ and $B_{d, 0}^{*} \rightarrow B^{*}$ from above as $d \rightarrow \infty$.

Robust semidefinite optimization

Consider a robust SDP program

$$
B^{*}:=\inf _{\lambda \in \mathbb{R}^{\ell}} b^{\top} \lambda
$$

$$
\text { subject to } \quad P(x, \lambda):=P_{0}(x)-\sum_{i=1}^{\ell} P_{i}(x) \lambda_{i} \succeq 0 \quad \forall x \in \mathcal{K}
$$

$$
B_{d, \nu}^{*}:=\inf _{\lambda, S_{j, k}} b^{\top} \lambda
$$

$$
\begin{array}{ll}
\text { subject to } \quad & \sigma(x)^{\nu} P(x, \lambda)=\sum_{k=1}^{t} E_{\mathcal{C}_{k}}^{\top}\left(S_{0, k}(x)+\sum_{j=1}^{m} g_{j}(x) S_{j, k}(x)\right) E_{\mathcal{C}_{k}}, \\
S_{j, k} \in \Sigma_{2 d_{j}}^{\left|\mathcal{C}_{k}\right|} \quad \forall j=0, \ldots, q, \forall k=1, \ldots, t
\end{array}
$$

Convergence guarantees

- \mathcal{K} is compact and satisfies the Archimedean condition, under some technical conditions, we fix $\sigma(x)=1$ and $B_{d, 0}^{*} \rightarrow B^{*}$ from above as $d \rightarrow \infty$.
- $\mathcal{K} \equiv \mathbb{R}^{n}$: under some technical conditions, we fix $\sigma(x)=1+\|x\|^{2}$ and $B_{d, \nu}^{*} \rightarrow B^{*}$ from above as $\nu \rightarrow \infty$.

Numerical Experiments

Define a set

$$
\mathcal{F}_{\omega}=\left\{\lambda \in \mathbb{R}^{2}: P_{\omega}(x, \lambda) \succeq 0 \quad \forall x \in \mathbb{R}^{3}\right\}
$$

Numerical Experiments

Define a set

$$
\mathcal{F}_{\omega}=\left\{\lambda \in \mathbb{R}^{2}: P_{\omega}(x, \lambda) \succeq 0 \quad \forall x \in \mathbb{R}^{3}\right\}
$$

$P_{\omega}(x, \lambda)=\left[\begin{array}{ccccccc}\lambda_{2} x_{1}^{4}+x_{2}^{4} & \lambda_{1} x_{1}^{2} x_{2}^{2} & & & & & \\ \lambda_{1} x_{1}^{2} x_{2}^{2} & \lambda_{2} x_{2}^{4}+x_{3}^{4} & \lambda_{2} x_{2}^{2} x_{3}^{2} & & & & \\ & \lambda_{2} x_{2}^{2} x_{3}^{2} & \lambda_{2} x_{3}^{4}+x_{1}^{4} & \lambda_{1} x_{1}^{2} x_{3}^{2} & & & \\ & & \lambda_{1} x_{1}^{2} x_{3}^{2} & \lambda_{2} x_{1}^{4}+x_{2}^{4} & \lambda_{2} x_{1}^{2} x_{2}^{2} & & \\ & & & \lambda_{2} x_{1}^{2} x_{2}^{2} & \lambda_{2} x_{2}^{4}+x_{3}^{4} & \ddots & \\ & & & & \ddots & \ddots & \lambda_{i} x_{2}^{2} x_{3}^{2} \\ & & & & & \lambda_{i} x_{2}^{2} x_{3}^{2} & \lambda_{2} x_{3}^{4}+x_{1}^{4}\end{array}\right]$,

Numerical Experiments

Define a set

$$
\mathcal{F}_{\omega}=\left\{\lambda \in \mathbb{R}^{2}: P_{\omega}(x, \lambda) \succeq 0 \quad \forall x \in \mathbb{R}^{3}\right\}
$$

