Nonconvex Optimization for Linear Quadratic Gaussian (LQG) Control

Yang Zheng

Assistant Professor, ECE Department, UC San Diego

Control, Learning, and Verification Workshop @ NUS

Dec 11, 2023

UC San Diego

JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering Scalable Optimization and Control (SOC) Lab <u>https://zhengy09.github.io/soclab.html</u>

Acknowledgements

Yujie Tang Peking University

Na Li Harvard University

Yue Sun University of Washington

Maryam Fazel University of Washington

- Y. Tang*, Y. Zheng*, and N. Li, "Analysis of the optimization landscape of Linear Quadratic Gaussian (LQG) control," Mathematical Programming, 2023. Available: <u>https://arxiv.org/abs/2102.04393</u> *Equal contribution
- Y. Zheng*, Y. Sun*, M. Fazel, and N. Li. "Escaping High-order Saddles in Policy Optimization for Linear Quadratic Gaussian (LQG) Control." arXiv preprint, 2022 <u>https://arxiv.org/abs/2204.00912</u>. *Equal contribution

Supported by NSF ECCS-2154650

Motivation

Model-free methods and data-driven control

- Use direct policy updates
- Become very popular in both academia and practice, from game playing, robotics, and drones, etc.

DeepMind

Applications

Duan et al. 2016; Silver et al., 2017; Dean et al., 2019; Tu and Recht, 2019; Mania et al., 2019; Fazel et al., 2018; Recht, 2019;

Motivation

Model-free methods and data-driven control

Opportunities

- Directly search over a given policy class
- Directly optimize performance on the true system, bypassing the model estimation (not on an approximated model)

Challenges

- Lack of non-asymptotic performance guarantees
 - > Convergence
 - Suboptimality
 - Sample complexity, etc.

Highly nontrivial even for linear dynamical systems

Today's talk

Optimal Control

Feedback Paradigm

Control theory: the principled use of feedback loops and algorithms to drive a dynamical system to its desired goal

Linear Quadratic Optimal control

$$\begin{array}{ll} \min_{u_1, u_2, \dots, t} & \lim_{T \to \infty} \mathbb{E} \left[\frac{1}{T} \sum_{t=1}^T \left(x_t^\mathsf{T} Q x_t + u_t^\mathsf{T} R u_t \right) \right] \\
\text{subject to} & x_{t+1} = A x_t + B u_t + w_t \\
& y_t = C x_t + v_t
\end{array}$$

- Many practical applications
- Linear Quadratic Regulator (LQR) when the state x_t is directly observable
- Linear Quadratic Gaussian (LQG) control when only partial output y_t is observed
- Extensive classical results (Dynamic programming, Separation principle, Riccati equations, etc.)

Major challenge: how to perform optimal control when the system is unknown?

Direct policy optimization

Controller parameterization

- Give a parameterization of control policies; say
 neural networks?
- Control theory already tells us many structural properties
- Linear feedback is sufficient for LQR

$$u_t = K x_t, \qquad K \in \mathbb{R}^{m \times n}$$

$$\lim_{T \to \infty} \mathbb{E} \left[\frac{1}{T} \sum_{t=1}^{T} \left(x_t^{\mathsf{T}} Q x_t + u_t^{\mathsf{T}} R u_t \right) \right] := J(K)$$

- Set of stabilizing controllers $K \in \mathcal{K}$
- A fast-growing list of references

Policy optimization for LQR $\begin{array}{l} \min_{K} & J(K) \\ \text{s.t.} & K \in \mathcal{K} \end{array}$

Direct policy iteration

$$K_{i+1} = K_i - \alpha_i \nabla J(K_i)$$

- ✓ Good optimization landscape properties (Fazel et al., 2018);
 - Connected feasible region
 - Unique stationary point
 - Gradient dominance
- ✓ Fast global convergence (linear)
- Fazel et al., ICML, 2018; Malik et al., 2019; Mohammadi et al., IEEE TAC, 2020; Li et al., 2019; K. Zhang, B. Hu, and T. Başar, 2021; Furieri et al., 2019; Feiran Zhao & Keyou You, 2021, and many others

Challenges for partially observed LQG

Results on model-free LQG control are much fewer

- LQG is more complicated than LQR
- Requires dynamical controllers
- Its non-convex landscape properties are much richer and more complicated than LQR

Our focus: nonconvex optimization of LQG

- Q1: Properties of the domain (set of stabilizing controllers)
 - convexity, connectivity, open/closed?
- Q2: Properties of the accumulated cost
 - convexity, differentiability, coercivity?
 - set of stationary points/local minima/global minima?
- Q3: Escape saddle points via Perturbed Gradient Descent (PGD)

Outline

LQG problem Setup

Connectivity of the Set of Stabilizing Controllers

Structure of Stationary Points of the LQG cost

Escaping saddle points via PGD

Outline

LQG problem Setup

Connectivity of the Set of Stabilizing Controllers

Structure of Stationary Points of the LQG cost

Escaping saddle points via PGD

LQG Problem Setup

Objective: The LQG cost r^{T}

$$\lim_{T \to +\infty} \frac{1}{T} \mathbb{E} \int_0^T \left(x^\top Q x + u^\top R u \right) dt$$

- $\succ \xi(t)~$ internal state of the controller
- $\blacktriangleright \dim \xi(t)$ order of the controller
- $\blacktriangleright \dim \xi(t) = \dim x(t)$ full-order
- $\blacktriangleright \dim \xi(t) < \dim x(t)$ reduced-order

Minimal controller

The input-output behavior cannot be replicated by a lower order controller.

