

JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering

Two main data-driven control methods

- **Indirect Data-driven Control:**
- Data \rightarrow model + uncertainty \rightarrow control
- **Direct Data-driven Control:** Bypassing models, directly design controllers from data

Convex Approximations for a Bi-level Formulation of Data-Enabled Predictive Control

Xu Shang, and Yang Zheng

Department of Electrical and Computer Engineering, University of California, San Diego

Overview

Bi-level formulation (Dörfler, 2022)**: Inner:** data pre-processing, cost function and constraints developed from system ID **Outer:** predictive control, extra slack variables for handling model mismatch

```
minimize: control cost (u, y)subject to: (u, y) consistent with (\bar{u}_d, \bar{y}_d)where: (\bar{u}_d, \bar{y}_d) is the optimal solution of
               minimize: Pre-processing Cost (\bar{u}_d, \bar{y}_d, u_d, y_d)subject to: Constraints from system identification:
                                 Row Space, Rank Number, Hankel Structure
                                  t + N - 1\sum_{k=t} (||y(k)-y_r(k)||_Q^2 + ||u(k)||_R^2) + \lambda_y ||\sigma_y||_2^2\begin{array}{c} \text{minimize} \ \mathbf{g}, \sigma_{\mathsf{y}}, \mathbf{u} \in \mathcal{U}, \mathbf{y} \in \mathcal{Y} \end{array}\tilde{H}^* g = \mathsf{col}(u_{\mathsf{ini}}, y_{\mathsf{ini}} + \sigma_{\mathsf{y}}, u, \mathsf{y}),subject to
                                 where \tilde{H}^* \in \arg\min_{\tilde{H}} \quad J(\tilde{H}, H),subject to \tilde{Y}_F = Y_F \text{/col}(\tilde{U}_P, \tilde{Y}_P, \tilde{U}_F) (Row Space),
                                                                    rank(\tilde{H}) = mL + n(Rank Number),
                                                                     \tilde{H} \in \mathcal{H}(Hankel Structure)
```
- **Regularization terms:** I_1 -norm, l 2-norm, projection norm
- **Dimension reduction**: singular value decomposition (SVD), kernel representation
-
- $t + N 1$ \sum $(\|y(k) - y_r(k)\|_{Q}^2 + \|u(k)\|_{R}^2)$ min x, u, y
- **Model Predictive Control (Indirect) Data-EnablEd Predictive Control (Direct)**

1. Shang, Xu, and Yang Zheng. "Convex approximations for a bi-level formulation of data-enabled predictive control." *6th Annual Learning for Dynamics & Control Conference*, 2024. 2. Dörfler, Florian, Jeremy Coulson, and Ivan Markovsky. "Bridging direct and indirect data-driven control formulations via regularizations and relaxations." *IEEE Transactions on Automatic Control,* 2022.

Problem Statement

Adaptations for non-linear systems:

- 1) More data to increase accuracy
- 2) Extra slack variables to ensure feasibility
- 3) Different Regularization terms to increase the control performance

 k =t $[U_{\mathsf{P}}]$ $u_{\rm ini}$ Y_P **y**ini subject to $g =$ $U_{\rm F}$ \boldsymbol{u} $u \in \mathcal{U}, y \in \mathcal{Y}$

Existing Methods:

- - min $\|\tilde{H} H\|_2$
	- **Inner problem Outer problem**

Data-EnablEd Predictive Control (DeePC) (Coulson, 2019)

• **Combine Willem's fundamental lemma with predictive control**

- The cost becomes smaller as the data-driven representation becomes more structured
- The direct methods outperform the indirect method as the increasing of nonlinearity
- Among all DeePC variants, *DeePC-SVD-Iter* performs the best
- Regularizations are soft constraints and flexible while data pre-process with system knowledge gives hard requirements which makes the prediction more reliable

Key Insight: Model and data are coupled: we can

pre-process the data based on the corresponding model

In this paper, we are interested in:

- How to combine different variants in a same framework?
- What are their relationships?
- How to further improve the Data-EnablEd predictive control?