$P_{\omega}(x, \lambda)=\left[\begin{array}{ccccccc}\lambda_{2} x_{1}^{4}+x_{2}^{4} & \lambda_{1} x_{1}^{2} x_{2}^{2} & & & & & \\ \lambda_{1} x_{1}^{2} x_{2}^{2} & \lambda_{2} x_{2}^{4}+x_{3}^{4} & \lambda_{2} x_{2}^{2} x_{3}^{2} & & & & \\ & \lambda_{2} x_{2}^{2} x_{3}^{2} & \lambda_{2} x_{3}^{4}+x_{1}^{4} & \lambda_{1} x_{1}^{2} x_{3}^{2} & & & \\ & & \lambda_{1} x_{1}^{2} x_{3}^{2} & \lambda_{2} x_{1}^{4}+x_{2}^{4} & \lambda_{2} x_{1}^{2} x_{2}^{2} & & \\ & & & \lambda_{2} x_{1}^{2} x_{2}^{2} & \lambda_{2} x_{2}^{4}+x_{3}^{4} & \ddots & \\ & & & & \ddots & \ddots & \lambda_{i} x_{2}^{2} x_{3}^{2} \\ & & & & & & \lambda_{i} x_{2}^{2} x_{3}^{2}\end{array} \lambda_{2} x_{3}^{4}+x_{1}^{4}\right]$

- Define two hierarchies of subsets of \mathcal{F}_{ω}, indexed by an integer ν, as

$$
\begin{gathered}
\mathcal{D}_{\omega, \nu}:=\left\{\lambda \in \mathbb{R}^{2}:\|x\|^{2 \nu} P_{\omega}(x, \lambda) \text { is SOS }\right\} \\
\mathcal{S}_{\omega, \nu}:=\left\{\lambda \in \mathbb{R}^{2}:\|x\|^{2 \nu} P_{\omega}(x, \lambda)=\sum_{k=1}^{3 \omega-1} E_{\mathcal{C}_{k}}^{\mathrm{T}} S_{k}(x) E_{\mathcal{C}_{k}}, S_{k}(x) \text { is SOS }\right\} .
\end{gathered}
$$

Numerical Experiments

Define a set

$$
\mathcal{F}_{\omega}=\left\{\lambda \in \mathbb{R}^{2}: P_{\omega}(x, \lambda) \succeq 0 \quad \forall x \in \mathbb{R}^{3}\right\}
$$

$P_{\omega}(x, \lambda)=\left[\begin{array}{ccccccc}\lambda_{2} x_{1}^{4}+x_{2}^{4} & \lambda_{1} x_{1}^{2} x_{2}^{2} & & & & & \\ \lambda_{1} x_{1}^{2} x_{2}^{2} & \lambda_{2} x_{2}^{4}+x_{3}^{4} & \lambda_{2} x_{2}^{2} x_{3}^{2} & & & & \\ & \lambda_{2} x_{2}^{2} x_{3}^{2} & \lambda_{2} x_{3}^{4}+x_{1}^{4} & \lambda_{1} x_{1}^{2} x_{3}^{2} & & & \\ & & \lambda_{1} x_{1}^{2} x_{3}^{2} & \lambda_{2} x_{1}^{4}+x_{2}^{4} & \lambda_{2} x_{1}^{2} x_{2}^{2} & & \\ & & & \lambda_{2} x_{1}^{2} x_{2}^{2} & \lambda_{2} x_{2}^{4}+x_{3}^{4} & \ddots & \\ & & & & \ddots & \ddots & \lambda_{i} x_{2}^{2} x_{3}^{2} \\ & & & & & & \lambda_{i} x_{2}^{2} x_{3}^{2}\end{array} \lambda_{2} x_{3}^{4}+x_{1}^{4}\right]$