 $(A_{\mathsf{K}}, B_{\mathsf{K}}, C_{\mathsf{K}})$ controllable and observable

Separation principle

Explicit dependence on the dynamics

Objective: The LQG cost

$$\lim_{T \to +\infty} \frac{1}{T} \mathbb{E} \int_0^T (x^\top Q x + u^\top R u) \, dt$$

Solution: Kalman filter for state estimation + LQR based on the estimated state

$$\dot{\xi} = (A - BK)\xi + L(y - C\xi),$$

$$u = -K\xi.$$

Two Riccati equations

 \blacktriangleright Kalman gain $L = PC^{\mathsf{T}}V^{-1}$

 $AP + PA^{\mathsf{T}} - PC^{\mathsf{T}}V^{-1}CP + W = 0,$

► Feedback gain $K = R^{-1}B^{\mathsf{T}}S$ $A^{\mathsf{T}}S + SA - SBR^{-1}B^{\mathsf{T}}S + Q = 0$

Policy Optimization formulation

Closed-loop dynamics

$$\frac{d}{dt} \begin{bmatrix} x\\ \xi \end{bmatrix} = \begin{bmatrix} A & BC_{\mathsf{K}} \\ B_{\mathsf{K}}C & A_{\mathsf{K}} \end{bmatrix} \begin{bmatrix} x\\ \xi \end{bmatrix} + \begin{bmatrix} I & 0 \\ 0 & B_{\mathsf{K}} \end{bmatrix} \begin{bmatrix} w\\ v \end{bmatrix} + \begin{bmatrix} w\\ v \end{bmatrix} = \begin{bmatrix} y\\ 0 & C_{\mathsf{K}} \end{bmatrix} \begin{bmatrix} x\\ \xi \end{bmatrix} + \begin{bmatrix} v\\ 0 \end{bmatrix}.$$

G Feasible region of the controller parameters

$$\mathcal{C}_{\text{full}} = \left\{ \mathsf{K} \mid \mathsf{K} = (A_{\mathsf{K}}, B_{\mathsf{K}}, C_{\mathsf{K}}) \text{ is full order} \\ \begin{bmatrix} A & BC_{\mathsf{K}} \\ B_{\mathsf{K}}C & A_{\mathsf{K}} \end{bmatrix} \text{ is Hurwitz stable} \right\}$$

Cost function

Cost function
$$\lim_{T \to +\infty} \frac{1}{T} \mathbb{E} \int_{0}^{\infty} (x^{\top}Qx + u^{\top}Ru) dt$$
$$J(\mathsf{K}) = \operatorname{tr} \left(\begin{bmatrix} Q & 0 \\ 0 & C_{\mathsf{K}}^{\mathsf{T}}RC_{\mathsf{K}} \end{bmatrix} X_{\mathsf{K}} \right) = \operatorname{tr} \left(\begin{bmatrix} W & 0 \\ 0 & B_{\mathsf{K}}VB_{\mathsf{K}}^{\mathsf{T}} \end{bmatrix} Y_{\mathsf{K}} \right)$$

rT

 $X_{\rm K}, Y_{\rm K}$ Solution to Lyapunov equations

1

Policy optimization for LQG $\min_{\mathsf{K}} J(\mathsf{K})$ s.t. $\mathbf{K} = (A_{\mathbf{K}}, B_{\mathbf{K}}, C_{\mathbf{K}}) \in \mathcal{C}_{\text{full}}$

Direct policy iteration $K_{i+1} = K_i - \alpha_i \nabla J(K_i)$

Hyland, David, and Dennis Bernstein. "The optimal projection equations for fixed-order 12 dynamic compensation." IEEE Transactions on Automatic Control 29.11 (1984): 1034-1037.

Main questions

Policy optimization for LQG $\begin{array}{l} \min_{\mathsf{K}} & J(\mathsf{K}) \\ \text{s.t.} & \mathsf{K} = (A_{\mathsf{K}}, B_{\mathsf{K}}, C_{\mathsf{K}}) \in \mathcal{C}_{\text{full}} \end{array}$

- Q1: Connectivity of the feasible region $\mathcal{C}_{\mathrm{full}}$

- Is it connected?
- If not, how many connected components can it have?
- Q2: Structure of stationary points of J(K)
 - Are there spurious (strictly suboptimal, saddle) stationary points?
 - How to check if a stationary point is globally optimal?
- Q3: How to escape high-order saddle points via PGD?

Outline

LQG problem Setup

Connectivity of the Set of Stabilizing Controllers

Structure of Stationary Points of the LQG cost

Escaping saddle points via PGD

Simple observation: non-convex and unbounded

Lemma 1: the set C_{full} is non-empty, unbounded, and can be non-convex.

