
Nonconvex Optimization for Linear Quadratic 

Gaussian (LQG) Control 

Yang Zheng

Control, Learning, and Verification Workshop @ NUS

Dec 11, 2023

Assistant Professor, 
ECE Department, UC San Diego

https://zhengy09.github.io/soclab.html 

Scalable Optimization and 
Control (SOC) Lab

https://zhengy09.github.io/soclab.html


Acknowledgements

Na Li
Harvard University

Yujie Tang
Peking University

Yue Sun
University of Washington

Maryam Fazel
University of Washington

1. Y. Tang*, Y. Zheng*, and N. Li, “Analysis of the optimization landscape  of Linear Quadratic 
Gaussian (LQG) control,” Mathematical Programming, 2023. Available: 
https://arxiv.org/abs/2102.04393 *Equal contribution

2. Y. Zheng*, Y. Sun*, M. Fazel, and N. Li. "Escaping High-order Saddles in Policy Optimization for 
Linear Quadratic Gaussian (LQG) Control." arXiv preprint, 2022 
https://arxiv.org/abs/2204.00912. *Equal contribution

Supported by 
NSF ECCS-2154650

https://arxiv.org/abs/2102.04393
https://arxiv.org/abs/2204.00912


Motivation

3

❑  Model-free methods and data-driven control 
• Use direct policy updates 

• Become very popular in both academia and practice, from game playing, robotics, 
and drones, etc.

DeepMind OpenAI Applications

Duan et al. 2016; Silver et al., 2017; Dean et al., 2019; Tu and Recht, 2019; 
Mania et al., 2019; Fazel et al., 2018; Recht, 2019; 
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❑  Model-free methods and data-driven control 

Apply a control 

strategy

Accumulate 

observed data

Refine the 

control strategy

• Lack of non-asymptotic performance 
guarantees 

➢ Convergence

➢ Suboptimality

➢ Sample complexity, etc. 

❖ Highly nontrivial even for linear dynamical systems

• Directly search over a given policy class  

• Directly optimize performance on the true 
system, bypassing the model estimation 
(not on an approximated model)

Opportunities Challenges



Today’s talk
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❑  Optimal Control

Feedback Paradigm

Feedback 
Controller

System

MeasurementControl input

Control theory: the principled use of feedback 

loops and algorithms to drive a dynamical 
system to its desired goal

d(t) w(t)

y(t)u(t) x(t)

Linear Quadratic Optimal control

• Many practical applications 

• Linear Quadratic Regulator (LQR) when the state 
𝑥𝑡 is directly observable

• Linear Quadratic Gaussian (LQG) control when 
only partial output 𝑦𝑡 is observed 

• Extensive classical results (Dynamic programming, 
Separation principle, Riccati equations, etc.)

Major challenge: how to perform optimal 
control when the system is unknown?



Direct policy optimization

6

❑  Controller parameterization

• Give a parameterization of control policies; say 
neural networks? 

• Control theory already tells us many structural 
properties 

• Linear feedback is sufficient for LQR

• Set of stabilizing controllers

• A fast-growing list of references

Direct policy iteration

✓ Good optimization landscape properties 
(Fazel et al., 2018); 

• Connected feasible region

• Unique stationary point

• Gradient dominance

✓ Fast global convergence (linear)

➢ Fazel et al., ICML, 2018; Malik et al., 2019; Mohammadi et al., IEEE TAC, 2020; Li et al., 2019; K. Zhang, B. Hu, and T. Başar, 2021; 
Furieri et al., 2019; Feiran Zhao & Keyou You, 2021, and many others 

Policy optimization for LQR



Challenges for partially observed LQG

Applications Sparse structures
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❑  Results on model-free LQG control are much fewer

• LQG is more complicated than LQR

• Requires dynamical controllers

• Its non-convex landscape properties are much richer and more complicated than LQR

Our focus: nonconvex optimization of LQG

▪ Q1: Properties of the domain (set of stabilizing controllers)

• convexity, connectivity, open/closed?

▪ Q2: Properties of the accumulated cost

• convexity, differentiability, coercivity?

• set of stationary points/local minima/global minima?

