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Matrix decomposition and chordal graphs

Matrix decomposition:
▶ A simple example

A =

[3 1 0
1 1 1
0 1 3

]
︸ ︷︷ ︸

⪰0

=

[3 1 0
1 0.5 0
0 0 0

]
︸ ︷︷ ︸

⪰0

+

[0 0 0
0 0.5 1
0 1 3

]
︸ ︷︷ ︸

⪰0

▶ This is true for any PSD matrix with such pattern, i.e., sparse cone
decomposition [∗ ∗ 0

∗ ∗ ∗
0 ∗ ∗

]
︸ ︷︷ ︸

⪰0

=

[∗ ∗ 0
∗ ∗ 0
0 0 0

]
︸ ︷︷ ︸

⪰0

+

[0 0 0
0 ∗ ∗
0 ∗ ∗

]
︸ ︷︷ ︸

⪰0

where ∗ denotes a real scalar number (or block matrix).
Benefits:
▶ Reduce computational complexity, and thus improve efficiency!

(3 × 3→2 × 2)
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Matrix decomposition and chordal graphs

Matrix decomposition:
▶ Many other patterns admit similar decompositions, e.g.

(a) (b) (c)

(d) (e) (f)

▶ They can be commonly characterized by chordal graphs.
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Clique decomposition

Chordal graphs: An undirected graph G(V, E) is called chordal if every cycle of
length greater than three has a chord.

▶ Cliques: A clique is a set of nodes that induces a complete subgraph
Clique decomposition:

⇒
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Sparse matrix decomposition

▶ Sparse positive semidefinite (PSD) matrices

Sn(E , 0) = {X ∈ Sn | Xij = Xji = 0, ∀(i, j) /∈ E},

Sn
+(E , 0) = {X ∈ Sn(E , 0) | X ⪰ 0}.

▶ Clique decomposition for PSD matrices (Agler, Helton, McCullough, &
Rodman, 1988; Griewank and Toint, 1984)

Theorem
Let G(V, E) be a chordal graph with maximal cliques {C1, C2, . . . , Cp}. Then,

Z ∈ Sn
+(E , 0) ⇔ Z =

p∑
k=1

ET
Ck

ZkECk , Zk ∈ S|Ck|
+
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A growing number of applications
Control, machine learning, relaxation of QCQP, fluid dynamics, and beyond

▶ Zheng, Fantuzzi, & Papachristodoulou, (2021). Chordal and factor-width decompositions for
scalable semidefinite and polynomial optimization. Annual Reviews in Control, 52, 243-279.
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Positive (semi)-definite polynomial matrices

▶ Recall the simple example

A =

[3 1 0
1 1 1
0 1 3

]
︸ ︷︷ ︸

⪰0

=

[3 1 0
1 0.5 0
0 0 0

]
︸ ︷︷ ︸

⪰0

+

[0 0 0
0 0.5 1
0 1 3

]
︸ ︷︷ ︸

⪰0

▶ How about positive (semi)-definite polynomial matrices?

1 2 3
P (x) =

[
p11(x) p12(x) 0
p21(x) p22(x) p23(x)

0 p32(x) p33(x)

]
⪰ 0, ∀x ∈ K

K = Rn, or, K = {x ∈ Rn | gi(x) ≥ 0, i = 1, . . . , m}

▶ Point-wise: the decomposition still holds,

but can it be represented by
polynomials or even better, by SOS matrices?

[∗ ∗ 0
∗ ∗ ∗
0 ∗ ∗

]
︸ ︷︷ ︸

⪰0

=

[∗ ∗ 0
∗ ∗ 0
0 0 0

]
︸ ︷︷ ︸

⪰0

+

[0 0 0
0 ∗ ∗
0 ∗ ∗

]
︸ ︷︷ ︸

⪰0

, ∀x ∈ K
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Naive extension does not work

Negative result
There exists a polynomial matrix P (x) with chordal sparsity G that is strictly
positive definite for all x ∈ Rn, but cannot be decomposed with positive
semidefinite polynomial matrices Sk(x).

▶ Example:

P (x) =

[
k + 1 + x2 x + x2 0

x + x2 k + 2x2 x − x2

0 x − x2 k + 1 + x2

]
=

[
x 1
x x
1 −x

] [
x x 1
1 x −x

]
+kI3

▶ It is not difficult to show that

P (x) =

[
a(x) b(x) 0
b(x) c(x) 0

0 0 0

]
︸ ︷︷ ︸

⪰0

+

[0 0 0
0 d(x) e(x)
0 e(x) f(x)

]
︸ ︷︷ ︸

⪰0

,

fails to exist when 0 ≤ k < 2 .
▶ P (x) is strictly positive definite if 0 < k < 2.
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Sum-of-squares (SOS) matrices
▶ Consider a symmetric matrix-valued polynomial

P (x) =


p11(x) p12(x) . . . p1r(x)
p21(x) p22(x) . . . p2r(x)

...
...