Example

 $\dot{x}(t) = x(t) + u(t) + w(t)$ y(t) = x(t) + v(t) $\mathcal{C}_{\text{full}} = \left\{ \left. \mathsf{K} = \left| \begin{array}{cc} 0 & C_{\mathsf{K}} \\ B_{\mathsf{K}} & A_{\mathsf{K}} \end{array} \right| \in \mathbb{R}^{2 \times 2} \left| \begin{array}{cc} 1 & C_{\mathsf{K}} \\ B_{\mathsf{K}} & A_{\mathsf{K}} \end{array} \right| \text{ is stable} \right\}.$ $\mathsf{K}^{(1)} = \begin{bmatrix} 0 & 2 \\ -2 & -2 \end{bmatrix}, \qquad \mathsf{K}^{(2)} = \begin{bmatrix} 0 & -2 \\ 2 & -2 \end{bmatrix}$ Stabilize the plant, and thus belong to $\mathcal{C}_{\mathrm{full}}$ $\hat{\mathsf{K}} = \frac{1}{2} \left(\mathsf{K}^{(1)} + \mathsf{K}^{(2)} \right) = \begin{bmatrix} 0 & 0 \\ 0 & -2 \end{bmatrix}$ Fails to stabilize the plant, and thus outside $\mathcal{C}_{\mathrm{full}}$

□ Main Result 1: dis-connectivity

Theorem 1: The set C_{full} can be disconnected but has at most 2 connected components.

- ✓ Different from the connectivity of static stabilizing state-feedback controllers, which is always connected!
- \checkmark Is this a negative result for gradient-based algorithms? \rightarrow No

□ Main Result 2: dis-connectivity

Theorem 2: If C_{full} has 2 connected components, then there is a smooth bijection T between the 2 connected components that has the same cost function value.

 ✓ In fact, the bijection T is defined by a similarity transformation (change of controller state coordinates)

$$\mathscr{T}_{T}(\mathsf{K}) := \begin{bmatrix} D_{\mathsf{K}} & C_{\mathsf{K}}T^{-1} \\ TB_{\mathsf{K}} & TA_{\mathsf{K}}T^{-1} \end{bmatrix}.$$

Positive news: For gradient-based local search methods, it makes no difference to search over either connected component.

□ Main Result 3: conditions for connectivity

Theorem 3: 1) C_{full} is connected if there exists a reduced-order stabilizing controller.

 The sufficient condition above becomes necessary if the plant is single-input or single-output.

Corollary 1: Given any open-loop stable plant, the set of stabilizing controllers C_{full} is connected.

Example: Open-loop stable system

 $\dot{x}(t) = -x(t) + u(t) + w(t)$ y(t) = x(t) + v(t)

Routh--Hurwitz stability criterion

$$\mathcal{C}_{\text{full}} = \left\{ \left. \mathsf{K} = \begin{bmatrix} 0 & C_{\mathsf{K}} \\ B_{\mathsf{K}} & A_{\mathsf{K}} \end{bmatrix} \in \mathbb{R}^{2 \times 2} \right| A_{\mathsf{K}} < 1, B_{\mathsf{K}} C_{\mathsf{K}} < -A_{\mathsf{K}} \right\}$$

□ Main Result 3: conditions for connectivity

Example: Open-loop unstable system (SISO)

 $\dot{x}(t) = x(t) + u(t) + w(t)$ y(t) = x(t) + v(t)

• Routh--Hurwitz stability criterion

$$\mathcal{C}_{\text{full}} = \left\{ \mathsf{K} = \begin{bmatrix} 0 & C_{\mathsf{K}} \\ B_{\mathsf{K}} & A_{\mathsf{K}} \end{bmatrix} \in \mathbb{R}^{2 \times 2} \left| \begin{bmatrix} A & BC_{\mathsf{K}} \\ B_{\mathsf{K}}C & A_{\mathsf{K}} \end{bmatrix} \right| \text{ is stable} \right\}$$
$$= \left\{ \mathsf{K} = \begin{bmatrix} 0 & C_{\mathsf{K}} \\ B_{\mathsf{K}} & A_{\mathsf{K}} \end{bmatrix} \in \mathbb{R}^{2 \times 2} \middle| A_{\mathsf{K}} < -1, B_{\mathsf{K}}C_{\mathsf{K}} < A_{\mathsf{K}} \right\}.$$

• Two path-connected components

$$\begin{split} \mathcal{C}_{1}^{+} &:= \left\{ \left. \mathsf{K} = \begin{bmatrix} 0 & C_{\mathsf{K}} \\ B_{\mathsf{K}} & A_{\mathsf{K}} \end{bmatrix} \in \mathbb{R}^{2 \times 2} \right| A_{\mathsf{K}} < -1, \ B_{\mathsf{K}} C_{\mathsf{K}} < A_{\mathsf{K}}, \ B_{\mathsf{K}} > \mathbf{0} \right\}, \\ \mathcal{C}_{1}^{-} &:= \left\{ \left. \mathsf{K} = \begin{bmatrix} 0 & C_{\mathsf{K}} \\ B_{\mathsf{K}} & A_{\mathsf{K}} \end{bmatrix} \in \mathbb{R}^{2 \times 2} \right| A_{\mathsf{K}} < -1, \ B_{\mathsf{K}} C_{\mathsf{K}} < A_{\mathsf{K}}, \ B_{\mathsf{K}} < \mathbf{0} \right\}. \end{split}$$