▪ Q3: Escape saddle points via Perturbed Gradient 

Descent (PGD)



Outline

❑ LQG problem Setup

❑ Connectivity of the Set of Stabilizing Controllers

❑ Structure of Stationary Points of the LQG cost

❑ Escaping saddle points via PGD

8



Outline

❑ LQG problem Setup

❑ Connectivity of the Set of Stabilizing Controllers

❑ Structure of Stationary Points of the LQG cost

❑ Escaping saddle points via PGD

9



LQG Problem Setup

10

Gaussian white

➢                order of the controller

➢                                   full-order

➢                                    reduced-order

Plant

w(t)v(t)

dynamical controller

➢         internal state of the controller

u(t)y(t)

Minimal controller

The input-output behavior cannot be 

replicated by a lower order controller.

*                       controllable and observable

Controllable

Observable

Standard 
Assumption

Objective: The LQG cost



Separation principle
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Gaussian white

Plant

w(t)v(t)

dynamical controller

u(t)y(t)

Solution: Kalman filter for state estimation 
                   + LQR based on the estimated state

Two Riccati equations

➢ Kalman gain

➢ Feedback gain
Explicit dependence on the dynamics

Objective: The LQG cost



Policy optimization for LQG

Policy Optimization formulation
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❑ Closed-loop dynamics

❑ Feasible region of the controller parameters 

❑ Cost function

Solution to Lyapunov equations

Direct policy iteration

✓ Does it converge at all?

✓ Converge to which point?

✓ Convergence speed?

Optimization 
Landscape 

Analysis

Hyland, David, and Dennis Bernstein. "The optimal projection equations for fixed-order 
dynamic compensation." IEEE Transactions on Automatic Control 29.11 (1984): 1034-1037.



Main questions
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▪ Q1: Connectivity of the feasible region

• Is it connected?

• If not, how many connected components can it have?

▪ Q2: Structure of stationary points of

• Are there spurious (strictly suboptimal, saddle) 

stationary points?

• How to check if a stationary point is globally optimal?

▪ Q3: How to escape high-order saddle points via PGD?

Policy optimization for LQG

Non-convex 
Landscape 

Analysis



Outline
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❑ LQG problem Setup

❑ Connectivity of the Set of Stabilizing Controllers

❑ Structure of Stationary Points of the LQG cost

❑ Escaping saddle points via PGD



Connectivity of the feasible region
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❑ Simple observation: non-convex and unbounded

Stabilize the plant, and thus belong to 

Fails to stabilize the plant, and thus outside

Example

Lemma 1: the set          is non-empty, unbounded, and can be non-convex.



Connectivity of the feasible region
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❑Main Result 1: dis-connectivity

Theorem 1: The set can be disconnected but has at most 2 connected components.

✓ Different from the connectivity of static stabilizing state-feedback controllers, 
which is always connected!

✓ Is this a negative result for gradient-based algorithms? → No



Connectivity of the feasible region
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❑Main Result 2: dis-connectivity

Theorem 2: If         has 2 connected components, then there is a smooth bijection T between 

the 2 connected components that has the same cost function value.

✓ In fact, the bijection T is defined by a similarity 
transformation (change of controller state coordinates)

Positive news: For gradient-based local search

methods, it makes no difference to search over

either connected component.



Connectivity of the feasible region
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❑Main Result 3: conditions for connectivity

Theorem 3: 1) is connected if there exists a reduced-order stabilizing controller.

2) The sufficient condition above becomes necessary if the plant is single-input or 

single-output.

Corollary 1: Given any open-loop stable plant, the set of stabilizing controllers          is connected.  

Routh--Hurwitz stability criterion

Example: Open-loop stable system 



Connectivity of the feasible region
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❑Main Result 3: conditions for connectivity

• Routh--Hurwitz stability criterion

Disconnected feasible region

• Two path-connected components

Example: Open-loop unstable system (SISO) 



Proof idea: Lifting via Change of Variables
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❑ Change of variables in state-space domain: Lyapunov theory

• Connectivity of the static stabilizing state feedback gains

Open, connected, 

possibly nonconvex

• How about the set of stabilizing dynamical controllers Change of variables for 
output feedback control 

is highly non-trivial

[Gahinet and Apkarian, 1994]
[Scherer et al., IEEE TAC 1997]



Proof idea: Lifting via Change of Variables
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❑ Change of variables in state-space domain: Lyapunov theory

[Scherer et al., IEEE TAC 1997]
[Gahinet and Apkarian, 1994]

Two connected components

Convex thus 

connected

General linear group: the set 

of invertible matrices 

(similarity transformation)

at most 2 connected

components



Policy Optimization formulation
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▪ Q1: Connectivity of the feasible region

• Is it connected? No

• If not, how many connected components can it have? Two

▪ Q2: Structure of stationary points of

• Are there spurious (strictly suboptimal, saddle) stationary 

points?