- Define two hierarchies of subsets of \mathcal{F}_{ω}, indexed by an integer ν, as

$$
\begin{gathered}
\mathcal{D}_{\omega, \nu}:=\left\{\lambda \in \mathbb{R}^{2}:\|x\|^{2 \nu} P_{\omega}(x, \lambda) \text { is SOS }\right\} \\
\mathcal{S}_{\omega, \nu}:=\left\{\lambda \in \mathbb{R}^{2}:\|x\|^{2 \nu} P_{\omega}(x, \lambda)=\sum_{k=1}^{3 \omega-1} E_{\mathcal{C}_{k}}^{\mathrm{T}} S_{k}(x) E_{\mathcal{C}_{k}}, S_{k}(x) \text { is SOS }\right\} .
\end{gathered}
$$

- We always have

$$
\mathcal{S}_{\omega, \nu} \subseteq \mathcal{D}_{\omega, \nu} \subseteq \mathcal{F}_{\omega}
$$

Numerical Experiments

We consider

$$
\begin{array}{ll}
B^{*}:=\inf _{\lambda} & \lambda_{2}-10 \lambda_{1} \\
\text { subject to } & \lambda \in \mathcal{F}_{\omega}
\end{array}
$$

Numerical Experiments

We consider

$$
\begin{array}{ll}
B^{*}:=\inf _{\lambda} & \lambda_{2}-10 \lambda_{1} \\
\text { subject to } & \lambda \in \mathcal{F}_{\omega}
\end{array}
$$

Table: Upper bounds $B_{d, \nu}$ on the optimal value B^{*} and time (seconds) by MOSEK

	Standard SOS						Sparse SOS					
	$\nu=1$		$\nu=2$		$\nu=3$		$\nu=2$		$\nu=3$		$\nu=4$	
ω	t	$B_{d, \nu}$										
5	12	-8.68	25	-9.36	69	-9.36	0.58	-8.97	0.72	-9.36	1.29	-9.36
10	407	-8.33	886	-9.09	2910	-9.09	1.65	-8.72	0.82	-9.09	2.08	-9.09
15	2090	-8.26	OOM	OOM	OOM	OOM	2.76	-8.68	1.13	-9.04	2.79	-9.04
20	OOM	OOM	OOM	OOM	OOM	OOM	3.24	-8.66	1.54	-9.02	4.70	-9.02
25	OOM	OOM	OOM	OOM	OOM	OOM	2.85	-8.66	1.94	-9.02	4.59	-9.02
30	OOM	OOM	OOM	OOM	OOM	OOM	2.38	-8.65	2.40	-9.01	5.50	-9.01
35	OOM	OOM	OOM	OOM	OOM	OOM	2.66	-8.65	3.25	-9.01	6.17	-9.01
40	OOM	OOM	OOM	OOM	OOM	OOM	3.07	-8.65	3.14	-9.01	8.48	-9.01

Outline

Matrix decomposition and chordal graphs
Sum-of-squares chordal decompositions
Applications to robust semidefinite optimization

Conclusions

Summary

Clique decomposition:

- It offers a decomposition for sparse positive semidefinite matrices

$$
Z \in \mathbb{S}_{+}^{n}(\mathcal{E}, 0) \Leftrightarrow Z=\sum_{k=1}^{p} E_{\mathcal{C}_{k}}^{\top} Z_{k} E_{\mathcal{C}_{k}}, Z_{k} \in \mathbb{S}_{+}^{\left|\mathcal{C}_{k}\right|}
$$

- We present extensions to polynomial matrices: sparsity-exploiting versions of the Hilbert-Artin, Reznick, Putinar Positivstellensätze.
- Applications to robust semidefinite optimization with sparsity!

Summary

Clique decomposition:

- It offers a decomposition for sparse positive semidefinite matrices

$$
Z \in \mathbb{S}_{+}^{n}(\mathcal{E}, 0) \Leftrightarrow Z=\sum_{k=1}^{p} E_{\mathcal{C}_{k}}^{\top} Z_{k} E_{\mathcal{C}_{k}}, Z_{k} \in \mathbb{S}_{+}^{\left|\mathcal{C}_{k}\right|}
$$

- We present extensions to polynomial matrices: sparsity-exploiting versions of the Hilbert-Artin, Reznick, Putinar Positivstellensätze.
- Applications to robust semidefinite optimization with sparsity!