Disconnected feasible region

Proof idea: Lifting via Change of Variables

Change of variables in state-space domain: Lyapunov theory

• Connectivity of the static stabilizing state feedback gains

 $\{K \in \mathbb{R}^{m \times n} \mid A - BK \text{ is stable}\}$ $\iff \{K \in \mathbb{R}^{m \times n} \mid \exists P \succ 0, P(A - BK)^{\mathsf{T}} + (A - BK)P \prec 0\}$ $\iff \{K \in \mathbb{R}^{m \times n} \mid \exists P \succ 0, PA^{\mathsf{T}} - L^{\mathsf{T}}B^{\mathsf{T}} + AP - BL \prec 0, L = KP\}$ $\iff \{K = LP^{-1} \in \mathbb{R}^{m \times n} \mid \exists P \succ 0, PA^{\mathsf{T}} - L^{\mathsf{T}}B^{\mathsf{T}} + AP - BL \prec 0\}.$

Open, connected, possibly nonconvex

• How about the set of stabilizing dynamical controllers

 $\begin{bmatrix} A & BC_{\mathsf{K}} \\ B_{\mathsf{K}}C & A_{\mathsf{K}} \end{bmatrix} \text{ is stable}$ $\iff \exists P \succ 0, P \begin{bmatrix} A & BC_{\mathsf{K}} \\ B_{\mathsf{K}}C & A_{\mathsf{K}} \end{bmatrix}^{\mathsf{T}} + \begin{bmatrix} A & BC_{\mathsf{K}} \\ B_{\mathsf{K}}C & A_{\mathsf{K}} \end{bmatrix}^{\mathsf{T}} + \begin{bmatrix} A & BC_{\mathsf{K}} \\ B_{\mathsf{K}}C & A_{\mathsf{K}} \end{bmatrix} P \prec 0,$

Change of variables for output feedback control is highly non-trivial

[Gahinet and Apkarian, 1994] [Scherer et al., IEEE TAC 1997]

Proof idea: Lifting via Change of Variables

Change of variables in state-space domain: Lyapunov theory

 $\Phi(\mathsf{Z}) = \begin{bmatrix} \Phi_D(\mathsf{Z}) & \Phi_C(\mathsf{Z}) \\ \Phi_B(\mathsf{Z}) & \Phi_A(\mathsf{Z}) \end{bmatrix} := \begin{bmatrix} I & 0 \\ YB & \Xi \end{bmatrix}^{-1} \begin{bmatrix} G & H \\ F & M - YAX \end{bmatrix} \begin{bmatrix} I & CX \\ 0 & \Pi \end{bmatrix}^{-1}.$ [Scherer et al., IEEE TAC 1997] [Gabinet and Apkarian, 1994]

Two connected components $\operatorname{GL}_{n}^{+} = \{ \Pi \in \mathbb{R}^{n \times n} \mid \det \Pi > 0 \},\$ $\mathbf{GL}_n^- = \{ \Pi \in \mathbb{R}^{n \times n} \mid \det \Pi < 0 \}.$

Policy Optimization formulation

Non-convex Landscape Analysis Policy optimization for LQG $\begin{array}{l} \min_{\mathsf{K}} & J(\mathsf{K}) \\ \text{s.t.} & \mathsf{K} = (A_{\mathsf{K}}, B_{\mathsf{K}}, C_{\mathsf{K}}) \in \mathcal{C}_{\text{full}} \end{array}$

- Q1: Connectivity of the feasible region $\mathcal{C}_{\mathrm{full}}$

- Is it connected? No
- If not, how many connected components can it have? Two
- **Q2:** Structure of stationary points of J(K)
 - Are there spurious (strictly suboptimal, saddle) stationary points?
 - How to check if a stationary point is globally optimal?
- Q3: How to escape high-order saddle points via PGD?

Outline

LQG problem Setup

Connectivity of the Set of Stabilizing Controllers

Structure of Stationary Points of the LQG cost

Escaping saddle points via PGD

Gimple observations

1) J(K) is a real analytic function over its domain (smooth, infinitely differentiable)

2) J(K) has **non-unique** and **non-isolated** global optima

 $\dot{\xi}(t) = A_{\mathsf{K}} \,\xi(t) + B_{\mathsf{K}} \,y(t)$ $u(t) = C_{\mathsf{K}} \,\xi(t)$

Similarity transformation

 $(A_{\mathsf{K}}, B_{\mathsf{K}}, C_{\mathsf{K}}) \mapsto (TA_{\mathsf{K}}T^{-1}, TB_{\mathsf{K}}, C_{\mathsf{K}}T^{-1})$

 \succ J(K) is invariant under similarity transformations.