. . .
...

pr1(x) pr2(x) . . . prr(x)

 ⪰ 0, ∀x ∈ Rn.

▶ The problem of checking whether P (x) is positive semidefinite is NP-hard in
general (even with r = 1, d = 4).

▶ SOS representation: We call P (x) is an SOS matrix if

p(x, y) = yTP (x)y is SOS in [x; y]

A polynomial q(x) is SOS if it can be written as q(x) =
∑m

i=1 fi(x)2.
▶ SDP characterization (Parrilo et al.): P (x) is an SOS matrix if and only if

there exists Q ⪰ 0, such that

P (x) = (Ir ⊗ vd(x))TQ(Ir ⊗ vd(x)).

where Q is called the Gram matrix, vd(x) is the standard monomial basis.
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Hilbert–Artin theorem

Sparse matrix version of the Hilbert–Artin theorem
Let P (x) be an m × m positive semidefinite polynomial matrix whose sparsity
graph is chordal and has maximal cliques C1, . . . , Ct. There exist an SOS
polynomial σ(x) and SOS matrices Sk(x) of size |Ck| × |Ck| such that

σ(x)P (x) =
t∑

k=1

ET
Ck

Sk(x)ECk .

▶ Example: σ(x) = 1 + k + x2 suffices for the previous example

P (x) =

k + 1 + x2 x + x2 0

x + x2 (1 + x)2x2

1 + k + x2 0
0 0 0


+

0 0 0

0 k2 + k + 3kx2 + (1 − x)2x2

1 + k + x2 x − x2

0 x − x2 k + 1 + x2


▶ PSD polynomial matrices are equivalent to SOS matrices when n = 1.
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Reznick’s Positivstellensatz

Sparse matrix version of Reznick’s Positivstellensatz
Let P (x) be an m × m homogeneous polynomial matrix whose sparsity graph is
chordal and has maximal cliques C1, . . . , Ct. If P is strictly positive definite on
Rn \ {0}, there exist an integer ν ≥ 0 and homogeneous SOS matrices Sk(x) of
size |Ck| × |Ck| such that

∥x∥2νP (x) =
t∑

k=1

ET
Ck

Sk(x)ECk .

▶ De-homogenization: If P is strictly positive definite on Rn and its
highest-degree homogeneous part

∑
|α|=2d

Pαxα is strictly positive definite
on Rn \ {0}, then, we have

(1 + ∥x∥2)νP (x) =
t∑

k=1

ET
Ck

Sk(x)ECk .

where ν ≥ 0 is an integer and Sk(x) are SOS matrices of size |Ck| × |Ck|.
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Reznick’s Positivstellensatz

▶ Non-trivial example: Let q(x) = x2
1x4

2 + x4
1x2

2 − 3x2
1x2

2 + 1 be the Motzkin
polynomial, and

P (x) =

[0.01(1 + x6
1 + x6

2) + q(x) −0.01x1 0
−0.01x1 x6

1 + x6
2 + 1 −x2

0 −x2 x6
1 + x6

2 + 1

]
.

▶ P (x) is is strictly positive definite on R2, but is not SOS (ε(1 + x6
1 + x6

2)
+q(x) is not SOS unless ε ≳ 0.01006 [Laurent 2009, Example 6.25]).

▶ Our theorem guarantees the following decomposition exists

(1 + ∥x∥2)νP (x) = ET
C1 S1(x)EC1 + ET

C2 S2(x)EC2 .

▶ It suffices to use ν = 1 and SOS matrices

S1(x) =
[

(1 + ∥x∥2)q(x) 0
0 0

]
+ 1 + ∥x∥2

100

[
1 + x6

1 + x6
2 −x1

−x1 100x2
1

]
,

S2(x) = (1 + ∥x∥2)
[

1 − x2
1 + x6

1 + x6
2 −x2

−x2 1 + x6
1 + x6

2

]
.

Sum-of-squares chordal decompositions 14/23
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2 + 1 −x2

0 −x2 x6
1 + x6

2 + 1

]
.

▶ P (x) is is strictly positive definite on R2, but is not SOS (ε(1 + x6
1 + x6

2)
+q(x) is not SOS unless ε ≳ 0.01006 [Laurent 2009, Example 6.25]).