Method 1: DeePC-Hybrid (Dörfler, 2022)**:**

DeePC-Hybrid relaxes the rank constraint and the row space constraint while keeping the Hankel structure

$$
\min_{g,\sigma_y, u \in \mathcal{U}, y \in \mathcal{Y}} \|u\|_{R}^{2} + \|y\|_{Q}^{2} + \lambda_{1} \frac{\|g\|_{1}}{\|g\|_{1}} + \lambda_{2} \frac{\|(I - \Pi_{1})g\|_{2}^{2}}{ \|h\|_{2}} + \lambda_{y} \|\sigma_{y}\|_{2}^{2}
$$
\n
$$
\text{Rank}(\tilde{H}) = mL + n
$$

subject to
$$
\text{rank}(\tilde{H}) = mL + n
$$

 $\tilde{H} \in \mathcal{H}$

Method 2: DeePC-SVD (Zhang, 2023)**:**

DeePC-SVD decreases the column dimension of pre-collected trajectory library by

utilizing singular value decomposition (SVD) and drops Hankel structure

$$
\min_{\bar{f}, \sigma_y, u \in \mathcal{U}, y \in \mathcal{Y}} \quad ||u||_R^2 + ||y||_Q^2 + \lambda_1 \boxed{\|\bar{g}\|_1} + \lambda_2 \boxed{\|(I - \bar{\Pi}_1)\bar{g}\|_2^2} + \lambda_y \|\sigma_y\|_2^2
$$

Method 3: Data-Driven-SPC:

Data-Driven-SPC relaxes the rank constraint, drops the Hankel structure but directly handles the row space constraint

```
min \|\text{col}(\tilde{U}_{\text{P}},\tilde{Y}_{\text{P}},\tilde{U}_{\text{F}}) - \text{col}(U_{\text{P}},Y_{\text{P}},U_{\text{F}})\|subject to \tilde{Y}_F = Y_F \text{/col}(\tilde{U}_P, \tilde{Y}_P, \tilde{U}_F),
```
• **Inner problem**

• **Outer problem**
 $\min_{\sigma_y, g, u \in \mathcal{U}, y \in \mathcal{Y}} ||u||_R^2 + ||y||_Q^2 + \lambda_1 ||g||_1 + \lambda_y ||\sigma_y||_2^2$
 $\min_{\sigma_y, g, u \in \mathcal{U}, y \in \mathcal{Y}} ||u||_R^2 + ||y||_Q^2 + \lambda_1 ||g||_1 + \lambda_y ||\sigma_y||_2^2$ subject to $\begin{bmatrix} U_P \\ Y_P \\ U_F \\ M \end{bmatrix} g = \begin{bmatrix} u_{\text{ini}} \\ y_{\text{ini}} + \sigma_y \\ u \end{bmatrix}$.

min $\|\mu\|_{R}^{2} + \|y\|_{Q}^{2} + \lambda_{2} \|(I - \hat{\Pi}_{1})\hat{g}\|_{2}^{2} + \lambda_{y} \|\sigma_{y}\|_{2}^{2}$

Method 4: DeePC-SVD-Iter:

DeePC-SVD-Iter relaxes row space constraint but directly handles rank constraint and approximates the Hankel structure

Numerical Simulations

LTI system with Gaussian measurement noises: Nonlinear Lotka-Volterra dynamics: Key observations:

(Fawcett, 2021)

 $x(k+1) = A x(k) + B u(k), \quad k \in [t, t+N-1]$ subject to $y(k) = C x(k) + D u(k), \quad k \in [t, t + N - 1]$ $x(t) = \sqrt{x_{\text{ini}}},$ $u(k) \in \mathcal{U}, y(k) \in \mathcal{Y}, k \in [t, t+N-1].$

Power System (Huang, 2022)

 $k = t$