It has many stationary points, unlike the LQR with a unique stationary point

Policy optimization for LQG $\begin{array}{l} \min_{\mathsf{K}} & J(\mathsf{K}) \\ \text{s.t.} & \mathsf{K} = (A_{\mathsf{K}}, B_{\mathsf{K}}, C_{\mathsf{K}}) \in \mathcal{C}_{\text{full}} \end{array}$

Gradient computation

Lemma 2: For every $K = (A_K, B_K, C_K) \in \mathcal{C}_{full}$, we have

$$\begin{split} &\frac{\partial J(\mathsf{K})}{\partial A_{\mathsf{K}}} = 2\left(Y_{12}^{\mathsf{T}}X_{12} + Y_{22}X_{22}\right),\\ &\frac{\partial J(\mathsf{K})}{\partial B_{\mathsf{K}}} = 2\left(Y_{22}B_{\mathsf{K}}V + Y_{22}X_{12}^{\mathsf{T}}C^{\mathsf{T}} + Y_{12}^{\mathsf{T}}X_{11}C^{\mathsf{T}}\right),\\ &\frac{\partial J(\mathsf{K})}{\partial C_{\mathsf{K}}} = 2\left(RC_{\mathsf{K}}X_{22} + B^{\mathsf{T}}Y_{11}X_{12} + B^{\mathsf{T}}Y_{12}X_{22}\right), \end{split}$$

where
$$X_{\mathsf{K}} = \begin{bmatrix} X_{11} & X_{12} \\ X_{12}^{\mathsf{T}} & X_{22} \end{bmatrix}$$
, $Y_{\mathsf{K}} = \begin{bmatrix} Y_{11} & Y_{12} \\ Y_{12}^{\mathsf{T}} & Y_{22} \end{bmatrix}$

are the unique positive semidefinite solutions to two Lyapunov equations.

How does the set of Stationary Points look like? $\begin{cases}
\mathsf{K} \in \mathcal{C}_{\text{full}} \\
\mathsf{K} \in \mathcal{C}_{\text{full}}
\end{cases} \begin{vmatrix} \frac{\partial J(\mathsf{K})}{\partial A_{\mathsf{K}}} = 0, \\
\frac{\partial J(\mathsf{K})}{\partial B_{\mathsf{K}}} = 0, \\
\frac{\partial J(\mathsf{K})}{\partial C_{\mathsf{K}}} = 0,
\end{cases}$

□ Non-unique, non-isolated

Local minimum, local maximum, saddle points, or globally minimum?

□ Main Result: existences of strict saddle points

Theorem 4: Consider any open-loop stable plant. The zero controller with any stable A_{K}

$$\mathsf{K} = (A_{\mathsf{K}}, 0, 0) \in \mathcal{C}_{\mathrm{full}}$$

is a stationary point. Furthermore, the corresponding hessian is either indefinite (strict saddle point) or equal to zero (high-order saddle or else).

$$\begin{array}{ll} \hline \textbf{Example:} & \dot{x}(t) = -x(t) + u(t) + w(t) & Q = 1, R = 1, V = 1, W = 1 \\ y(t) = x(t) + v(t) & \textbf{Stationary point:} \ \mathsf{K}^{\star} = \begin{bmatrix} 0 & 0 \\ 0 & a \end{bmatrix} \in \mathbb{R}^{2 \times 2}, & \text{with } a < 0 \\ \hline \textbf{Solution:} \ J\left(\begin{bmatrix} 0 & C_{\mathsf{K}} \\ B_{\mathsf{K}} & A_{\mathsf{K}} \end{bmatrix}\right) = \frac{A_{\mathsf{K}}^2 - A_{\mathsf{K}}(1 + B_{\mathsf{K}}^2 C_{\mathsf{K}}^2) - B_{\mathsf{K}} C_{\mathsf{K}}(1 - 3B_{\mathsf{K}} C_{\mathsf{K}} + B_{\mathsf{K}}^2 C_{\mathsf{K}}^2)}{2(-1 + A_{\mathsf{K}})(A_{\mathsf{K}} + B_{\mathsf{K}} C_{\mathsf{K}})}. \\ \hline \textbf{Hessian:} & \begin{bmatrix} \frac{\partial J^2(\mathsf{K})}{\partial A_{\mathsf{K}}^2} & \frac{\partial J^2(\mathsf{K})}{\partial A_{\mathsf{K}} \partial B_{\mathsf{K}}} & \frac{\partial J^2(\mathsf{K})}{\partial A_{\mathsf{K}} \partial C_{\mathsf{K}}} \\ \frac{\partial J^2(\mathsf{K})}{\partial B_{\mathsf{K}} A_{\mathsf{K}}} & \frac{\partial J^2(\mathsf{K})}{\partial B_{\mathsf{K}}^2} & \frac{\partial J^2(\mathsf{K})}{\partial B_{\mathsf{K}} \partial C_{\mathsf{K}}} \\ \frac{\partial J^2(\mathsf{K})}{\partial C_{\mathsf{K}} A_{\mathsf{K}}} & \frac{\partial J^2(\mathsf{K})}{\partial B_{\mathsf{K}}^2} & \frac{\partial J^2(\mathsf{K})}{\partial B_{\mathsf{K}} \partial C_{\mathsf{K}}} \\ \end{bmatrix} \\ & \mathsf{K}^{\star} = \begin{bmatrix} 0 & 0 \\ 0 & a \end{bmatrix} & \mathsf{K}^{\star} = \begin{bmatrix} 0 & 0 \\ 0 & a \end{bmatrix}, & \text{Indefinite with eigenvalues:} \\ 0 \text{ and } \pm \frac{1}{2(1-a)} \\ 0 \text{ and } \pm \frac{1}{2(1-a)} \\ \end{bmatrix} \\ \end{array}$$

□ Main Result: existences of strict saddle points

Theorem 4: Consider any open-loop stable plant. The zero controller with any stable A_{K}

$$\mathsf{K} = (A_{\mathsf{K}}, 0, 0) \in \mathcal{C}_{\mathrm{full}}$$

is a stationary point. Furthermore, the corresponding hessian is either indefinite (strict saddle point) or equal to zero (high-order saddle or else).

