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Relationships: under mild conditions, we have

 DeePC-Hybrid and DeePC-SVD have the same optimal
solution.

* If A, is sufficiently large, DeePC-Hybrid and DeePC-
SVD have the same optimal solution as Data-Driven-

SPC

/

Overview

Two main data-driven control methods

Trajectory 3

Applications:

Power System
(Huang,2022)

Indirect Data-driven Control:
Data - model + uncertainty - control

(Wang, 2023)
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Model Predictive Control (Indirect)

 Data-EnablEd Predictive Control (Direct)
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Connected Vehicle

Convex Approximation for a Bi-level Formulation

Multi-agent System
(Fawcett, 2021)

3) Different Regularization terms to increase

the control performance
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Dimension reduction: singular
value decomposition (SVD),
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Key Insight:
Model and data are coupled: we can

pre-process the data based on the
corresponding model

Bi-level formulation (Dorfler, 2022):
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Model-based
Design

> {Control}

Inner: data pre-processing, cost function and constraints developed from system ID
Outer: predictive control, extra slack variables for handling model mismatch

minimize: control cost (u, y)

subject to: (u,y) consistent with (dy, yq4)

where: (iy, yg) is the optimal solution of

minimize: Pre-processing Cost (g, V4, Ud, Yd)

subject to: Constraints from system identification:
Row Space, Rank Number, Hankel Structure

minimize
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J(H, H),

Y = Ye/col(Up, Yp, Ur) (Row Space),
(Rank Number),
(Hankel Structure).

rank(H) = mL+ n
HeH

Method 1: DeePC-Hybrid (Dérfler, 2022):

DeePC-Hybrid relaxes the rank constraint and the row space constraint while keeping

the Hankel structure
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Numerical Simulations
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Rank:

rank(H) = mL +n

Y/F = YF/Col(f]p, i/p, UF)

Method 2: DeePC-SVD (Zhang, 2023):
DeePC-SVD decreases the column dimension of pre-collected trajectory library by
utilizing singular value decomposition (SVD) and drops Hankel structure
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Method 3: Data-Driven-SPC:

Data-Driven-SPC relaxes the rank constraint, drops the Hankel structure but directly
handles the row space constraint

min

Inner problem

subject to  Yg = YF/col(Up, Yo, UF),

Method 4: DeePC-SVD-Iter:
DeePC-SVD-Iter relaxes row space constraint but directly handles rank
constraint and approximates the Hankel structure
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LTI system with Gaussian measurement noises:
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——DeePC-Hybrid

——Ground Truth 1

(a) Hybrid

= Ax(k) + Bu(k),
= Cx(k) + Du(k) + w(k).

——DeePC-SVD
——Ground Truth

(b) SVD

——DeePC-SVD-Iter ——System 1D

——Ground Truth ]

——Data-Driven-SPC
——Ground Truth 7

——Ground Truth
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(c) DDSPC (d) SVvD-Iter

(e) System ID

Nonlinear Lotka-Volterra dynamics:

axri — bxri1xzo
dx1xo — cxro + U

Realized control cost
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Comparison of realized contfol cost for dfferent approaches makes the prediction more reliable
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Key observations:

The cost becomes smaller as the data-driven

representation becomes more structured

The direct methods outperform the indirect

method as the increasing of nonlinearity

Among all DeePC variants, DeePC-SVD-Iter

performs the best
Regularizations are soft constraints and

flexible while data pre-process with system
knowledge gives hard requirements which
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