▶ Our theorem guarantees the following decomposition exists

(1 + ∥x∥2)νP (x) = ET
C1 S1(x)EC1 + ET

C2 S2(x)EC2 .

▶ It suffices to use ν = 1 and SOS matrices
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Putinar’s Positivstellensatz

Consider P (x) ≻ 0, ∀x ∈ K with K = {x ∈ Rn | gi(x) ≥ 0, i = 1, . . . , m}, and

σ0(x) + g1(x)σ1(x) + · · · + gq(x)σq(x) = r2 − ∥x∥2.

Sparse matrix version of Putinar’s Positivstellensatz
Let P (x) be a polynomial matrix whose sparsity graph is chordal and has maximal
cliques C1, . . . , Ct. If P is strictly positive definite on K, there exist SOS matrices
Sj,k(x) of size |Ck| × |Ck| such that

P (x) =
t∑

k=1

ET
Ck

(
S0,k(x) +

q∑
j=1

gj(x)Sj,k(x)
)

ECk .

▶ Example: Let K={x ∈ R2 : g1(x) :=1 − x2
1 ≥ 0, g2(x) :=x2

1 − x2
2 ≥ 0}, and

P (x) :=

[ 1 + 2x2
1 − x4

1 x1 + x1x2 − x3
1 0

x1 + x1x2 − x3
1 3 + 4x2

1 − 3x2
2 2x2

1x2 − x1x2 − 2x3
2

0 2x2
1x2 − x1x2 − 2x3

2 1 + x2
2 + x2

1x2
2 − x4

2

]
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Putinar’s Positivstellensatz

−2 −1 0 1 2
−2

−1

0

1

2

P � 0

P � 0

x1

x
2

▶ It guarantees the decomposition below holds for SOS matrices Si,j(x)

P (x) =
2∑

k=1

ET
Ck

[S0,k(x) + g1(x)S1,k(x) + g2(x)S2,k(x)] ECk

▶ Possible choices are

S0,1(x) = I2 +
[

x1
x2

] [
x1 x2

]
S1,1(x) =

[
x1
1

] [
x1 1

]
S0,2(x) = I2 +

[
x1

−x2

] [
x1 −x2

]
S2,2(x) =

[
2
x2

] [
2 x2

]
.
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Robust semidefinite optimization

Consider a robust SDP program

B∗ := inf
λ∈Rℓ

bTλ

subject to P (x, λ) := P0(x) −
ℓ∑

i=1

Pi(x)λi ⪰ 0 ∀x ∈ K,

B∗
d,ν := inf

λ, Sj,k

bTλ

subject to σ(x)νP (x, λ) =
t∑

k=1

ET
Ck

(
S0,k(x) +

m∑
j=1

gj(x)Sj,k(x)
)

ECk ,

Sj,k ∈ Σ|Ck|
2dj

∀j = 0, . . . , q, ∀k = 1, . . . , t,

Convergence guarantees
▶ K is compact and satisfies the Archimedean condition, under some technical

conditions, we fix σ(x) = 1 and B∗
d,0 → B∗ from above as d → ∞.

▶ K ≡ Rn: under some technical conditions, we fix σ(x) = 1 + ∥x∥2 and
B∗

d,ν → B∗ from above as ν → ∞.
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Numerical Experiments

Define a set
Fω = {λ ∈ R2 : Pω(x, λ) ⪰ 0 ∀x ∈ R3}.

Pω(x, λ)=



λ2x4
1 + x4

2 λ1x2
1x2

2
λ1x2

1x2
2 λ2x4

2 + x4
3 λ2x2

2x2
3

λ2x2
2x2

3 λ2x4
3 + x4

1 λ1x2
1x2

3
λ1x2

1x2
3 λ2x4

1 + x4
2 λ2x2

1x2
2

λ2x2
1x2

2 λ2x4
2 + x4

3
. . .

. . .
. . . λix

2
2x2

3
λix

2
2x2

3 λ2x4
3 + x4

1


,

▶ Define two hierarchies of subsets of Fω, indexed by an integer ν, as

Dω,ν :=
{

λ ∈ R2 : ∥x∥2νPω(x, λ) is SOS
}

,

Sω,ν :=
{

λ ∈ R2 : ∥x∥2νPω(x, λ) =
3ω−1∑
k=1

ET
Ck

Sk(x)ECk , Sk(x) is SOS
}

.