How does the set of Stationary Points look like?

$$\left\{ \mathsf{K} \in \mathcal{C}_{\text{full}} \middle| \begin{array}{l} \frac{\partial J(\mathsf{K})}{\partial A_{\mathsf{K}}} = 0, \\ \frac{\partial J(\mathsf{K})}{\partial B_{\mathsf{K}}} = 0, \\ \frac{\partial J(\mathsf{K})}{\partial C_{\mathsf{K}}} = 0, \end{array} \right\}$$

Non-unique, nonisolated

Strictly suboptimal points; Strict saddle points

All bad stationary points correspond to nonminimal controllers

Particularly, given a stationary point that is a minimal controller

 C_{K}

1) It is globally optimal, and the set of all global optima forms a manifold with 2 connected components.

28

Bк

Proof idea

Proof: all minimal stationary points are unique up to a similarity transformation

All minimal stationary points $K = (A_K, B_K, C_K) \in C_{\text{full}}$ to the LQG problem are in the form of

$$A_{\mathsf{K}} = T(A - BK - LC)T^{-1}, \qquad B_{\mathsf{K}} = -TL, \qquad C_{\mathsf{K}} = KT^{-1},$$

$$K = R^{-1}B^{\mathsf{T}}S, \ L = PC^{\mathsf{T}}V^{-1},$$

T is an invertible matrix and P, S are the unique positive definite solutions to the Riccati equations

$$\begin{cases} \left\{\mathsf{K} \in \mathcal{C}_{\mathrm{full}} \middle| \begin{array}{l} \frac{\partial J(\mathsf{K})}{\partial A_{\mathsf{K}}} = 0, \\ \frac{\partial J(\mathsf{K})}{\partial B_{\mathsf{K}}} = 0, \\ \frac{\partial J(\mathsf{K})}{\partial C_{\mathsf{K}}} = 0, \end{array}\right\} \xrightarrow{\mathsf{Minimal}} \begin{array}{l} \frac{\partial J_{n}(\mathsf{K})}{\partial B_{\mathsf{K}}} = 0 \\ \frac{\partial J_{n}(\mathsf{K})}{\partial C_{\mathsf{K}}} = 0, \end{array} \xrightarrow{\mathsf{Minimal}} \begin{array}{l} \frac{\partial J_{n}(\mathsf{K})}{\partial B_{\mathsf{K}}} = 0 \\ \frac{\partial J_{n}(\mathsf{K})}{\partial C_{\mathsf{K}}} = 0, \end{array} \xrightarrow{\mathsf{Minimal}} \begin{array}{l} \frac{\partial J_{n}(\mathsf{K})}{\partial B_{\mathsf{K}}} = 0 \\ \frac{\partial J_{n}(\mathsf{K})}{\partial C_{\mathsf{K}}} = 0, \end{array} \xrightarrow{\mathsf{Minimal}} \begin{array}{l} \frac{\partial J_{n}(\mathsf{K})}{\partial B_{\mathsf{K}}} = 0 \\ \frac{\partial J_{n}(\mathsf{K})}{\partial C_{\mathsf{K}}} = 0, \end{array} \xrightarrow{\mathsf{Minimal}} \begin{array}{l} \frac{\partial J_{n}(\mathsf{K})}{\partial C_{\mathsf{K}}} = 0 \\ \frac{\partial J_{n}(\mathsf{K})}{\partial A_{\mathsf{K}}} = 0, \end{array} \xrightarrow{\mathsf{Minimal}} \begin{array}{l} \frac{\partial J_{n}(\mathsf{K})}{\partial B_{\mathsf{K}}} = 0 \\ \frac{\partial J_{n}(\mathsf{K})}{\partial A_{\mathsf{K}}} = 0, \end{array} \xrightarrow{\mathsf{Minimal}} \begin{array}{l} \frac{\partial J_{n}(\mathsf{K})}{\partial C_{\mathsf{K}}} = 0 \\ \frac{\partial J_{n}(\mathsf{K})}{\partial A_{\mathsf{K}}} = 0, \end{array} \xrightarrow{\mathsf{Minimal}} \begin{array}{l} \frac{\partial J_{n}(\mathsf{K})}{\partial C_{\mathsf{K}}} = 0 \\ \frac{\partial J_{n}(\mathsf{K})}{\partial A_{\mathsf{K}}} = 0, \end{array} \xrightarrow{\mathsf{Minimal}} \begin{array}{l} \frac{\partial J_{n}(\mathsf{K})}{\partial A_{\mathsf{K}}} = 0 \\ \frac{\partial J_{n}(\mathsf{K})}{\partial A_{\mathsf{K}}} = 0, \end{array} \xrightarrow{\mathsf{Minimal}} \begin{array}{l} \frac{\partial J_{n}(\mathsf{K})}{\partial A_{\mathsf{K}}} = 0 \\ \frac{\partial J_{n}(\mathsf{K})}{\partial A_{\mathsf{K}}} = 0, \end{array} \xrightarrow{\mathsf{Minimal}} \begin{array}{l} \frac{\partial J_{n}(\mathsf{K})}{\partial A_{\mathsf{K}}} = 0 \\ \frac{\partial J_{n}(\mathsf{K})}{\partial A_{\mathsf{K}}} = 0, \end{array} \xrightarrow{\mathsf{Minimal}} \begin{array}{l} \frac{\partial J_{n}(\mathsf{K})}{\partial A_{\mathsf{K}}} = 0 \\ \frac{\partial J_{n}(\mathsf{K})}{\partial A_{\mathsf{K}}} = 0, \end{array} \xrightarrow{\mathsf{Minimal}} \begin{array}{l} \frac{\partial J_{n}(\mathsf{K})}{\partial A_{\mathsf{K}}} = 0 \\ \frac{\partial J_{n}(\mathsf{K})}{\partial A_{\mathsf{K}}} = 0, \end{array} \xrightarrow{\mathsf{Minimal}} \begin{array}{l} \frac{\partial J_{n}(\mathsf{K})}{\partial A_{\mathsf{K}}} = 0 \\ \frac{\partial J_{n}(\mathsf{K})}{\partial A_{\mathsf{K}}} = 0, \end{array} \xrightarrow{\mathsf{Minimal}} \begin{array}{l} \frac{\partial J_{n}(\mathsf{K})}{\partial A_{\mathsf{K}}}$$