• How to check if a stationary point is globally optimal?

▪ Q3: How to escape high-order saddle points via PGD?

Policy optimization for LQG

Non-convex 
Landscape 

Analysis



Outline
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❑ LQG problem Setup

❑ Connectivity of the Set of Stabilizing Controllers

❑ Structure of Stationary Points of the LQG cost

❑ Escaping saddle points via PGD



Structure of Stationary Points
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❑ Simple observations

Similarity transformation

1)          is a real analytic function over its domain

(smooth, infinitely differentiable)

2)          has non-unique and non-isolated global optima

➢             is invariant under similarity transformations.

➢ It has many stationary points, unlike the LQR with a unique 
stationary point 

Policy optimization for LQG



Structure of Stationary Points
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❑ Gradient computation

Lemma 2: For every                                            , we have 

where 

are the unique positive semidefinite solutions to two 

Lyapunov equations. 

How does the set of Stationary 
Points look like?

❑ Non-unique, non-isolated

❑ Local minimum, local 

maximum, saddle points, 

or globally minimum? 



Structure of Stationary Points
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❑Main Result: existences of strict saddle points

Theorem 4: Consider any open-loop stable plant. The zero controller with any stable

is a stationary point. Furthermore, the corresponding hessian is either indefinite ( strict saddle 

point) or equal to zero (high-order saddle or else). 

Stationary point:

➢ Cost function:

➢ Hessian:

Indefinite with 
eigenvalues:

Example:



Structure of Stationary Points
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Another example with zero Hessian

❑Main Result: existences of strict saddle points

❑ Non-unique, non-

isolated

❑ Strictly suboptimal 

points; Strict saddle 

points

❑ All bad stationary points 
correspond to non-
minimal controllers

How does the set of Stationary 
Points look like?

Theorem 4: Consider any open-loop stable plant. The zero controller with any stable

is a stationary point. Furthermore, the corresponding hessian is either indefinite ( strict saddle 

point) or equal to zero (high-order saddle or else). 



1) It is globally optimal, and the set of all global optima forms a manifold with 2 connected components. 

Particularly, given a stationary point that is a minimal controller

Structure of Stationary Points
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❑Main Result
Theorem 5: All stationary points corresponding to controllable and 

observable controllers are globally optimum.

Example: open-loop 
unstable system

Example: open-loop 
stable system

Local Zero Gradient
Structural 

Information
Global Optimality 

Certificate



Proof idea
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❑ Proof: all minimal stationary points are unique up to a similarity transformation

All minimal stationary points                                                   to the LQG problem are in the form of

T is an invertible matrix and  P,  S are the unique positive definite solutions to the Riccati equations

Minimal 
controller

Special case in Theorem 20.6 of Zhou et al., 1996 and 
Section II of Hyland, 1984



Structure of Stationary Points
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❑ Implication

Corollary: Consider gradient descent iterations

If the iterates converge to a minimal controller, then this minimal controller is a global optima.

More questions:

✓ Escaping saddle points?

✓ Convergence conditions?

✓ Convergence speed?

✓ Alternative model-free parameterization?

A recent and related paper on output estimation is 

Umenberger, J., Simchowitz, M., Perdomo, J. C., Zhang, K., & 

Tedrake, R. (2022). Globally Convergent Policy Search over Dynamic 
Filters for Output Estimation. arXiv preprint arXiv:2202.11659.



Policy optimization for LQR
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Connectivity of
feasible region

Stationary
points

❖ Disconnected, but at most 2 connected comp.