▶ We always have
Sω,ν ⊆ Dω,ν ⊆ Fω
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Numerical Experiments

We consider
B∗ := inf

λ
λ2 − 10λ1

subject to λ ∈ Fω

Table: Upper bounds Bd,ν on the optimal value B∗ and time (seconds) by MOSEK

Standard SOS Sparse SOS
ν = 1 ν = 2 ν = 3 ν = 2 ν = 3 ν = 4

ω t Bd,ν t Bd,ν t Bd,ν t Bd,ν t Bd,ν t Bd,ν

5 12 -8.68 25 -9.36 69 -9.36 0.58 -8.97 0.72 -9.36 1.29 -9.36
10 407 -8.33 886 -9.09 2910 -9.09 1.65 -8.72 0.82 -9.09 2.08 -9.09
15 2090 -8.26 oom oom oom oom 2.76 -8.68 1.13 -9.04 2.79 -9.04
20 oom oom oom oom oom oom 3.24 -8.66 1.54 -9.02 4.70 -9.02
25 oom oom oom oom oom oom 2.85 -8.66 1.94 -9.02 4.59 -9.02
30 oom oom oom oom oom oom 2.38 -8.65 2.40 -9.01 5.50 -9.01
35 oom oom oom oom oom oom 2.66 -8.65 3.25 -9.01 6.17 -9.01
40 oom oom oom oom oom oom 3.07 -8.65 3.14 -9.01 8.48 -9.01
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Summary

Clique decomposition:

⇒

▶ It offers a decomposition for sparse positive semidefinite matrices

Z ∈ Sn
+(E , 0) ⇔ Z =

p∑
k=1

ET
Ck

ZkECk , Zk ∈ S|Ck|
+

▶ We present extensions to polynomial matrices: sparsity-exploiting versions of
the Hilbert-Artin, Reznick, Putinar Positivstellensätze.

▶ Applications to robust semidefinite optimization with sparsity!

Future work
▶ Polynomial matrix completion;
▶ Moment interpretations of the decomposition and completion results.
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Thank you for your attention!

Q & A

▶ Zheng, Y., Fantuzzi, G., & Papachristodoulou, A. (2021). Chordal and factor-width
decompositions for scalable semidefinite and polynomial optimization. Annual Reviews in
Control, 52, 243-279.

▶ Zheng, Y., & Fantuzzi, G. (2023). Sum-of-squares chordal decomposition of polynomial matrix
inequalities. Mathematical Programming, 197(1), 71-108.
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Proof ideas: Hilbert–Artin theorem

Diagonalization with no fill-ins
If P (x) is an m × m symmetric polynomial matrix with chordal sparsity graph,
there exist an m × m permutation matrix T , an invertible m × m lower-triangular
polynomial matrix L(x), and polynomials b(x), d1(x), . . . , dm(x) such that

b4(x) T P (x)T T = L(x)Diag (d1(x), . . . , dm(x)) L(x)T.

Moreover, L has no fill-in in the sense that L + LT has the same sparsity as
T P T T.

Figure: Decomposition follows by combining columns.

Figure from Prof. Lieven Vandenberghe’s talk.

25/23



Proof ideas: Hilbert–Artin theorem

Diagonalization with no fill-ins
If P (x) is an m × m symmetric polynomial matrix with chordal sparsity graph,
there exist an m × m permutation matrix T , an invertible m × m lower-triangular
polynomial matrix L(x), and polynomials b(x), d1(x), . . . , dm(x) such that

b4(x) T P (x)T T = L(x)Diag (d1(x), . . . , dm(x)) L(x)T.

Moreover, L has no fill-in in the sense that L + LT has the same sparsity as
T P T T.

Figure: Decomposition follows by combining columns.

Figure from Prof. Lieven Vandenberghe’s talk.

25/23



Proof ideas: Putinar’s theorem

Scherer and Ho, 2006
Let K be a compact semialgebraic set that satisfies the Archimedean condition. If
an m × m symmetric polynomial matrix P (x) is strictly positive definite on K,
there exist m × m SOS matrices S0, . . . , Sq such that

P (x) = S0(x) +
q∑

i=1

Si(x)gi(x).

▶ Weierstrass polynomial approximation theorem + the above version of
Putinar’s Positivstellensatz

P (x) =

[
a(x) b(x)T 0
b(x) U(x) V (x)

0 V (x) W (x)

]

=

[
a(x) b(x)T 0
b(x) H(x) + 2εI 0

0 0 0

]
︸ ︷︷ ︸

⪰0,∀x∈K

+

[0 0 0
0 U(x) − H(x) − 2εI V (x)
0 V (x)T W (x)

]
︸ ︷︷ ︸

⪰0,∀x∈K

.
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