Implication

Corollary: Consider gradient descent iterations

$$\mathsf{K}_{t+1} = \mathsf{K}_t - \alpha \nabla J(\mathsf{K}_t)$$

If the iterates converge to a minimal controller, then this minimal controller is a global optima.

A recent and related paper on output estimation is

Umenberger, J., Simchowitz, M., Perdomo, J. C., Zhang, K., & Tedrake, R. (2022). Globally Convergent Policy Search over Dynamic Filters for Output Estimation. *arXiv preprint arXiv:2202.11659*.

Comparison with LQR

	Policy optimization for LQR $\min_{K} J(K)$	Policy optimization for LQG $\min_{K} J(K)$
	s.t. $K \in \mathcal{K}$	s.t. $K = (A_{K}, B_{K}, C_{K}) \in \mathcal{C}_{\text{full}}$
Connectivity of feasible region	Always connected	 Disconnected, but at most 2 connected comp. They are almost identical to each other
Stationary points	Unique	 Non-unique, non-isolated stationary points Spurious stationary points (strict saddle, nonminimal controller) All mini, stationary points are globally optimal
Gradient Descent	 Gradient dominance Global fast convergence (like strictly convex) 	 No gradient dominance Local convergence/speed (unknown) Many open questions
References	Fazel et al., ICML, 2018; Malik et al., 2019; Mohammadi et al., IEEE TAC, 2020; Li et al., 2019; K. Zhang, B. Hu, and T. Başar, 2021; Furieri et al., 2019; Feiran Zhao & Keyou You, 2021, and many others	Zheng*, Tang*, Li. 2021, <u>link</u> (* equal contribution) 31

Outline

LQG problem Setup

Connectivity of the Set of Stabilizing Controllers

Structure of Stationary Points of the LQG cost

Escaping saddle points via PGD

Saddle points

Simple perturbed gradient descent (PGD) methods can escape strict saddle points efficiently (e.g., Jin et al., 2017)

Saddle

 $\lambda_{\min} \nabla^2 \varphi < 0$

 $\lambda_{\max} \nabla^2 \varphi > 0$

Maximizer

 $\nabla^2 \varphi \prec \mathbf{0}$

Zhang, Yuqian, Qing Qu, and John Wright. "From symmetry to geometry: Tractable nonconvex problems." *arXiv preprint arXiv:2007.06753* (2020)³ \checkmark

□ Theorem (informal): all bad stationary points are in the same form

If it is minimal, then it is globally optimal

If it is not minimal, find a minimal realization

$$\hat{\mathsf{K}} = \begin{bmatrix} 0 & \hat{C}_{\mathsf{K}} \\ \hat{B}_{\mathsf{K}} & \hat{A}_{\mathsf{K}} \end{bmatrix} \in \mathcal{C}_q$$