Future work

- Polynomial matrix completion;
- Moment interpretations of the decomposition and completion results.

Thank you for your attention!

Q \& A

- Zheng, Y., Fantuzzi, G., \& Papachristodoulou, A. (2021). Chordal and factor-width decompositions for scalable semidefinite and polynomial optimization. Annual Reviews in Control, 52, 243-279.
- Zheng, Y., \& Fantuzzi, G. (2023). Sum-of-squares chordal decomposition of polynomial matrix inequalities. Mathematical Programming, 197(1), 71-108.

Extra slides

Proof ideas: Hilbert-Artin theorem

Diagonalization with no fill-ins

If $P(x)$ is an $m \times m$ symmetric polynomial matrix with chordal sparsity graph, there exist an $m \times m$ permutation matrix T, an invertible $m \times m$ lower-triangular polynomial matrix $L(x)$, and polynomials $b(x), d_{1}(x), \ldots, d_{m}(x)$ such that

$$
b^{4}(x) T P(x) T^{\top}=L(x) \operatorname{Diag}\left(d_{1}(x), \ldots, d_{m}(x)\right) L(x)^{\top}
$$

Moreover, L has no fill-in in the sense that $L+L^{\top}$ has the same sparsity as $T P T^{\top}$.

Proof ideas: Hilbert-Artin theorem

Diagonalization with no fill-ins

If $P(x)$ is an $m \times m$ symmetric polynomial matrix with chordal sparsity graph, there exist an $m \times m$ permutation matrix T, an invertible $m \times m$ lower-triangular polynomial matrix $L(x)$, and polynomials $b(x), d_{1}(x), \ldots, d_{m}(x)$ such that

$$
b^{4}(x) T P(x) T^{\top}=L(x) \operatorname{Diag}\left(d_{1}(x), \ldots, d_{m}(x)\right) L(x)^{\top}
$$

Moreover, L has no fill-in in the sense that $L+L^{\top}$ has the same sparsity as $T P T^{\top}$.

Figure: Decomposition follows by combining columns.

Figure from Prof. Lieven Vandenberghe's talk.

Proof ideas: Putinar's theorem

Scherer and Ho, 2006
Let \mathcal{K} be a compact semialgebraic set that satisfies the Archimedean condition. If an $m \times m$ symmetric polynomial matrix $P(x)$ is strictly positive definite on \mathcal{K}, there exist $m \times m$ SOS matrices S_{0}, \ldots, S_{q} such that

$$
P(x)=S_{0}(x)+\sum_{i=1}^{q} S_{i}(x) g_{i}(x)
$$

Proof ideas: Putinar's theorem

Scherer and Ho, 2006
Let \mathcal{K} be a compact semialgebraic set that satisfies the Archimedean condition. If an $m \times m$ symmetric polynomial matrix $P(x)$ is strictly positive definite on \mathcal{K}, there exist $m \times m$ SOS matrices S_{0}, \ldots, S_{q} such that

$$
P(x)=S_{0}(x)+\sum_{i=1}^{q} S_{i}(x) g_{i}(x)
$$

- Weierstrass polynomial approximation theorem + the above version of Putinar's Positivstellensatz

$$
\begin{aligned}
P(x) & =\left[\begin{array}{ccc}
a(x) & b(x)^{\top} & 0 \\
b(x) & U(x) & V(x) \\
0 & V(x) & W(x)
\end{array}\right] \\
& =\underbrace{\left[\begin{array}{ccc}
a(x) & b(x)^{\top} & 0 \\
b(x) & H(x)+2 \varepsilon I & 0 \\
0 & 0 & 0
\end{array}\right]}_{\succeq 0, \forall x \in \mathcal{K}}+\underbrace{\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & U(x)-H(x)-2 \varepsilon I & V(x) \\
0 & V(x)^{\top} & W(x)
\end{array}\right]}_{\succeq 0, \forall x \in \mathcal{K}} .
\end{aligned}
$$