❖ They are almost identical to each other

❖ Non-unique, non-isolated stationary points

❖ Spurious stationary points (strict saddle, 

nonminimal controller)

❖ All mini. stationary points are globally optimal

Zheng*, Tang*, Li. 2021, link  (* equal contribution)

Comparison with LQR

Policy optimization for LQG

❖ Always connected

❖ Unique

Gradient 
Descent

❖ Gradient dominance

❖ Global fast convergence 

(like strictly convex)

❖ No gradient dominance

❖ Local convergence/speed (unknown)

❖ Many open questions

References
Fazel et al., ICML, 2018; Malik et al., 2019; Mohammadi et al., IEEE TAC, 
2020; Li et al., 2019; K. Zhang, B. Hu, and T. Başar, 2021; Furieri et al., 
2019; Feiran Zhao & Keyou You, 2021, and many others 

https://arxiv.org/abs/2102.04393


Outline
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❑ LQG problem Setup

❑ Connectivity of the Set of Stabilizing Controllers

❑ Structure of Stationary Points of the LQG cost

❑ Escaping saddle points via PGD



Saddle points
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❑ Local geometry

✓ Zhang, Yuqian, Qing Qu, and John Wright. "From symmetry to geometry: Tractable nonconvex problems." arXiv preprint arXiv:2007.06753 (2020).

Figure taken from Zhang et al., 2020

❑ Strict saddle points: the hessian has a strict negative 

eigenvalue (i.e., escaping direction) 

❑ Non-strict (high-order) saddle points: no such 

escaping direction, i.e., minimum eigenvalue is zero. 

❑ Simple perturbed gradient descent (PGD) methods can 
escape strict saddle points efficiently (e.g., Jin et al., 2017) 

Policy Optimization for LQG

High-order saddle point 

with zero hessian



Structure of stationary points
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❑ Theorem (informal): all bad stationary points are in the same form

a stationary point

If it is minimal, then it is globally optimal

If it is not minimal, find a minimal realization

The following full-order controller with any 

stable     is also a stationary point with the 

same LQG cost

where we isolate the uncontrollable and unobservable part 



Strict saddle points
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a stationary point

❑ Theorem (informal): Under a mild condition, choosing the diagonal stable block     

randomly leads to a strict saddle point with probability 1

The same form

Our idea: a structural perturbation

A strict saddle point 
with the same LQG cost

A high-order 
saddle 

✓ Yang Zheng*, Yue Sun*, Maryam Fazel, and Na Li. "Escaping High-order Saddles in Policy Optimization for 

Linear Quadratic Gaussian (LQG) Control." arXiv preprint arXiv:2204.00912 (2022). *Equal contribution



Perturbed Gradient Descent
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Our idea: a structural perturbation + standard PGD

A strict saddle point 
with the same LQG cost

A non-optimal 
stationary point 

❑ Theorem (informal): all bad stationary points are in the same form

❑ Theorem (informal): Choosing the diagonal stable block     

randomly leads to a strict saddle point with probability almost 1

Standard PGD algorithm 
(Jin et al., 2017)

Perturbation on Perturbation on gradients 

Jin, C., Ge, R., Netrapalli, P., Kakade, S. M., & Jordan, M. I. (2017, July). How to escape saddle points efficiently. In International 

Conference on Machine Learning (pp. 1724-1732). PMLR.



Numerical simulations
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A point that is close to a high-order saddle with zero hessian

Performance weights

Example: System dynamics

Three policy gradient algorithms

1. Vanilla gradient descent

2. Standard PGD algorithm (adding a small random perturbation on iterates; Jin et al., 2017;)

3. Structural perturbation + standard PGD



Conclusions
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Nonconvex optimization for LQG control

❑ Much richer and more complicated than LQR

❑ Disconnected, but at most 2 connected components

❑ Non-unique, non-isolated stationary points, strict saddle points

❑ Minimal (controllable and observable) stationary points are globally optimal

❑ A new perturbed gradient descent algorithm

39



Ongoing and Future work

❑ How to certify the optimality of a non-minimal stationary point

❑ Convergence proof of perturbed policy gradient (PGD)

❑ More quantitative analysis of PGD algorithms for LQG

❑ Alternative model-free parametrization of dynamical controllers (e.g., Makdah 

& Pasqualetti, 2023; Zhao, Fu &You, 2022.)

✓ Better optimization landscape structures, smaller dimension

❑ Nonconvex Landscape of Hinf dynamical output feedback control (Tang & 

Zheng, 2023 https://arxiv.org/abs/2304.00753; ) 

40

https://arxiv.org/abs/2304.00753


SOC lab at UC San Diego

Data-driven and 
learning-based 

control

Sparse conic 
optimization

Scalable 
distributed control

Connected and 
autonomous 

vehicles (CAVs)

Check out our webpage: https://zhengy09.github.io/soclab.html 

https://zhengy09.github.io/soclab.html


Thank you for your attention!
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