The following full-order controller with any stable Λ is also a stationary point with the same LQG cost

$$\tilde{\mathsf{K}} = \begin{bmatrix} 0 & \hat{C}_{\mathsf{K}} & 0\\ \bar{B}_{\mathsf{K}} & \bar{A}_{\mathsf{K}} & 0\\ 0 & 0 & \Lambda \end{bmatrix} \in \mathcal{C}_n$$

$$\dot{\xi}(t) = A_{\mathsf{K}}\xi(t) + B_{\mathsf{K}}y(t),$$
$$u(t) = C_{\mathsf{K}}\xi(t),$$
$$\dot{\xi}(t) = \begin{bmatrix} \hat{A}_{\mathsf{K}} & 0\\ 0 & \mathsf{\Lambda} \end{bmatrix} \hat{\xi}(t) + \begin{bmatrix} \hat{B}_{\mathsf{K}} \\ 0 \end{bmatrix} y(t),$$
$$u(t) = \begin{bmatrix} \hat{C}_{\mathsf{K}} & 0 \end{bmatrix} \hat{\xi}(t),$$

where we isolate the uncontrollable and unobservable part

 $\left\{ \mathsf{K} \in \mathcal{C}_n \mid \frac{\partial J(\mathsf{K})}{\partial A_{\mathsf{K}}} = 0, \\ \frac{\partial J(\mathsf{K})}{\partial B_{\mathsf{K}}} = 0, \\ \frac{\partial J(\mathsf{K})}{\partial C_{\mathsf{K}}} = 0, \end{array} \right\}$ a stationary point $\mathsf{K} = \begin{bmatrix} 0 & C_{\mathsf{K}} \\ B_{\mathsf{K}} & A_{\mathsf{K}} \end{bmatrix} \in \mathcal{C}_n$

Strict saddle points

 $\hfill \hfill \hfill$

✓ Yang Zheng*, Yue Sun*, Maryam Fazel, and Na Li. "Escaping High-order Saddles in Policy Optimization for Linear Quadratic Gaussian (LQG) Control." arXiv preprint arXiv:2204.00912 (2022). *Equal contribution

Perturbed Gradient Descent

□ Theorem (informal): all bad stationary points are in the same form

$$\tilde{\mathsf{K}} = \begin{bmatrix} 0 & \hat{C}_{\mathsf{K}} & 0\\ -\bar{B}_{\mathsf{K}} & \bar{A}_{\mathsf{K}} & 0\\ 0 & 0 & \Lambda \end{bmatrix} \in \mathcal{C}_n$$

□ Theorem (informal): Choosing the diagonal stable block Λ randomly leads to a strict saddle point with probability almost 1

Our idea: a structural perturbation + standard PGD

Jin, C., Ge, R., Netrapalli, P., Kakade, S. M., & Jordan, M. I. (2017, July). How to escape saddle points efficiently. In *International Conference on Machine Learning* (pp. 1724-1732). PMLR.

Numerical simulations

Three policy gradient algorithms

- 1. Vanilla gradient descent $K_{i+1} = K_i \alpha_i \nabla J(K_i)$
- 2. Standard PGD algorithm (adding a small random perturbation on iterates; Jin et al., 2017;)
- 3. Structural perturbation + standard PGD

Example: System dynamics

$$A = \begin{bmatrix} -0.5 & 0\\ 0.5 & -1 \end{bmatrix}, B = \begin{bmatrix} -1\\ 1 \end{bmatrix}, C = \begin{bmatrix} -\frac{1}{6} & \frac{11}{12} \end{bmatrix}$$
Performance weights

$$W = Q = I_2, V = R = 1$$

A point that is close to a high-order saddle with zero hessian

$$A_{\mathsf{K},0} = -0.5I_2, \ B_{\mathsf{K},0} = \begin{bmatrix} 0\\ 0.01 \end{bmatrix}, \ C_{\mathsf{K},0} = \begin{bmatrix} 0, -0.01 \end{bmatrix}$$

Conclusions

Nonconvex optimization for LQG control

- Much richer and more complicated than LQR
- Disconnected, but at most 2 connected components
- Non-unique, non-isolated stationary points, strict saddle points
- Minimal (controllable and observable) stationary points are globally optimal
- □ A new perturbed gradient descent algorithm

2500

2000

Ongoing and Future work

- □ How to certify the optimality of a non-minimal stationary point
- □ Convergence proof of perturbed policy gradient (PGD)
- □ More quantitative analysis of PGD algorithms for LQG
- Alternative model-free parametrization of dynamical controllers (e.g., Makdah & Pasqualetti, 2023; Zhao, Fu & You, 2022.)
 - ✓ Better optimization landscape structures, smaller dimension
- Nonconvex Landscape of Hinf dynamical output feedback control (Tang & Zheng, 2023 <u>https://arxiv.org/abs/2304.00753</u>;)

SOC lab at UC San Diego

Check out our webpage: https://zhengy09.github.io/soclab.html

Nonconvex Optimization for Linear Quadratic Gaussian (LQG) Control

Thank you for your attention!

Q & A

- Y. Tang*, Y. Zheng*, and N. Li, "Analysis of the optimization landscape of Linear Quadratic Gaussian (LQG) control," Mathematical Programming, 2023. Available: <u>https://arxiv.org/abs/2102.04393</u> *Equal contribution
- Y. Zheng*, Y. Sun*, M. Fazel, and N. Li. "Escaping High-order Saddles in Policy Optimization for Linear Quadratic Gaussian (LQG) Control." arXiv preprint, 2022 <u>https://arxiv.org/abs/2204.00912</u>. *Equal contribution